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We calculate one-loop renormalization factors of bilinear quark operators for the gluon action including
six-link loops and arD(a)-improved quark action in the limit of a massless quark. We find that finite parts of
the one-loop coefficients of renormalization factors diminish monotonically as either of the coeffiiants
C,+c5 of the six-link terms is decreased below zero. Detailed numerical results are given, for general values
of the clover coefficient, for the tree-level improved gluon action in the Symanzik approaeh—(1/12¢,
=c3=0) and for the choices suggested by Wilsan € —0.252¢,=0,c3=—0.17) and by lwasakid;=
—0.331¢,=c3=0 andc;= —0.27¢,+ c3= —0.04) from renormalization-group analyses. Compared with the
case of the standard plaquette gluon action, the finite parts of the one-loop coefficients are reduced by 10—-20 %
for the Symanzik action, and approximately by a factor of 2 for the renormalization-group improved gluon
actions.[S0556-282(198)04517-3

PACS numbses): 11.15.Ha, 12.38.Aw, 12.38.Bx, 12.38.Gc

I. INTRODUCTION II. ACTION AND FEYNMAN RULES

. . . The gluon action we consider is defined b
Lattice QCD calculations of hadron matrix elements re- g y
quire values of renormalization factors which relate opera- 1
tors on the lattice to those in the continuum. For the standard Sy o=—fco >  TrUp+c; X TrUpgg

plaguette gluon action, the perturbative calculation of renor- g plaquette rectangle

malization factors for a massless quark has been carried out

to one-loop order for bilinear and four-quark operators, both +c, >, TrUgyt+cs > TrUpg¢, (D)
for the Wilson quark action[1-6] and for the chair parallelogram

O(a)-improved “clover” action[7—14] originally suggested

by Sheikholeslami and Wohleft5,16. With development where the first term represents the standard plaquette term,

: . : ) and the remaining terms are six-link loops formed by a 1
of our full QCD simulations[17] employing an improved X2 rectangle, a bent 12 rectangle(chain, and a three-

gluon action[18], we find it necessary to extend these Cal'dimensional parallelogram. The coefficients, . . . c5 sat-
culations. In this article we report results for renormalizationisfy the normalization condition

factors of bilinear quark operators at the one-loop level for
the gluon action improved by the addition of six-link loops Co+8c;+16c,+8c;=1. 2
to the plaguette term. For the quark action we treat both the
Wilson and O(a)-improved actions, taking the limit of a  For the quark action we consider
massless quark. We evaluate numerical values of the one-
loop coefficients of renormalization factors for the case of Squark=Swt Sc, )
the tree-level improved action in the Symaqzik approgcf]NhereSW is the Wilson action given by
[19,20 and for several cases of renormalization-group im-
proved actiong18,21]. We also examine how the one-loop 1 _
coefficients vary for general values of the coefficients of the Sw=a32 EE [Yn(—r+vI)Un ¥ns s
six-link loop terms. noew

In Sec. Il we write down the action we treat and the - + . -
Feynman rules to fix our conventions. The structure of renor- T Ty Uny u¥n- il F (@M A1) Y,
malization factors related to the fermion self-energy is dis- 4
cussed in Sec. Il and that for bilinear quark operators in Sec.
V1. Numerical results for one-loop coefficients are given inWith a the lattice spacing, an8 represents the “clover”
Sec. V. Since the procedure of calculation is by now stanierm defined by
dard, we shall be brief on this point. Expressions for one- .
loop integrands are listed in Appendix A. In Appendix B we _ 3 P
coII%ct oﬁe-loop results for thgprelation betwsgn the renor- Sc= ~ Csud ; ;, IgZIp”U“”P’”(nW“' ®
malized and bare coupling constants for various choices of
gluon and quark actions. For the field strengtt,, we adopt the definition given by
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4
1 1 - ~
P/},v(n):Z E 2i g[ (n) UT(n)] (6) (kz) 2|:k k +2 (ka v kva,u,o')ka'Aa'V}
i=
_ .t T k,k,
Us(M=UnUnsaUpys Unos (7) —(1—01)({2)2 (20)
Ua(m=Un, U} .05 Un o Un i, ()
=k~ (1-A,)k,k,+5,> KA,
Usm=U, ;U o 5 UniiuUnin, O (o {( Kkt O ; 7 }
(m=u’ - u, ;.U St (10) kuk,
4 n—v,y-N=v,u n+;L v, v —(1—04)(R2)2, (21)
Our y matrix convention is as follows:
0 —io 0 1 whereA,,, is a function ofq,, and RM whose form we refer
yi:(_ , , 74:( ) (11)  to the original literaturg18,19.
lo 0 10 The free quark propagator is given by
1 0 o
Ys=V1Y2Y3Ya=\ g 4 12 —i> y,p,+W(p)
M
1 Sy(p)= , (22)
) 2
+
=577 13 2 pHW(P)
Weak-coupling perturbation theory is developed by writ-where
ing
K== sink (23)
_ 1. .= Sink,a,
Un,=exp|igaA,[n+ > (14 a
We_ adopt a covariant gauge fixing with a gauge parameter W(p)=m+ r E (1—cosap,).
defined by a
(24)
1. 2
4 a
SeF=2a E V phu| NF oMl (15) To calculate renormalization factors of bilinear quark op-

erators to one-loop order, we need only one- and two-gluon
whereV ,f.=(f,,,—fn)/a. The free part of the gluon ac- vertices with quarks. The vertices originating from the Wil-

tion takes the form son quark action are given by
1 (+mla d* . o a
Swory | S ALKGLA-K), (6 V,(p)= —igT? 7, coss (—k,+D,)
2) - zia (277 mv
a
where —ir sing (—k,+p,) |, (25

pr= Kkt 2 (&8 KuBp)duky, (17 a1 .
Vggv(k!p): Egzz{Ta'Tb}[ i Yu Sini(_kﬂ_‘_ p,u)

with

a
k a —r cosz(—kMerﬂ)

2 s, (26
k =3 sin —— (18) g

. . and the interaction due to the clover term has the form
andq,, is defined as

N ~ r .
q/.w:(l_5ﬂv)[1_(cl_c2_c3)a2(ki+k12/) V?;lﬂ(k,p):_csv@z(gy O,y SIN a(pv+kv)
—(co+cg)aZk?]. (19 a
X s(put &
The gluon propagator can be written as cos5 (Pu k)T (27
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blk)~— F P w(p) In Eq. (30) the coefficients ofiy,p, andm are evaluated
with my= 0. The infrared divergence that appears in this case
is regularized by a gluon mass introduced in the gluon

" propagator as described in Appendix A. Of the finite con-
stants¥;(i=0,1,2¢q), 3, is independent of the clover coef-
ficient cgyy; nor does it depend on the improved part of the
gluon action. The other constaris(i=0,1,2) depend qua-
dratically on the clover coefficierdsy, and we write

3=3{%tcon Vs i?. (32

Let us recall that the hopping parameieis related to the
bare quark massy, through

1
Ve (k o =
Gru(k,p) A ! K 2(m0a+4) (33)
The critical hopping parameter corresponding to a massless

FIG. 1. Quark-gluon vertices needed for our one-loop calcula-quark is given by
tions.
Our momentum assignments for the vertices are depicted in (34)
Fig. 1. The two-gluon vertex with quarks from the clover

term gives no contribution to diagrams we evaluate, and iS |, the continuum we employ the modified minimal sub-

hence omitted. traction MS scheme with naive dimensional regularization.
The one-loop self-energy in the continuum has the same

_ 9° 20
1672 Fal

Ill. QUARK SELF-ENERGY form as Eq.(30) with, however, the replacements
Let us write the inverse full quark propagator as log(Aa)2—log(A/w)?, (35)
Sq H(P)=17,uP,+ W(P)—2(p). (28 S, 3W_ 1, (36)
Calculating the quark self-ener@(p) to one-loop order on S SWS__, 37)
the lattice and making an expansion of form 2 2 =
MS_
3(0) , 3.3, =1 (38)
2(P)=2(0)+ ———p,+0O(p%), (29
Pu Let us define the quark wave function renormalization
i factor needed for converting the lattice field to the continuum
we find field in theMS scheme by
g* YMS=\Z, 2, (39

Sy (P)=17,P,

1— ——C¢{log(ra)?+3,
1672 ,
To one-loop order we then find that

2

+(a—1)[log(Aa)?+3 ]} g ,
Z,(pna)=1+ Cel{—log(na)“+z,
1672

2
+ml- 16 > Ce{4logna)*+3, +(a—1)[—log(ua)?]}, (40)
T
where
— 2 _ o
+(a—1)[logna)*+3,1} | (30 2,33 b (- 1) (33, )
where The quark mass renormalization factor defined by
2 MVS( 1) = Zpn(pa)m (42)
g 2o
m=mg— Ce—- @y
1672 = a is given by
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Zm(pa)=1+ g Ce[—3log(ua)’+z,], (43 Tr=|1+ QZCF[— hZ(F)Iog()\a)erVr
1672 1672 4
with
o o +(a—1)[—log(Aa)®+V, ] [T (48
Zn=(23°=3) — (Z°-3y). (44
It is worth noting that the critical hopping parameter and 9°Cr
the quark mass renormalization fac#@y, do not depend on Tre= 6 5> Vrel, (49)
the gauge parameter. &
IV. BILINEAR OPERATORS gch

We consider bilinear quark operators in the following

form [10]: where\ is the gluon mass, anta,(I") is an integer given by

_ _ B E 2T

Here I' denotes the appropriatg matrices, and the addi- for various Dirac channels. The finite constanti
tional operators in the second and the third terms needed for I'.1'*,I'") depend quadratically on the clover coefficients

improvement are defined by Csw, and we write
V=V + cswVit + cguVi? (52
— r — —
® = _ L
Y= = 4[(¢n+#Un,M Un—wUn— ) Yul n Vr®:V(r0Qg+CswV(rle§+CéwV(r2§' (53
- _ut

lﬂnr ’yM(Ur‘I,,ulpn+,u Un—/.l,,/,l,llbn*/.l,)]l (46) VF’:V(FOr)'*'CSWV(Flr)_l'CgWV(FZ!) ) (54)
. 2 . The constanV, satisfiesV,=—3%,,.
gl = 1_6[('ﬂn+MUZ,;L_ - Un— ) In the continuum, the on-shell vertex function to one-loop

order is given in theVS scheme by
X ’V,U.r ’yv(un,vlanrv_ Ul*v,vlpn*ll)]' (47)

At one-loop order, on-shell matrix elements©f(z) do
not have terms ofd(a) or O(g?aloga) [16]. To remove
terms ofO(g?a), the coefficients of the added operators as
well as that ofam, in Eq. (45) have to be corrected by an +(a—1)[log(u/\)?+ 1]]
O(g?) term. For vector and axial vector currents, an addition
of a total derivative operator with a®(g?) coefficient is )
also necessar13]. Evaluating these coefficients is outside with
the scope of this article.

We calculate the renormalization factor ©f-(z) for a VM_S:3h2(F) +i(I) (56)
massless quark. The on-shell vertex functions for the three r 8 1D,
operators in Eq(45), for a quark and an antiquark with mo-
mentap=p’'=0 as external states, take the form where

log(w/\)2+ VS

F:

N 92CF{ ho(T")
1672 4

r, (55

J(I)==2(=6)(A),—2(=2)(V),—4(4)(P),—4(—4)(5),00)(T) (57)

for the anticommuting and 't Hooft—Veltman definition of the MS scheme and the lattice operator is given by
vs, With values for the latter in parentheses.

Combining the above results and including self-energyO™S(u)=Z{[ 1+ rmoa(1—2) ¢l g+ zgT ® y— 2297 ¥},
corrections, the relation between the continuum operator in (58
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TABLE I. Finite constants for the quark self-energy. Coefficients of the tely(n=0,1,2) are given in the column marked asg (
Tadpole contributions are also listed.

Gauge action pI 3 3, 2,
C1 Ca3 0 tad 1) v 0 tad (1) 2 ) (1) 2
0 0 -51.435 -48.932 13.733 5.715 13.352 12.233 -2.249 -1.397 -2.100 -9.987 -0.017 -4.793
-1/12 0 -40.444  -40.518 11.948 4.663 9.731 10.130 -2.015 -1.242 -2.376 -8.851 0.125
-0.331 0 -26.073 -29.928 9.015 3.106 4.825 7482 -1.601 -0.973 -2.533 -6.902 0.293
-0.27 -0.04 -27.214 -30.754 9.283 3.219 5.208 7.689 -1.644 -1.005 -2552 -7.098 0.287
-0.252 -0.17 -24.688 -28.937 8.698 2.884 4.294 7.234 -1.566 -0.963 -2572 -6.731 0.324
MS 0 - - - 1/2 - - - 2 - - -1
where B. Results for representative gluon actions
At the one-loop level, the choice of gluon action is speci-
2Ce[ [ hy(I) , )
Zr=1+ 9%F ( 2 —l)log(,ua)2+zr (59) fied by the pair of numbers; andc,3=c,+c3. As repre-
1672 4 sentative cases, we report numerical results for renormaliza-

tion factors for (i) the tree-level improved action in the
Symanzik approach; = —1/12¢,,=0 [19,20 and(ii) three
_ choices suggested by an approximate renormalization-group
7r=2y5-Z¢", (60)  analysisc,=—0.331¢,3=0 andc; = —0.27¢,3= —0.04 by
Iwasaki[18] and c;= —0.252¢,3=—0.17 by Wilson[21].
We also include results for the standard plaquette action
— 3h,D) =0,c,3= 0 to facilitate comparison with the cases above and
MS— 2 +j()+1/2, (61)  also as a check of our results with those in the literature
8 [1-3,8-12,22with which we find good agreement using the
same definition of the improved operator and renormaliza-
ZR'=Vp+3,+(1-2)r3+zVre—22Vp . (62)  tion scheme.
Since one-loop renormalization factors are quadratic poly-

For evaluating values of the renormalization factors, esti,omials in the clover coefficierts,,, we tabulate results for
mating the renormalized coupling constant for a given valugq coefficients of the polynomial.

of the bare coupling constant often becomes necessary. We |, tapje | we list the finite constants for the quark self-

collect the one-loop results needed for such an estimation fQ¢e gy for the choices of gluon action described above. The
various choices of gluon and quark actions in Appendix B. .ontribution of the tadpole diagram is also listed Ky and
3,1 . Errors from numerical integration are at most in the last
V. NUMERICAL RESULTS digit. Combining values in this table, we find the finite part
A. Calculational procedure E;Tce]cgrirt]h'?';]bﬁrﬁ mass renormalization factor, which is tabu-
We calculate the renormalization factors of bilinear quark  Results for finite parts for lattice bilinear operators are
operators for a massless quark with the Wilson paranreter given in Tables Il {1), IV (Vre), and V (Vr/). For local
=1. Two methods are empl_oyed to caIcuIate.the finite partgperatordz=0 in Egs.(45) and (58)], these values lead to
of lattice amplitudes. In the first method the Dirac algebra ofthe finite partzq listed in Table VI where we adopt the
Feynman integrands is carried out by hand, and the momermti-commuting definition forys.
tum integration is performed by a mode sum for a periodic
. 4 . .
box of SIZiL aﬁ?r transforming the mqmeitum va_nable TABLE IlI. Finite part z,, of the renormalization factor for the
throughp,=q,—sing,. We employ the sizé =48 for in- . _ —
po A . : quark mass. Coefficients of the tenB,(n=0,1,2) are given in the
tegrals which are infrared finite, and sizes up-te 128 for column marked asr)
those whose infrared divergence is regularized by subtraction )
of the leading singular terms for small loop momenta. In the

and

with

i . Gauge action Zm

second method, avATHEMATICA program is written to c 0) ) @
perform the Dirac algebra. The output is converted into a’- 2

FORTRAN code, also byMATHEMATICA, and the momentum 0 0 12.953 7.738 -1.380
integration is carried out by the Monte Carlo routvesAas,  -1/12 0 9.607 6.835 -1.367
using 10 samples of 50 000 points each. The agreement of.331 0 4.858 5.301 -1.267
results from the two methods is used as a check of our calg. 27 -0.04 5.260 5.454 -1.292
culations. In Appendix A we list explicit forms of integrands, -g 252 -0.17 4.366 5.166 -1.287

and explain how we regularize the infrared divergence.
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TABLE llI. Finite part V. for local operators. Coefficients of the ter,(n=0,1,2) are given in the
column marked asn). Terms proportional tccéw are zero for the pseudoscalBr Values for theMS
scheme are for anticommuting and 't Hooft—Veltman definitionygf(the latter in parentheses

Gauge action \% A
Cy Cos © () (@) ) 1 2
0 0 7.265 -2.497 0.854 2.444 2.497 -0.854
-1/12 0 6.872 -2.213 0.778 2.808 2.213 -0.778
-0.331 0 6.275 -1.725 0.637 3.367 1.725 -0.637
-0.27 -0.04 6.332 -1.775 0.652 3.315 1.775 -0.652
-0.252 -0.17 6.231 -1.683 0.625 3.414 1.683 -0.625
MS -1/2 - - -1/2 - -
(-1/2) - - (-9/2) - -
Gauge action S P T
Cy C23 © () 2 ) @) ) (€ 2
0 0 2.100 9.987 0.017 11.743 3.433 4.166 -1.665 -0.575
-1/12 0 2.376 8.851 -0.125 10.502 2.987 4.307 -1.475 -0.477
-0.331 0 2.533 6.902 -0.293 8.348 2.254 4.615 -1.150 -0.327
-0.27 -0.04 2.552 7.098 -0.287 8.584 2.321 4.575 -1.183 -0.339
-0.252 -0.17 2.572 6.731 -0.324 8.208 2.175 4.633 -1.122 -0.309
MS 2 - - 2 - 0 - -
2 - - (10 - ) - -
Looking at numerical values in these tables we observe ACKNOWLEDGMENTS

that the one-loop coefficients are reduced by 10-20 % for . .
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The results above lead to a natural question as to how

renormalization factors vary on the,(,c,3) plane. To exam-

ine this point, we calculate the lattice part of the one-loop

coefficients for—1=c;,c,3<0 in steps of 0.05. Choosing

the tree-level valueg,,=1 and adding the three terms of the  In this appendix we list explicit forms of the one-loop

quadratic polynomial ircgyy, we find the results plotted in integrands for the quark self-energy and vertex functions.
Figs. 2—4. These plots show that the renormalization factor¥he lattice spacing is set=1 for simplicity.
are monotonic functions af; andc,;, becoming smaller as

eitherc, or co3 is decreased below zero.

C. Dependence ort; and c,+Cs

APPENDIX A

We first consider the quark self-energy. Using the same
notation as in the main text we find

TABLE IV. Finite part Vr» for improved operators. Coefficients of the teod(n=0,1,2) are given in the column marked asg (
Values for the pseudoscal@rare zero.

Gauge action \% A S T
Cy C23 0 (1) 2 0 (1) v 0 (1) 2 0 (1) v
0 0 -9.786 3.416 0.885 -19.372 10.317 -0.885 -19.172 13.801 -3.538 -16.244 6.855 0.590
-1/12 0 -8.234 3.112 0.756 -15.852 8.836 -0.756 -15.235 11.448 -3.025 -13.518 6.058 0.504
-0.331 0 -5.881 2547 0.546 -10.741 6.468 -0.546 -9.720 7.842 -2.183 -9.461 4.703 0.364
-0.27 -0.04 -6.085 2.608 0.564 -11.156 6.675 -0.564 -10.143 8.135 -2.257 -9.804 4.833 0.376
-0.252 -0.17 -5.640 2498 0.521 -10.189 6.200 -0.521 -9.098 7.403 -2.084 -9.036 4565 0.347
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TABLE V. Finite partVy. for improved operators. Coefficients of the teod,(n=0,1,2) are given in
the column marked asj.

Go=(k?)?,

f fw(z )+

Fo=2> sirk,+M?,

Gauge action \% A
Cy C23 (0) (1) v 0 (1) 2
0 0 -3.525 1.973 -0.412 3.296 -1.973 0.412
-1/12 0 -2.717 1.575 -0.338 2.549 -1.575 0.338
-0.331 0 -1.646 1.007 -0.225 1.552 -1.007 0.225
-0.27 -0.04 -1.715 1.045 -0.233 1.613 -1.045 0.233
-0.252 -0.17  -1.496 0.921 -0.209 1.402 -0.921 0.209
Gauge action S P T
Cy C23 (0) (1) v 0 (1) 2 0 (1) v
0 0 4981 -2.177 0.288 -8.660 5715 -1.361 0.461 -0.590 0.179
-1/12 0 3.751 -1638 0.205 -6.780 4.663 -1.145 0.393 -0.504 0.157
-0.331 0 2171 -0.923 0.097 -4.225 3.106 -0.804 0.280 -0.364 0.118
-0.27 -0.04 2260 -0.962 0.102 -4.396 3.219 -0.831 0.288 -0.376 0.121
-0.252 -0.17 1.925 -0.801 0.078 -3.870 2.884 -0.758 0.261 -0.347 0.113
SV =_ 1672 4rT S5, O+f | > KA,
FO G'0 T v
B 2G,
for n=0, 1, 2, where
WhereA

14

Wzrz (1—cosk,).

=6,,TA,, with A, as defined in the main text.
The mtegrand(”) is expressed as

168V =—8r3A3—16rAsA +32r A A%,

= 16A5—4A% — 16(4A5— si)Aflfo,

- _All(l)

Here T represents the tadpole integral for the improved ac-
tion, which is given by

2

where we define

TABLE VI. Finite partz;- of the renormalization factor for local bilinear quark operafas 0 in Eqs
(45) and (58)]. Coefficients of the terncg,(n=0,1,2) are given in the column marked a9 (

Gauge action \% A

C1 C23 ) (1) v (0 (1) v

0 0 30.817 -8.988 -5.172 35.638 -13.981 -3.464

-1/12 0 23.841 -7.720 -4.199 27904 -12.146 -2.642

-0.331 0 14974 -5689 -2.770 17.881 -9.140 -1.496

-0.27 -0.04 15674 -5.865 -2.866 18.691 -9.414 -1.562

-0.252 -0.17 14.163 -5450 -2.546 16.981 -8.815 -1.297

Gauge action S P T

Cy Cos 0 (1) v () (1) v 0 (1) 2

0 0 38.482 -21.471 -4.335 28.839 -11.484 -7.751 34.417 -9.820 -3.743
-1/12 0 30.837 -18.784 -3.296 22.710 -9.933 -6.408 26.905 -8.458 -2.944
-0.331 0 21.215 -14.316 -1.840 15.400 -7.414 -4387 17.134 -6.264 -1.806
-0.27 -0.04 21.954 -14.737 -1.927 15922 -7.639 -4535 17.931 -6.456 -1.875
-0.252 -0.17 20.322 -13.864 -1.597 14687 -7.133 -4.096 16.261 -6.011 -1.613
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G

P, g«w»n:'*nwwg
0 G g O g

FIG. 2. Lattice finite park,, for the quark mass renormalization
factor as a function o€, andcys for the clover quark action with

Csw— 1.

s,=sink,, c,=cosk,, CZZV c,,

1. 1
Alzzkzy A3:—Ey S12/1 A4:2V CVS12;1
— — k k
— 22 _ mo_ - v
A/lj',:l._EV A,u.yslu,sya A/fo_EV Al“/ COSZ?SIHZE.

Note that no sum is taken over the indexor A7’ ; andAf,.
Similarly we find

3= — 1672 f

(n)
! [|<n>_w)i
2 FO GO

) 0(m2—k?) 80| —4logm?3, 0,

where

0)_ 242 1) _ 2) _
1= —4r2A2+16A%,, 159=0, 1¥P=—

and

FIG. 3. Lattice finite parky for the vector current as a function
of ¢, andc,; for the clover quark action witlegy~ 1.

PHYSICAL REVIEW D 58 074505

FIG. 4. Lattice finite partz, for the axial vector current as a
function of c; andc,; for the clover quark action witlegy= 1.

These formulas illustrate how we regularize the infrared di-
vergence.
Finally we have

A1

Fo

0

1M+

3 M=16m2T 4, o— 1672 f

- (k2)2 9( ’7T2_ k2) ‘Sn,O - |0g7T25n‘0,

where
199 =4A,A5+4r2A3+r2cAl+4(c—4r2A,—2c,) ALy,

JO=(A,+8r2A,A5)(2r2A2+4A5—8A% )

+4(c,+2r2A1) (457AL g~ AL ),
|(11): 2r[— 4A§+ Alf,l+ (16A3— 4si)AiO]’

I =4rA [ (A,+8r2A,A5)(Az—4A%)

+(C,+2r2A,) (42 A% =AY )],

1
|(12):A3A4—CA§+(ZC—CM)A’£1
2
w

+[(4c,—c)s; —2A,+4A5(c—2c,)]AY,,

JP=(A4+8r2A,A )[—2A2+ L +2(4A5—S2) AL
1 4 123 3 2 11 3 w/=1,0|"

For quark bilinear operators, we parametrg, Vre,
andVr, as follows:

V=AW +h (T)AP +hy(T)A® + cgpha(I A
+caulha(T)A® +hy (A,

074505-8



PERTURBATIVE RENORMALIZATION FACTORS OF ... PHYSICAL REVIEW [38 074505

TABLE VII. Factors for v matrix contractions. Values in parentheses are for the 't Hooft—Veltman
definition of ys; others are for anticommutings .

r hy(I) hy(I') hy(l) he(I) j(I) 3hy/8+j 1+hy/4 h,—16 h;—h,/3
YuYs 2 4 -6 0 -2-6)  -1/2(-9/2) 3/2 -12 2
Yu -2 4 6 0 -2 -1/2 1/2 -12 -2
Vs -4 16 0 -12 -44) 2(10) 0 0 0
1 4 16 -24 -12 -4 2 2 0 8
T 0 0 4 4 0 0 1 -16 -4/3
Y ®=(1+ 1h (F))B<1>+[h (I')—16]B |3<“>=16772fi £+b(”) z
r 41 2 Fol Fo 1 Gy’
1 .
+csw{h3(F)B(3)+ 1+Zh1(I‘)>B<4)} with
biY=32A5 —rAzA;+4rA A% ],
1
2 __ (5)
+Csw( hy(I") 3h4(F))B , b(11)=2rA1(4A3—16A’1{0),
1 1 bE,Z):ZrAla(?’), b(12)=0,
Vi =CH+ Zhl(r)c<2>+ lha(D) = 16]C®
by =2(A3—r?ADa®, bP=0,
+ ih (I CW+c 1h (rHc® (4) (4) (3)
124 SWg't by’=0, bj"’=6a'?,

1 b®=—6ra,A,a®, bP=0
. (6) 0 123 ’ 1 ’
+5hs(NC

+ c%w{ hlir) cmy 2D c<8>},

and the term<™ are written as

1 (civ 1
(nN— _ 2.2 L'i‘ (mt _—
CM = — 1672 fFo[ £l ]Go’

12

where h;(I')(i=1,...,4) aregiven in Table VII. The ex-

plicit form of A(™ is given by where

L cV=—16r2A7A3, c{P=0,

A(n):16ﬂ-2f F_Sa(n)G_o_ K27 O(m>—K?) 8y 3 ng)z16r2A§[r2A3A%—4I’2A§A’f’0], c@=0,
+logm* 8,3, o) =4r2AZ — 4AZ+ AL - 4s2AL ], cP=0,
where cil=— 642020504, ci¥=0,
a<1>:16(A3+r2A§)2+?{A%—Afﬁ«sﬁ—Ag)Afo}, c6’=0, ci’=6raa®

(6) — (3) (6) —
cy =24 AAza"®), c¢;/=0,
al?=4r’Aj[A5—4A% ], 0 s !

TABLE VIIl. One-loop corrections for coupling constants

a®= %[—4A§+ A’fﬁ (16A3_4SI2L)A,1L’0]: 6_lr| (11> , dy.d; and plaguette,, .
Gauge action dg Cp
a(4) — ZrAla(:';), C]_ C23
-0.4682 1
a®=-r?a%a®, E)1/12 % .%.22861 0.2/242
-0.331 0 0.1000 0.1402
a®=-3A3a%. -0.27 -0.04 0.1472
-0.252 0.17 0.1196 0.1286

The B(™ terms have the form

074505-9
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ct=—12r2A%2A5a®, c{"=0,
clP=-12A3a®, cP=o0.
APPENDIX B

In this appendix we collect results for the one-loop rela-

PHYSICAL REVIEW D 58 074505

Table VIII), andd; only depends on the fermion actiod;
=0.0066949 for a massless Wilson quark actj@s] and
d;=0.0314917 for a massless clover quark action wiky,
=1 [29]. Using the average value of plaquette at one loop,

P=1-c,0%

tion between theMS and the bare coupling constant. This we may rewrite the relation §80]

relation has the general form

2
log(ua)

1
d,+
1672

gas(p) g? | P

+ Ns¢

4
di———lo a
U 9(pna)

where dy only depends on the gauge actip23-2§ (see

1 P 22
%=§+(dg+cp+ﬁlog(ua)
+Nq¢| di— 4 log(ua) |.
487

Numerical values ot are also collected in Table VIII.
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