@article{oai:tsukuba.repo.nii.ac.jp:00056210, author = {安孫子, ユミ and ABIKO, Yumi and 熊谷, 嘉人 and KUMAGAI, Yoshito and Zheng, Fuli and Gonçalves, Filipe Marques and Li, Huangyuan and Aschner, Michael}, journal = {Redox Biology}, month = {Jul}, note = {Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.}, title = {Redox toxicology of environmental chemicals causing oxidative stress}, volume = {34}, year = {2020}, yomi = {アビコ, ユミ and クマガイ, ヨシト} }