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Bulk first-order phase transition in three-flavor lattice QCD withO�a�-improved Wilson fermion
action at zero temperature
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Three-flavor QCD simulation with the O�a�-improved Wilson fermion action is made employing an
exact fermion algorithm developed for an odd number of quark flavors. For the plaquette gauge action, an
unexpected first-order phase transition is found in the strong coupling regime (� & 5:0) at relatively
heavy quark masses (mPS=mV � 0:74–0:87). Strong metastability persists on a large lattice of size 123 �
32, which indicates that the transition has a bulk nature. The phase gap becomes smaller toward weaker
couplings and vanishes at � ’ 5:0, which corresponds to a lattice spacing a ’ 0:1 fm. These results imply
that realistic simulations of QCD with three flavors of dynamical Wilson-type fermions at lattice spacings
in the range a � 0:1–0:2 fm are not possible with the plaquette gauge action. Extending the study to
improved gauge actions, we do not observe evidence for first-order phase transition, at least within the
��; �� range we explored. This suggests the possibility that the phase transition either moves away or
weakens with improved gauge actions. Possible origins of the phase transition are discussed.
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I. INTRODUCTION

Realistic simulations of the strong interaction through
lattice QCD require dynamical treatment of up, down, and
strange quarks incorporating their pair creation and anni-
hilation effects in the vacuum. While simulations with the
dynamical up and down quarks have now become routine
(for recent studies, see Refs. [1–4]), adding a dynamical
strange quark is still in the development stage. This is
primarily because no exact algorithm to treat an odd num-
ber of flavors was known until recently. In fact, with the
conventional hybrid Monte Carlo (HMC) algorithm [5],
the number of flavors is limited to even. The R algorithm
[6] can be used for any number of flavors, as applied in
recent three-flavor simulations with the staggered quark
action [7,8]. However, the results are subject to systematic
errors due to a finite step size in the molecular dynamics
evolution, and this has to be controlled by taking the limit
of zero step size, which is quite computer time consuming.

Recently, however, several exact algorithms for an arbi-
trary number of flavors have been proposed for both the
Wilson-type [9,10] and the staggered-type [11] fermion
actions. They have been shown to work with realistic
lattice volumes without much increase of computational
cost compared to HMC [10,11]. Thus, a practical barrier to
performing realistic three-flavor QCD simulations has
been eliminated.
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The next step toward realistic simulations is to explore
the parameter space of the three-flavor lattice QCD to
ensure that the system is free from lattice artifacts over a
range of lattice spacing a and quark mass mq adequate for
phenomenology. In practice, this means finding a region
corresponding to a ’ 0:1–0:2 fm and mq � �1=3� 1� �
ms, with ms the physical strange quark mass.

For the Wilson-type fermion action, there is a related
important theoretical issue to settle. For an even number of
flavors, evidence has been accumulated over the years that
vanishing of pion mass at a critical hopping parameter
�c��� (� � 6=g2, with g the gauge coupling) is due to
spontaneous breaking of flavor-parity rotational symmetry
[12,13]. Whether this understanding holds for an odd
number of flavors still needs confirmation. It is therefore
mandatory to cover the entire parameter space of the lattice
action for three-flavor QCD.

In this work, we numerically explore the parameter
space ��;�� of three-flavor lattice QCD with the
O�a�-improved Wilson fermion action [14]. The three
quark flavors are assumed to be degenerate in mass. For
the gauge action, we test both the plaquette and renormal-
ization group (RG) improved gauge actions. The
O�a�-improvement coefficient cSW is fixed to the one-
loop perturbative value, as fully nonperturbative values
for the relevant gauge actions were not available until after
the present work was well in progress [15–17].
-1 © 2005 The American Physical Society
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For the standard plaquette gauge action, we unexpect-
edly find [18] a clear evidence of the existence of an
ordered phase for large � separated by a first-order phase
transition from the disordered phase at smaller �. The
transition persists for large volumes, and, hence, it is a
bulk phase transition. Contrary to the disordered phase, the
ordered phase does not exhibit the standard features of the
confining phase. For example, the pseudoscalar-to-vector
meson mass ratio is similar in the disordered and ordered
phases at around 0.8, but the lattice spacing is unnaturally
large in the ordered phase. The first-order phase transition
is observed in the strong coupling regime. The gap of
physical quantities across the transition diminishes toward
weaker couplings and appears to vanish at � ’ 5:0, which
corresponds to a lattice spacing a ’ 0:1 fm.

These results indicate that there is a parameter region
which is not smoothly connected to continuum three-flavor
QCD. In other words, the continuum three-flavor QCD can
be approached only if one uses lattices much finer than a ’
0:1 fm, if one employs the plaquette gauge action.

We find that the metastability signals disappear if one
employs improved gauge actions such as the RG improved
action [19] or O�a2�-improved Lüscher-Weisz action [20].
With these actions, the continuum extrapolation should be
possible from a conventional range of lattice spacings a�
0:1–0:2 fm.

The finding of a first-order phase transition for the
plaquette gauge action is quite unexpected. A large number
of simulations carried out in the past for the quenched and
two-flavor cases were consistent with the expectation that
the disordered (i.e., confining) phase extends over 0 � � �
�c for any value of �. Recently, however, while making a
study of twisted mass QCD, Farchioni et al. reported in a
two-flavor simulation with unimproved Wilson quark ac-
tion and plaquette gauge action [21] that there exists a first-
order phase transition at � � 5:2. They suggested that this
phase transition can be understood as the alternative to the
parity-flavor broken phase which was pointed out by
Sharpe and Singleton [22].

It is possible that their finding and ours have a common
origin. Another possible explanation for our first-order
transition is that it is related to the first-order phase tran-
sition encountered in pure SU�3� gauge theory in the
extended coupling space ��;�A�, where �A characterizes
the strength of adjoint representation [23–25]. Further
work is needed for clarification of the origin of the first-
order phase transition for both the two- and three-flavor
cases.

The rest of this paper is organized as follows. In Sec. II
we introduce the lattice actions and simulation algorithms
we employed. Section III describes our study of phase
structure of three-flavor lattice QCD with the plaquette
gauge action, where the presence of the metastable states
is discussed in detail. The phase structure analysis for the
case of improved gauge actions is discussed in Sec. IV. In
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Sec. V we discuss the possible origin of the first-order
transition and related phenomena encountered in past stud-
ies. A conclusion is given in Sec. VI where we also discuss
the possibility of realistic simulations of three-flavor QCD.
The first report of the present work was briefly made in
Ref. [18].

II. LATTICE ACTION AND ALGORITHM

The partition function we study is defined by

Z �
Z

DU�det�Dud��
2�det�Ds��e

	Sg�U�: (1)

Here Sg�U� is the gluon action given by

Sg�U� �
�
6

�
c0

X
W1�1 
 c1

X
W1�2

�
; (2)

where W1�1 and W1�2 are the plaquette and rectangular
Wilson loops, respectively. The summations are taken over
all possible plaquettes and rectangles on the lattice. The
coefficients c0 and c1 are determined as c0 � 1	 8c1,
with c1 � 0, 	0:331, or 	1=�12hPi1=2� for the standard
Wilson action, the RG-improved action [19], and the
O�a2�-improved [Lüscher-Weisz (LW)] action [20], re-
spectively, and hPi is the plaquette average introduced
for a mean field improvement.

The fermionic determinant �det�Dud��
2 represents the

contribution of degenerate up (u) and down (d) quarks,
whereas the strange (s) quark effect is given by �det�Ds��.
In this work, we consider mainly the O�a�-improved
Wilson-Dirac operator Dq � 1
Mq 
 Tq (q � u; d; s),
with Mq the usual hopping term including the hopping
parameter �q and Tq the O�a�-improvement
Sheikholeslami-Wohlert (SW) term [14]. The explicit
form of Tq is given by

Tq � 	1
2cSW�q���F��; (3)

with F �� the cloverleaf-type field strength on the lattice.
For the coefficient cSW we employ the value determined by
tadpole-improved one-loop perturbation theory as

cSW �
1

hPi3=4

�
1
 c�1�SW

6=�
hPi

�
; (4)

where c�1�SW � 0:0159 [26–28] for the standard Wilson
gauge action. For improved gauge actions it becomes
c�1�SW � 0:008 (RG) or 0:013 (LW) [29]. The average pla-
quette hPi is calculated in pure gauge theory with the same
value of �.

We employ an exact HMC-type algorithm for three-
flavor QCD developed in Ref. [10]. The u and d quark
determinant �det�Dud��

2 is estimated by the usual pseudo-
fermion integral:

�det�Dud��
2 �

Z
D�yudD�ud exp�	jD	1

ud �udj
2�: (5)
-2
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FIG. 1. Thermal cycles of averaged plaquette hPi on a 43 � 16
lattice at � � 4:6–5:6 with 0.05 steps and 5.8, 6.0 from bottom to
top. Each point is measured on 100 trajectories followed by
100 thermalization trajectories from its previous point.
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FIG. 2. Thermal cycles of averaged plaquette hPi on a 83 � 16
lattice at � � 4:6, 4.8–5.3 with 0.05 steps, and 5.4–6.0 with
0.1 steps (from bottom to top) for the standard Wilson gauge
action. Each point is measured on 100 trajectories followed by
100 thermalization trajectories from its previous point.
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To represent �det�Ds�� in a similar manner, we approximate
the inverse of Ds by the non-Hermitian Chebyshev poly-
nomial [30,31] of order 2n:

1=Ds � P2n�Ds� �
X2n
i�0

ci�Ds 	 1�i

�
Yn
k�1

�Ds 	 zj�k���Ds 	 zj�k��; (6)

with zk � 1	 exp�i2�k=�2n
 1�� [32] and a reordering
index j�k�. We then rewrite

�det�Ds�� � det�DsP2n�Ds��

�
Z

D�ysD�s exp�	jTn�Ds��sj
2�; (7)

with Tn�Ds� �
Pn
i�0 di�Ds 	 1�i��

Qn
k�1�Ds 	 zj�k��.

Introducing a fictitious momentum P conjugate to the
link variable U, the effective Hamiltonian for the 2

1-flavor QCD reads

H � 1
2P

2 
 Sg�U� 
 jD
	1
ud �udj

2 
 jTn�Ds��sj
2: (8)

We take account of the correction factor det�DsP2n�Ds��
by the noisy Metropolis test. After a trial configuration U0

is accepted by the usual HMC Metropolis test, we
make another Metropolis test with the acceptance
probability Pcorr�U ! U0� � min�1; e	dS�, with dS �
jA�U0�	1A�U��j2 	 j�j2. Here A � �DsP2n�Ds��

1=2 and
� is the Gaussian noise vector with an unit variance. For
other details of the algorithm, see Ref. [10].

III. PHASE STRUCTURE FOR THE PLAQUETTE
GAUGE ACTION

A. Thermal cycle analysis

We study the phase structure of three-flavor lattice QCD
for the plaquette gauge action (c1 � 0) assuming flavor
degeneracy � � �ud � �s. Rapid thermal cycles are per-
formed in the ��;�� parameter space on 43 � 16 and 83 �
16 lattices. For a fixed value of � we start a HMC simu-
lation at � � 0 and increase � in units of 0.001 at every
200 HMC trajectories. This process is continued until we
reach the point at which we encounter a large violation of
HMC energy conservation satisfying dH > 100. Then we
reverse the process and decrease � until it reaches the point
sufficiently far away from the turning point. This proce-
dure is repeated at a fixed interval over a range of �.

In this global scan, we do not perform the global
Metropolis test of HMC or the noisy Metropolis test for
the correction factor det�DsP2n�Ds�� in Eq. (7). The order
of the Chebyshev polynomial is fixed to 2n � 100 and the
molecular dynamics (MD) step size to d	 � 1=40 employ-
ing 	 � 1 for the length of unit trajectory. The stopping
criterion of the BiCGStab solver is such that the residual
defined by jDx	 bj=jbj becomes smaller than 10	14

(10	8) for Hamiltonian (force) calculation, where D is
054510
the even-odd preconditioned O�a�-improved Wilson-
Dirac operator, x is the solution vector, and b is a source
vector. The expectation values of observables are measured
during the last 100 trajectories after 100 thermalization
trajectories at each � in the cycles.

In Fig. 1 we present the plaquette expectation value hPi
during thermal cycles on a 43 � 16 lattice. The value of �
increases from � � 4:6 to 5:6 from bottom to top in units
of 0:05. We observe a strong indication of metastability at
4:8 � � � 5:1. The system appears to jump from a disor-
dered phase at smaller � to an ordered phase at larger �.

On small lattices such as 43 � 16, the gap and meta-
stability might be attributed to a ‘‘finite-temperature phase
transition’’ due to a small spatial size, corresponding to the
thermal first-order transition observed for three-flavor
QCD with the (unimproved) Wilson fermion action [33].
To examine this possibility, we show hPi during the ther-
mal cycles on a spatially larger 83 � 16 lattice in Fig. 2.
While the range of � indicative of metastability is shifted
-3
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FIG. 3. Number of BiCGStab steps NCG required for the
fermion matrix inversion during the HMC trajectories at � �
4:95 and 5.0 for the standard Wilson gauge action.
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and reduced, we still observe a clear hysteresis loop at � �
4:95 and 5:0.

For the two � values we show the number of BiCGStab
iterations NCG required for the fermion matrix inversion
TABLE I. Lattice parameters used for the 123 � 32 simulations.
proceed a unit trajectory. The molecular dynamics step size is given b
correction factor, 2n: the order of the polynomial. The symbols in the
phase), (H) larger plaquette value (ordered phase), (M) signals are mu
observed.

� cSW � hPacci�NMD� hPcorri�2n� Ph

4.88 2.15 0.1345 0.72[50] 0.98[30] L
0.76[64] 0.99[140] H

0.1350 0.91[80] 0.99[42] L
0.81[80] 0.95[300] H

4.90 2.14 0.1340 0.70[50] 0.90[24] L
0.71[50] 0.99[100] H

0.1343 0.73[50] 0.86[24] L
0.78[64] 0.98[140] H

0.1345 0.73[50] 0.96[36] L
0.74[64] 0.98[200] H

0.1346 0.85[80] 0.80[120] H
4.95 2.11 0.1325 0.76[50] 0.98[30] L

0.1328 0.72[50] 0.97[30] L
0.74[50] 0.99[70] H

0.1330 0.73[50] 0.98[70] H
4.97 2.10 0.1320 0.72[50] 0.98[34] L

0.1322 0.77[50] 0.96[30] L
0.1323 0.77[50] 0.99[60] H
0.1325 0.73[50] 0.99[60] H

5.00 2.08 0.1310 0.76[50] 0.95[24] L
0.1313 0.75[50] 0.89[26] L
0.1314 M
0.1315 M
0.1320 0.85[64] 0.99[60] H
0.1330 0.90[100] 0.99[100] H
0.1338 0.90[80] 0.93[100] H

054510
during the calculation of the Hamiltonian (8) with a given
stopping criterion 10	14 in Fig. 3. We find a large gap in
NCG at the point of metastability signals. In the disordered
phase NCG is relatively small, whereas in the ordered phase
NCG is about a factor 2–3 larger. As we discuss in the next
subsection, the quark mass is heavy at the point of meta-
stability. Indeed, we find mPS=mV ’ 0:83–0:87. Therefore,
the large value of NCG, which implies a small condition
number of the Wilson-Dirac operator, in the ordered phase
is not attributed to a physically small quark mass.

We suspect the metastability and gap to continue toward
strong couplings below � � 4:9. We cannot confirm it,
however, since the thermal cycles encounter a large
Hamiltonian difference dH > 100 and, hence, are turned
back, before finding signals of the ordered phase. For
example, at � � 4:8 this occurs at � � 0:137. At this point
NCG � 55:4, which is still a relatively small number as
seen in Fig. 3. The same is true for� � 4:6 and � � 0:134,
for which NCG � 35:6. Simply reducing the molecular
dynamics step size or increasing the polynomial order
does not resolve the occurrence of a large value of dH.
hPacci: HMC acceptance rate, NMD: the number of MD steps to
y d	 � 1=NMD. hPcorri: global Metropolis test acceptance rate for
‘‘phase’’ column denote: )L) smaller plaquette value (disordered

ch more unstable and long autocorrelation over 500 trajectories is

ase amPS amV mPS=mV a	1
r0

[GeV]

0.81(7)
2.46(7)

1.308(7) 1.555(14) 0.84 0.84(1)
0.682(14) 0.822(17) 0.83 1.381(3)
1.247(5) 1.481(21) 0.84 0.83(1)
0.458(10) 0.594(21) 0.77 1.90(4)
1.185(11) 1.405(14) 0.84 0.79(1)
0.433(14) 0.587(18) 0.74 1.99(4)
0.439(14) 0.559(24) 0.78 2.44(7)

1.285(9) 1.496(16) 0.86 0.827(4)
0.844(13) 0.970(16) 0.87 1.39(1)

0.85(1)
1.35(2)

1.53(2)
0.583(5) 0.692(6) 0.84 2.06(6)
0.475(10) 0.569(9) 0.83 2.58(4)
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FIG. 5. Chiral extrapolation of �amPS�
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Further studies are needed to understand the possible con-
tinuation of the ordered phase toward strong couplings.

B. Exact simulation on a larger lattice

To establish the nature of the hysteresis observed in
Fig. 2, we perform exact simulations starting from both
ordered and disordered configuration with fixed values of
� and � on a 123 � 32 lattice. The ordered configurations
are made at a larger � value, and the disordered configu-
rations are generated in the quenched limit � � 0 at the
same � value.

Simulation parameters, including �, cSW, �, the number
of molecular dynamics steps NMD, and the order of the
polynomial 2n, are summarized in Table I. We remark that
a polynomial order of only 2n� 30–200 is necessary in
order to achieve a �90% acceptance rate hPcorri for the
noisy Metropolis test.

Figure 4 shows a representative result which demon-
strates clear two-state signals persisting over 1000 trajecto-
ries. We confirm that the hysteresis seen in rapid thermal
cycles are not an artifact of our inexact simulations in
which the HMC and global Metropolis tests are skipped.
Similar two-state signals are observed using the R algo-
rithm on a 83 � 16 lattice. Our observation strongly sug-
gests the existence of a first-order phase transition
separating the ordered and disordered phases.

In Table I we list results for pseudoscalar meson mass
mPS and vector meson mass mV in lattice units. We have
also calculated the Sommer scale r0 using the condition
r2

0dV�r�=drjr�r0
� 1:65 on the static potential. The lattice

spacing estimated from the phenomenological value r0 �
0:49 fm is listed in Table I.

In Fig. 5 we plot �amPS�
2 and amV at � � 4:9 as

functions of 1=�. If we extrapolate the data in the disor-
dered phase (solid symbols) linearly as is conventionally
made, we find �c � 0:13703�29� and mV��c� � 0:67�11�,
which translates into a	1

m

� 0:87�14� GeV as a rough es-
0.42

0.44

0.46

0.48

0.50
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κ=0.1345

FIG. 4. A typical example of the two-state signal on a 123 �
32 lattice at � � 4:88 and cSW � 2:15. The plaquette history is
shown. 500–1000 trajectories are devoted to the thermalization
from ordered/disordered configurations.
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timate of lattice spacing. These are quite natural values
comparable to those encountered in quenched and two-
flavor simulations. However, before reaching this point, the
three-flavor system makes a transition into an ordered
phase in which hadron masses are drastically reduced.

If one looks at the lattice spacing determined from r0 in
Table I, we see that a	1

r0
� 0:8 GeV in the disordered

phase, which is consistent with the spectrum estimate
from m
 above, while a	1

r0
� 2 GeV in the ordered phase

is much larger. Furthermore, pion mass squared does not
seem to decrease in the ordered phase. We then suspect that
physical results cannot be obtained with simulations in the
ordered phase.

C. Phase diagram

In Fig. 6 we plot the location of the observed phase
transition �X��� in the ��;�� plane for various lattice sizes.
Open squares for a 43 � 16 lattice and open circles for a
83 � 16 lattice show the point of hysteresis observed with
the inexact algorithm, while solid circles and open up
triangles correspond to the point where two-state signals
such as in Fig. 4 are observed with the exact algorithm.

The location of the phase transition line significantly
moves when we increase the lattice size from 43 � 16 to
83 � 16. However, it stays at the same place when the
lattice size is further increased to 123 � 32, which strongly
suggests that the first-order transition line persists in the
infinite volume limit at zero temperature. In fact, the gap in
the value of hPi does not significantly change from 83 � 16
to 123 � 32, as shown in Fig. 7.

Figure 7 also shows that the gap in the plaquette expec-
tation value decreases toward larger � and vanishes around
� � 5:0. Since we observe no sign of second-order tran-
sition at weaker couplings (Fig. 2), the transition appears to
terminate at � ’ 5:0.

Toward the strong coupling regime, we expect the phase
transition line to continue below the last point of �X at� �
-5
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4:88 in Fig. 6. Indications are that the gap tends to become
large toward lower � values (see Fig. 7), while the
pseudoscalar-to-vector meson mass ratio on the gap is
almost independent of �.

The critical hopping parameter �c drawn by downward
triangles in Fig. 6 represents a rough estimate based on the
number of iterations of the BiCGStab solver, NCG, in the
calculation of Hamiltonian [Eq. (8)] on a 83 � 16 lattice.
NCG is sampled during the thermal cycles and the estimates
are obtained by linearly extrapolating 1=N2

CG as a function
of 1=�. As mentioned earlier, the thermal cycles do not
extend far toward large values of � at the � values below
4.88. Therefore, the estimate of �c may have a large
uncertainty. We also emphasize whether there actually
exists the critical �c where the pion mass vanishes in the
ordered phase is an open issue. In fact, the pion mass
measured in the ordered phase at � � 4:9 shown in
Fig. 5 is almost constant as a function of �.
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FIG. 7. Plaquette expectation values in the two phases on the
first-order phase transition line. Data from the 83 � 16 and
123 � 32 lattices are plotted as a function of �.
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D. Practical implications

Our findings expose a serious practical problem on
simulations using the O�a�-improved Wilson fermion ac-
tion in combination with the plaquette gauge action. To
guarantee a smooth extrapolation to the continuum limit,
we should carry out simulations at coupling weaker than
the termination point of the first-order transition at � �
5:0. As shown in Table I, the lattice spacing estimated from
r0 � 0:49 fm at � � 5:0 is 1=a � 1:53�2� GeV (� �
0:1320), 2.06(6) GeV (� � 0:1330), and 2.58(4) GeV (� �
0:1338). The largest � value (� � 0:1338) still corresponds
to a heavy quark (mPS=mV � 0:83). Taking the significant
� dependence of 1=a into account, the lattice spacing in the
chiral limit would be even larger, possibly greater than
3 GeV. A 2 fm lattice would then require a 303 � 60
volume or larger. Large-scale simulations starting at such
fine lattices and large lattice volumes are too computer
time consuming even with high-end supercomputers avail-
able at present. There is another possibility that the pseu-
doscalar meson mass does not vanish at any � as described
in Ref. [22]. This possibility will be discussed in Sec. V. In
this case the realistic simulations are not possible at these
lattice parameters.

IV. PHASE STRUCTURE FOR IMPROVED GAUGE
ACTIONS

If the first-order transition observed for the plaquette
gauge action is a lattice artifact, one may expect that it can
be eliminated by improving the gauge action since scaling
toward the continuum limit is much improved and the
lattice artifacts are expected to be suppressed for these
actions.

Here we test two types of improved gauge actions, both
of which are defined with (2): one is the RG-improved
action [19] and the other is the O�a2�-improved (LW)
action [20]. In the LW case, the tadpole factor hPi in c1

is self-consistently determined at � � 0 for each �. The
clover term is also determined by tadpole-improved one-
loop perturbation theory [Eq. (4)] with hPi at � � 0.
Figure 8 shows the results of the thermal cycles on a 83 �
16 lattice. The simulation conditions, such as the values for
2n and d	 and skipping of the HMC and global Metropolis
tests, etc., are the same as those with the unimproved gauge
action. In contrast to the case of the plaquette gauge action,
we do not observe any remnant of hysteresis loop.

We recall that these results by themselves do not exclude
the possibility of a phase transition at larger � (smaller
quark masses) or stronger couplings not covered in the
thermal cycle analysis above. We have, however, already
started a three-flavor dynamical simulations with the RG-
improved gauge action, treating up and down quarks and
strange quarks separately [34,35]. At � � 1:90 and cSW �
1:715 (a	1 � 2:0 GeV), we do not encounter a phase
transition down to MPS=MV * 0:62 on a 203 � 40 lattice.
This is a significantly better situation compared to that with
-6
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the plaquette gauge action, for which the phase transition
occurs already at a very heavy quark mass of MPS=MV �
0:83 at a	1 � 1:5–2:6 GeV or �� 5:0. Thus, improved
gauge actions either weaken the phase transition or move it
away from the physically relevant region of ��;��.
V. POSSIBLE ORIGIN OF THE FIRST-ORDER
TRANSITION

A. Bulk phase transition in the fundamental-adjoint
coupling plane

In the pure SU(3) lattice gauge theory having both
fundamental and adjoint couplings � and �A, a bulk
first-order phase transition exists in the strong coupling
regime [23–25]. The transition line starts at the purely
adjoint point ��;�A� � �0; 6:5�3�� and extends toward
larger � with decreasing �A. It terminates at �4:00�7�;
2:06�8�� and never crosses the purely fundamental line
�A � 0, so that the pure gauge lattice theory with the
fundamental representation is smoothly connected to the
continuum limit � � 1. Near the critical end point, the
correlation function of the 0

 glueball channel diverges,
but the scaling of other observables is not much affected
[25].

This phase transition shares many properties with the
one we found in three-flavor lattice QCD. The first-order
054510
transition separates ordered and disordered phases (large
and small plaquette expectation values, respectively), and
their lattice spacing measured through the string tension is
largely different. Furthermore, the transition has a bulk
nature; i.e., it remains in the infinite volume limit.

One may suspect that dynamical Wilson fermions effec-
tively induce the adjoint gauge coupling, which gives rise
to the bulk transition. This possibility was explored for
two-flavor unimproved Wilson fermion action in Ref. [36].
They measured the strength of the induced adjoint cou-
pling on the dynamical configurations and found that it is
slightly negative, as opposed to the expectation. The clover
term might enhance the induced adjoint coupling as it has a
1� 1 Wilson loop structure, but it is to be confirmed either
analytically or numerically.

B. Breakdown of parity-flavor symmetry

For two-flavor lattice QCD with the Wilson-type quark
action, Sharpe and Singleton [22] carried out an analysis of
parity-flavor symmetry using chiral Lagrangian tech-
niques. They pointed out that, depending on the sign of
an O�a2� term, there may be a line of first-order phase
transition along which pion mass is nonzero and the chiral
condensate flips sign, rather than a pair of second-order
transition lines along which pion mass vanishes and parity-
flavor symmetry breaks down.

It is straightforward but complicated to extend this type
of analysis to the three-flavor case. Since there are three
O�a2� terms allowed in the chiral Lagrangian, rather than a
single term for the two-flavor case, predictions are less
definite. Nonetheless, one may similarly expect that first-
order transitions may occur depending on the coupling of
the three terms.

Singular phenomena have been observed with dynami-
cal Wilson-type fermion simulations in a variety of con-
texts, and our finding is one more of the list of such
phenomena. While it is not clear at present if the above
analysis offers an understanding of these phenomena, we
attempt to discuss them for orientation of future studies.

1. Two-flavor case

Farchioni et al. [21] recently reported a first-order phase
transition for the plaquette gauge action and unimproved
Wilson quark action at � � 5:2 and � � 0:1715. They
suggested that this phase transition may be understood
within the Sharpe-Singleton analysis. [After the submis-
sion of this article, Farchioni et al. reported the phenomena
with the improved gauge (DBW2) action and found that
the metastability becomes weaker than that with the pla-
quette gauge action [37].]

In an old work on the finite-temperature phase transition
of two-flavor QCD with the Wilson fermion action, an
unexpected strong first-order transition was found [38]. It
was suggested that this is a bulk phase transition, since the
Polyakov loop does not jump at the transition point below
-7
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� ’ 5:0, while the plaquette expectation value shows
strong metastability.

It is plausible that the two findings refer to the same bulk
first-order phase transition. Numerically, Ref. [38] found a
metastability at � � 5:22 and � � 0:17, in a close prox-
imity of that in Ref. [21], and the plaquette values in the
two phases reported by the two studies are in agreement.

It is not clear if such a first-order phase transition persists
when the Wilson quark action is improved by the addition
of the clover term. For nonperturbatively O�a�-improved
Wilson fermion action [39], most physical observables,
such as hadron masses and matrix elements, measured in
the past simulations [4,40] do not show singular behavior.
On the other hand, the mass of 0

 glueball is surprisingly
lower than in the quenched case [41], perhaps hinting at the
presence of a nearby singularity in the coupling constant
space. Also, the lattice artifact in the measurement of the
light quark mass through the axial-Ward-Takahashi iden-
tity is found to be rather large [42].

We also note that the strong first-order transition for the
unimproved Wilson quark action disappears if the gauge
action is improved [43,44].

2. Three-flavor case

The report by Farchioni et al. of a first-order phase
transition for the unimproved Wilson quark action and
the plaquette gauge action raises the possibility that a
similar first-order transition may be present for the three-
flavor case. Indeed, in previous finite-temperature studies,
a large lattice artifact was found for this action combina-
tion [33]: At the point of finite-temperature transition, the
light quark mass measured from the axial-Ward-Takahashi
identity jumps for � & 5, contrary to the expectation that
the Ward-Takahashi identity holds at any physical phases
with an identical value for the measured quark mass for the
same bare parameters.

We have attempted an initial thermal cycle study on
43 � 16 and 83 � 16 lattices with unimproved Wilson
quark action, and the results are shown in Fig. 9 for the
� values in the range 4.6–6.0. We observe a signature of
phase transition on the 43 � 16 lattice (top) at � �
5:1–5:2, while metastabilities are not apparent on the 83 �
16 lattice (bottom).

The absence of the gap on the 83 � 16 lattice does not
necessarily mean that the chiral and continuum limit can be
smoothly reached, since the thermal cycle above does not
cover the small quark mass region. In order to cover this
region, we carry out a dedicated run at � � 5:0. Figure 10
shows the history of plaquette over the HMC trajectories
starting from � � 0:1710, where the thermal cycle ended,
up to 0.1718. We observe large fluctuations of plaquette at
� � 0:1716 and 0.1718, which may be hinting at the
possible presence of a phase transition.

Clearly, further work is needed to reach a comprehensive
understanding of the phase structure of lattice QCD
054510
with Wilson-type fermion action for two- and three-flavor
cases.

VI. CONCLUSIONS

We have reported the existence of an unexpected
phase transition in three-flavor lattice QCD with the
-8
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O�a�-improved Wilson fermion action. It appears in the
strong coupling regime � & 5:0 if one uses the standard
Wilson plaquette gauge action, while there is no indication
of such a phase transition for improved gauge actions. The
phase transition persists for large lattice volumes and is
likely a bulk phase transition.

Our findings pose a serious practical problem on simu-
lations using the O�a�-improved Wilson fermion action in
combination with the plaquette gauge action. To avoid
unphysical effects of the bulk transition, one has to carry
out simulations at couplings weaker than its end point, but
the lattice spacing is already smaller than a� 0:1 fm there,
necessitating large lattice volumes and, hence, large com-
puting resources.

This circumstance motivates us to employ the RG-
improved gauge action for large-scale three-flavor simula-
tions. A nonperturbative determination of the improvement
coefficient cSW for a fullO�a� improvement has been made
using the Schrödinger functional method [15–17], and
preliminary results on the light hadron spectrum have al-
054510
ready been presented in Refs. [34,35]. The phase transition
is not found at a	1 � 2:0 GeV with MPS=MV * 0:62.

Finally, the recent report that the two-flavor system with
the unimproved Wilson action also has a first-order tran-
sition and that it may be understood with the context of the
Sharpe-Singleton analysis on realizations of the parity-
flavor broken phase raises an interesting problem that we
need to clarify for phenomenological applications of full
QCD simulations with Wilson-type quark actions.
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