WEKO3
AND
アイテム
{"_buckets": {"deposit": "8e11153c-6a29-44dc-9e76-7984001ada72"}, "_deposit": {"id": "56074", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "56074"}, "status": "published"}, "_oai": {"id": "oai:tsukuba.repo.nii.ac.jp:00056074"}, "item_5_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2019-12", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "24", "bibliographicPageStart": "243304", "bibliographicVolumeNumber": "126", "bibliographic_titles": [{}, {"bibliographic_title": "Journal of Applied Physics", "bibliographic_titleLang": "en"}]}]}, "item_5_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011\u20131013\u2009W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as \u201coverdriven detonation\u201d according to Raizer\u0027s Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5\u2009J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7\u2009eV and an electron number density of 2.5\u2009\u00d7\u20091023\u2009m\u22123. At the FIW\u2013LSDW transition, the electron temperature increased by 1\u2009eV, and the density decreased by 2.2\u2009\u00d7\u20091023\u2009m\u22123. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments.", "subitem_description_type": "Abstract"}]}, "item_5_publisher_27": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "AIP Publishing"}]}, "item_5_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "10.1063/1.5115815", "subitem_relation_type_select": "DOI"}}]}, "item_5_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "\u00a9 2019 Author(s)."}, {"subitem_rights": "This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 126, 24, 243304 (2019) and may be found at https://doi.org/10.1063/1.5115815."}]}, "item_5_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_5_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0021-8979", "subitem_source_identifier_type": "ISSN"}]}, "item_5_source_id_9": {"attribute_name": "\u66f8\u8a8c\u30ec\u30b3\u30fc\u30c9ID", "attribute_value_mlt": [{"subitem_source_identifier": "AA00693547", "subitem_source_identifier_type": "NCID"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "\u5d8b\u6751, \u8015\u5e73"}, {"creatorName": "\u30b7\u30de\u30e0\u30e9, \u30b3\u30a6\u30d8\u30a4", "creatorNameLang": "ja-Kana"}, {"creatorName": "SHIMAMURA, Kohei", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "188316", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "90736183", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000090736183"}, {"nameIdentifier": "0000003542", "nameIdentifierScheme": "\u7b51\u6ce2\u5927\u5b66\u7814\u7a76\u8005\u7dcf\u89a7", "nameIdentifierURI": "http://trios.tsukuba.ac.jp/researcher/0000003542"}]}, {"creatorNames": [{"creatorName": "\u6a2a\u7530, \u8302"}, {"creatorName": "\u30e8\u30b3\u30bf, \u30b7\u30b2\u30eb", "creatorNameLang": "ja-Kana"}, {"creatorName": "YOKOTA, Shigeru", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "205021", "nameIdentifierScheme": "WEKO"}, {"nameIdentifier": "30545778", "nameIdentifierScheme": "e-Rad", "nameIdentifierURI": "https://nrid.nii.ac.jp/ja/nrid/1000030545778"}, {"nameIdentifier": "0000003541", "nameIdentifierScheme": "\u7b51\u6ce2\u5927\u5b66\u7814\u7a76\u8005\u7dcf\u89a7", "nameIdentifierURI": "http://trios.tsukuba.ac.jp/researcher/0000003541"}]}, {"creatorNames": [{"creatorName": "Yokota, Ippei", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "223027", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2020-12-28"}], "displaytype": "detail", "download_preview_message": "", "filename": "JAP_126-24.pdf", "filesize": [{"value": "2.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 22000000, "url": {"label": "JAP_126-24", "url": "https://tsukuba.repo.nii.ac.jp/record/56074/files/JAP_126-24.pdf"}, "version_id": "65eb16bd-e54d-446e-a100-d31289372413"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Characterization of the fast ionization wave induced by a CO2 laser pulse in argon", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Characterization of the fast ionization wave induced by a CO2 laser pulse in argon", "subitem_title_language": "en"}]}, "item_type_id": "5", "owner": "1", "path": ["152/6520", "152/7427", "3/62/5592/74"], "permalink_uri": "http://hdl.handle.net/2241/00161478", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_name_i18n": "\u516c\u958b\u65e5", "attribute_value": "2020-09-28"}, "publish_date": "2020-09-28", "publish_status": "0", "recid": "56074", "relation": {}, "relation_version_is_last": true, "title": ["Characterization of the fast ionization wave induced by a CO2 laser pulse in argon"], "weko_shared_id": 5}
Characterization of the fast ionization wave induced by a CO2 laser pulse in argon
http://hdl.handle.net/2241/00161478
22ecb025-0561-4ec7-aa36-1a0b2895e5fb
名前 / ファイル | ライセンス | Actions | |
---|---|---|---|
![]() |
|
item type | Journal Article(1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2020-09-28 | |||||||||||
タイトル | ||||||||||||
言語 | en | |||||||||||
タイトル | Characterization of the fast ionization wave induced by a CO2 laser pulse in argon | |||||||||||
言語 | ||||||||||||
言語 | eng | |||||||||||
資源タイプ | ||||||||||||
タイプ | journal article | |||||||||||
著者 |
嶋村, 耕平
× 嶋村, 耕平
WEKO
188316
× 横田, 茂× Yokota, Ippei |
|||||||||||
抄録 | ||||||||||||
内容記述 | Fast ionization wave (FIW), a postbreakdown phenomenon of laser-induced plasma, is observed for a laser intensity of 1011–1013 W/m2 using the CO2 laser pulse in the atmospheric pressure condition. FIW is distinguishable as “overdriven detonation” according to Raizer's Chapmann-Jouguet detonation theory because FIW is known as the type of laser-absorption wave that has a higher propagation velocity than the laser-supported detonation wave (LSDW). Some reports have described the expansion of FIW using a solid-state laser. Nevertheless, the threshold phenomena between FIW and LSDW are not fundamentally understood. This study used the high-speed visualization and optical emission spectroscopy to investigate the transition of the laser-absorption wave in argon gaseous form. To elucidate the physics of the transition threshold, a 5 J CO2 pulse laser, an Echelle spectrometer, and an intensified CCD camera are used for the quantitative investigation of the plasma temperature and density. Results demonstrate that the FIW front had an electron temperature of 0.7 eV and an electron number density of 2.5 × 1023 m−3. At the FIW–LSDW transition, the electron temperature increased by 1 eV, and the density decreased by 2.2 × 1023 m−3. Besides, the transition threshold and the existence of local-thermodynamic equilibrium were evaluated based on the electron temperature, and the density was obtained from the spectroscopic experiments. | |||||||||||
書誌情報 |
en : Journal of Applied Physics 巻 126, 号 24, p. 243304, 発行日 2019-12 |
|||||||||||
ISSN | ||||||||||||
収録物識別子 | 0021-8979 | |||||||||||
書誌レコードID | ||||||||||||
収録物識別子 | AA00693547 | |||||||||||
DOI | ||||||||||||
関連識別子 | ||||||||||||
関連識別子 | 10.1063/1.5115815 | |||||||||||
権利 | ||||||||||||
権利情報 | © 2019 Author(s). | |||||||||||
権利 | ||||||||||||
権利情報 | This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 126, 24, 243304 (2019) and may be found at https://doi.org/10.1063/1.5115815. | |||||||||||
著者版フラグ | ||||||||||||
値 | publisher | |||||||||||
出版者 | ||||||||||||
出版者 | AIP Publishing |