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We report results on the static quark potential in two-flavor full QCD. The calculation is performed for three

values of lattice spacing a−1 ≈ 0.9, 1.3 and 2.5 GeV on 123×24, 163×32 and 243×48 lattices respectively, at sea

quark masses corresponding to mπ/mρ ≈ 0.8–0.6. An RG-improved gauge action and a tadpole-improved SW

clover quark action are employed. We discuss scaling of mρ/
√

σ and effects of dynamical quarks on the potential.

1. Introduction

Interest in the static quark potential calculated
in full QCD is multi-fold, the foremost being the
expectation that a flattening of the potential due
to quark pair creation would be observed at large
separations. An increase in the Coulomb coef-
ficient of the potential at small separations is
another effect expected from sea quarks. A num-
ber of studies have recently been reported explor-
ing these aspects of the full QCD static potential
[1,2].

Recently the CP-PACS Collaboration has
started a systematic effort toward a full QCD sim-
ulation with two flavors of dynamical quarks[3].
In this article we present results on the static po-
tential calculated as a part of this program.

2. Simulations and measurements

The CP-PACS simulation of full QCD is car-
ried out for three values of lattice spacing in the
range a−1 ≈ 0.9–2.5 GeV and four different sea
quark masses corresponding to mπ/mρ ≈ 0.8–
0.6. An RG-improved gauge action and a tadpole-
improved SW clover action are employed to re-
duce discretization errors. Light hadron masses
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Table 1
Parameters of potential measurements. Statistics
for mSL is given in the square brackets. Lat-
tice scale is from mρ =0.768 GeV at the physical
point.

lattice Ksea conf mπ/mρ

123×24 0.1409 985 0.806(1)
β =1.80 0.1430 845 0.753(1)
cSW =1.60 0.1445 1063 0.696(2)
a−1

ρ =0.917(10) GeV 0.1464 680 0.548(4)

163×32 0.1375 659 [375] 0.805(1)
β =1.95 0.1390 690 [199] 0.751(1)
cSW =1.53 0.1400 659 [169] 0.688(1)
a−1

ρ =1.288(15) GeV 0.1410 492 [169] 0.586(3)

243×48 0.1351 250 0.800(2)
β =2.20 0.1358 269 0.752(3)
cSW =1.44 0.1363 322 0.702(3)
a−1

ρ =2.45(9) GeV 0.1368 253 0.637(6)

are calculated at every fifth trajectories [4], while
the static potential calculation uses a subset of
the configurations as listed in Table 1 where other
relevant run parameters are also given.

We extract the static potential from smeared
Wilson loops by an exponential fit over the range
T ≈ 0.4–0.8 fm, above which noise quickly dom-
inates over the signal. The string tension σ
and the Coulomb coefficient α are determined
by fitting the potential result to a form V (R) =
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Figure 1. The lattice spacings at β =2.2 deter-
mined from mρ, σ and r0 as a function of m2

πa2

together with quadratic chiral extrapolations.

V0 − α/R + σ · R. Errors are estimated by the
jack-knife method with a bin size corresponding
to 50 HMC trajectories.

We also carry out a measurement of the poten-
tial with 100 configurations in quenched QCD at
β =2.7 to compare with full QCD results obtained
at β =2.2.

At β =1.95, we calculate the static-light meson
propagator using an exponential smearing func-
tion for the source. The mass of the static-light
meson is extracted by making fits over an interval
T ≈ 0.3–1.1 fm.

3. Scaling of mρ/
√

σ

In Fig. 1 the lattice spacings determined from
mρ, the string tension σ (where we employ the
value

√
σ = 0.44 GeV) and the Sommer scale r0

at each sea quark mass on the 243×48 lattice are
plotted as a function of m2

πa2. The values extrap-
olated quadratically in m2

πa2 to the chiral limit
are also shown. We observe that the three lat-
tice spacings converge within 10% in the chiral
limit. The consistency of scale observed here at
a ≈ 0.08 fm holds also at larger lattice spacings.

In Fig. 2 we plot the ratio mρ/
√

σ in the chi-
ral limit as a function of aρ fixed by mρ. With
our choice of the clover coefficient for the quark
action, the leading O(g2a) scaling violation is ex-
pected to be small[5]. The flat behavior of the
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Figure 2. Ratio mρ/
√

σ in the chiral limit as a
function of aρ determined from mρ. An estimate
of the continuum value from a constant fit is also
shown.

ratio supports this expectation, and also suggests
that the remaining higher order contributions are
small as well. We then adopt a constant fit, and
find mρ/

√
σ =1.66(4) as an estimate of the con-

tinuum value. If we employ mρ =0.768 GeV, this
leads to

√
σ=0.463(11) GeV, which is now a pre-

diction of our full QCD simulation. This value is
about 5% larger than 0.44 GeV used in Fig. 1.

4. String breaking effect

In Fig. 3 the potential data V (R) are compared
with twice the static-light meson mass 2mSL on
the 163×32 lattice at the lightest sea quark mass.
The potential result crosses 2mSL at around 1 fm
and continues to increase with R. We find a simi-
lar behavior at other sea quark masses and lattice
spacings. Thus our results do not show any in-
dication of a flattening of the potential expected
from a pair creation of quarks, similar to those of
previous studies[2].

A possible interpretation of this result is that
the overlap of the Wilson loop operator with
the state of a static-light meson pair is small.
In a simplified picture that the contribution of
the meson pair to the Wilson loop is given by a
static-light meson propagating along the loop, the
overlap is given by a factor exp(−ESLR) where
ESL = mSL − δmSL with δmSL ≈ V0/2 is the
binding energy of meson. Hence the contribu-
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Figure 3. The potential data on 163×32 lat-
tice at mπ/mρ ∼ 0.6. The solid and dotted lines
represent the center value of 2mSL and its error.

tion of the meson pair dominates over that of
the string state only for sufficiently large T sat-
isfying exp(−2ESL(R + T )) ≫ exp(−σRT ). For
numerical parameters appropriate for Fig. 3, we
find this condition to be met only for T ≫ 3 fm
at R ≈ 1.5fm, which is far too large for practi-
cal potential measurements. Devising an opera-
tor which does not suffer from the small overlap
problem is needed to observe the string breaking
effect.

5. Effect on the Coulomb coefficient

In Fig. 4 we plot results for the Coulomb co-
efficient α obtained on the 243×48 lattice as a
function of sea quark mass using mπ/mρ (filled
circles). The right-most open circle is the re-
sult in quenched QCD at β = 2.7 for which
a−1

σ = 2.217(8) GeV fixed by
√

σ = 0.44 GeV
matches with the value a−1

σ =2.22(4) GeV of the
full QCD run. As expected, the full QCD results
are larger than the quenched value, and they in-
crease as the sea quark becomes lighter.

A simple estimate of the magnitude of shift of α
from quenched to full QCD may be made in the
following way[6]: one starts with the quenched
value, runs it from µ = a−1 down to µ ≈ 500
MeV using the 2-loop β function with Nf = 0,
and then runs back to a−1 with Nf = 2. The
result shown by the horizontal line in Fig. 4 is
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Figure 4. Coulomb coefficient in full QCD(filled
circle) as a function of mπ/mρ, as compared to
the quenched value (open circle) at the same lat-
tice spacing. Solid and dashed lines represent an
estimate expected for the full QCD value and er-
ror.

consistent with the measured value. Dashed lines
are uncertainties due to the error of the quenched
value and the choice of the matching scale, which
is varied over µ = 400–600 MeV.
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