@article{oai:tsukuba.repo.nii.ac.jp:00031432, author = {木塚, 朝博 and Kaneko, Fuminari and Hayami, Tatsuya and Aoyama, Toshiyuki and Kizuka, Tomohiro}, journal = {Journal of neuroengineering and rehabilitation}, month = {Jun}, note = {Background The combination of voluntary effort and functional electrical stimulation (ES) appears to have a greater potential to induce plasticity in the motor cortex than either electrical stimulation or voluntary training alone. However, it is not clear whether the motor commands from the central nervous system, the afferent input from peripheral organs, or both, are indispensable to induce the facilitative effects on cortical excitability. To clarify whether voluntary motor commands enhance corticospinal tract (CoST) excitability during neuromuscular ES, without producing voluntary muscular contraction (VMC), we examined the effect of a combination of motor imagery (MI) and electrical muscular stimulation on CoST excitability using transcranial magnetic stimulation (TMS). Methods Eight neurologically healthy male subjects participated in this study. Five conditions (resting, MI, ES, ES + MI [ESMI], and VMC) were established. In the ES condition, a 50-Hz stimulus was applied for 3 to 5 s to the first dorsal interosseous (FDI) while subjects were relaxed. In the MI condition, subjects were instructed to imagine abducting their index finger. In the ESMI condition, ES was applied approximately 1 s after the subject had begun to imagine index finger abduction. In the VMC condition, subjects modulated the force of index finger abduction to match a target level, which was set at the level produced during the ES condition. TMS was applied on the hotspot for FDI, and the amplitude and latency of motor evoked potentials (MEPs) were measured under each condition. Results MEP amplitudes during VMC and ESMI were significantly larger than those during other conditions; there was no significant difference in MEP amplitude between these 2 conditions. The latency of MEPs evoked during MI and VMC were significantly shorter than were those evoked during rest and ES. Conclusions MEP acutely reinforced in ESMI may indicate that voluntary motor drive markedly contributes to enhance CoST excitability, without actual muscular contraction.}, title = {Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction}, volume = {11}, year = {2014} }