BACE1 cleavage mediates neurite morphology induced by sodium channel β4 subunit

Haruko Miyazaki^{1, 2}, Fumitaka Oyama¹, Hong Kit Wong¹, Kumi Kaneko¹, Takashi Sakurai¹ Akira Tamaoka², and Nobuyuki Nukina¹

¹Laboratory for Structural Neuropathology, RIKEN BSI, Wako, Saitama, Japan; ²Department of Neurology, University of Tsukuba, Tsukuba, Ibaraki, Japan

 β -cleavage of amyloid precursor protein (APP) by β -site APP cleaving enzyme-1 (BACE1) is crucial for pathogenesis of Alzheimer disease (AD). Recently, we identified sodium channel β 4 (β 4) that is significantly downregulated in the striatum of HD model mice and patients and found that β 4 is a substrate for BACE1. β 4 is a member of the IgCAM superfamily and serves as an auxiliary subunit of the voltage-gated sodium channel. To examine the functional roles of β 4 processing, Neuro2a cells were transfected with β 4 and BACE1. Overexpression of β 4 caused neurite extension and increased number of filopodia-like protrusions. Coexpression of β 4 and BACE1 extended neurite and decreased number of filopodia-like protrusions compared with β 4 expressing cells. These results suggest that BACE1 cleavage regulates β 4-mediated neurite outgrowth activity. Our findings may provide new insights into the underlying pathology of HD as well as AD.