@article{oai:tsukuba.repo.nii.ac.jp:00054032, author = {岡田, 晋 and OKADA, Susumu and Ji, Hyun Goo and Solís‐Fernández, Pablo and Yoshimura, Daisuke and Maruyama, Mina and Endo, Takahiko and Miyata, Yasumitsu and Ago, Hiroki}, issue = {42}, journal = {Advanced Materials}, month = {Oct}, note = {Monolayers of transition metal dichalcogenides (TMDCs) have attracted a great interest for post-silicon electronics and photonics due to their high carrier mobility, tunable bandgap, and atom-thick 2D structure. With the analogy to conventional silicon electronics, establishing a method to convert TMDC to p- and n-type semiconductors is essential for various device applications, such as complementary metal-oxide-semiconductor (CMOS) circuits and photovoltaics. Here, a successful control of the electrical polarity of monolayer WSe2 is demonstrated by chemical doping. Two different molecules, 4-nitrobenzenediazonium tetrafluoroborate and diethylenetriamine, are utilized to convert ambipolar WSe2 field-effect transistors (FETs) to p- and n-type, respectively. Moreover, the chemically doped WSe2 show increased effective carrier mobilities of 82 and 25 cm(2) V(-1)s(-1) for holes and electrons, respectively, which are much higher than those of the pristine WSe2. The doping effects are studied by photoluminescence, Raman, X-ray photoelectron spectroscopy, and density functional theory. Chemically tuned WSe2 FETs are integrated into CMOS inverters, exhibiting extremely low power consumption (approximate to 0.17 nW). Furthermore, a p-n junction within single WSe2 grain is realized via spatially controlled chemical doping. The chemical doping method for controlling the transport properties of WSe2 will contribute to the development of TMDC-based advanced electronics.}, title = {Chemically Tuned p- and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics}, volume = {31}, year = {2019}, yomi = {オカダ, ススム} }