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Abstract 

 

We have recently demonstrated that naphthoquinone (NQ), one of extractable chemical 

compounds of diesel exhaust particles (DEP), enhances antigen-related airway 

inflammation with goblet cell hyperplasia in mice (Inoue et al., in press).  NQ, further, 

has enhanced lung expressions of interleukin (IL)-4 and IL-5.  However, the effects of 

NQ on the other cardinal features of asthma have not been completely investigated.  

The aim of the present study was to evaluate the effects of NQ on airway 

responsiveness on the model.  Vehicle, NQ, ovalbumin (OVA), or NQ + OVA was 

administered intratarcheally to ICR mice for 6 wk.  Twenty four h after the last 

instillation, lung histology, lung function such as total respiratory system resistance (R) 

and Newtonian resistance (Rn), and protein level of IL-13 and mRNA level for 

MUC5AC in the lung were examined.  Repetitive exposure to NQ aggravated 

antigen-related lung inflammation.  NQ alone enhanced R and Rn as compared to that 

to vehicle without statistical significance.  OVA alone or NQ plus OVA showed 

increases in R and Rn, which was prominent in NQ plus OVA (p < 0.05 vs. vehicle).  

Combined exposure to NQ and OVA elevated the levels of IL-13 and MUC5AC in the 

lung as compared with exposure to NQ or OVA alone.  These results indicate that NQ 

can enhance airway hyperresponsiveness in the presence or absence of antigen.  Also, 

amplified lung expressions of IL-13 and MUC5AC might contribute, partly, to the 

deterioration of asthma features by NQ.   
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Introduction 

 

Diesel exhaust particles (DEP) have been implicated to facilitate allergic reactions 

(Nikasinovic et al. 2004; Takizawa 2004).  In vivo studies from our laboratory have 

documented that DEP exacerbate airway inflammation induced by repetitive 

intratracheal instillation of antigen through the promotion of Th2 immunity (Ichinose et 

al. 1998; Takano et al. 1998; Takano et al. 1997).   

 

DEP are complicated particles consisting of carbonaceous nuclei and a vast number of 

organic chemical compounds such as polyaromatic hydrocarbons, aliphatic 

hydrocarbons, heterocycles, and quinones.  Among them, organic chemical 

components extracted from DEP reportedly augument allergic response in vitro 

(Devouassoux et al. 2002) and in vivo (Heo et al. 2001).  Consistent with the previous 

reports, we have also demonstrated that extracted organic chemicals from DEP, rather 

than residual carbonaceous nuclei of DEP after extraction, predominantly enhance 

antigen-related airway inflammation in mice (Yanagisawa et al. 2006).   

 

Otherwise, a variety of quinones have been identified as DEP components (Schuetzle 

1983; Schuetzle et al. 1981).  Quinones themselves have toxicological properties to 

serve as alkylating agents and to interact with, for example, flavoproteins to generate 

reactive oxygen species (ROS), which can lead to biological injury (Bolton et al. 2000; 

Monks et al. 1992; O'Brien 1991; Cho et al. 2004).  Phenanthraquinone (PQ) is one of 

quinones involved in DEP (Bolton et al. 2000; Schuetzle 1983).  We have recently 

shown that PQ itself induces lung inflammation (Hiyoshi et al. 2005a) and aggravates 

antigen-related airway inflammation (Hiyoshi et al. 2005b) in mice.  Naphthoquinone 

(NQ; MW: 158) is another quinone involved in DEP (Kumagai et al. 1995; Cho et al. 
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2004).  Detailed chemical analysis has reported that approximately 13.7μg of NQ is 

contained in 1 g of DEP (Cho et al. 2004).  We have also shown that NQ deteriorates 

antigen-related airway inflammation in mice (Inoue et al. in press).  In brief, 

pulmonary exposure to NQ has aggravated antigen-related airway inflammation 

characterized by infiltration of eosinophils and lymphocytes around the airway and an 

increase in goblet cells in the bronchial epithelium in a dose-dependent manner with 

enhanced lung expressions of Th2 cytokines such as interleukin (IL)-4 and IL-5 (Inoue 

et al. in press).  Goblet cell hyperplasia in the airway plays a role in airway remodeling 

with impaired airway physiology (Cohn et al. 2004; Rogers 2004).  Hence, we 

hypothesized that NQ could influence other pivotal hallmark of allergic asthma, i. e. 

airway hyperresponsiveness on the model.  Furthermore, IL-13, another Th2 type 

cytokine, is recognized to be essential for allergic phenotypes including airway 

hyperresponsiveness (Grunig et al. 1998; Nakano et al. 2006; Wills-Karp et al. 1998).  

In addition, MUC5AC has been identified as a mucin producing gene (Morcillo and 

Cortijo 2006).   

 

The present study was aimed mainly to elucidate the effects of NQ on the airway 

function using the same protocol as the previous study (Inoue et al. in press).  We also 

examined the local expression of IL-13 and MUC5AC to complement mechanisms of 

NQ-facilitation on the model. 

 

Materials and methods 

 

Animals   

Male ICR mice 6 to 7 wk of age and weighing 29 to 33 g (Japan Clea Co., Tokyo, 

Japan) were used in all experiments.  They were fed a commercial diet (Japan Clea 
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Co.) and given water ad libitum.  Mice were housed in an animal facility that was 

maintained at 24 to 26℃ with 55 to 75% humidity and a 12-h light/dark cycle.  The 

studies adhered to the National Institutes of Health guidelines for the experimental use 

of animals.  All animal studies were approved by the Institutional Review Board of 

National Institute for Environmental Studies.   

 

Study protocol   

Mice were divided into four experimental groups as exhibited in our recent study 

(shown as FIGURE 1 in the paper by Inoue et al. [in press]).  The vehicle group 

received phosphate-buffered saline (PBS) at pH 7.4 (Nissui Pharmaceutical Co., Tokyo, 

Japan) containing 0.025% Tween 80 (Nacalai Tesque, Kyoto, Japan) once a week for 6 

wk to serve as control.  As well, the ovalbumin (OVA) group received 1μg of OVA 

(Sigma Chemical, St. Louis, MO) dissolved in the same vehicle bi-weekly and the 

vehicle alone another bi-weekly for totally 6 wk.  Our previous study has shown that 

NQ (1.58 ng [0.01 nmol], 15.8 ng [0.1 nmol], 158 ng [1 nmol]/animal) 

dose-dependently aggravates antigen-related airway inflammation with goblet cell 

hyperplasia and enhanced lung expression of chemokines (macrophage chemoattractant 

protein-1 and keratinocyte chemoattractant: ref; Inoue et al., in press and unpublished 

observation).  Thus, we applied the dose of NQ at 158 ng/animal, which had revealed 

most prominent effects, to the current experiments.   The NQ group received NQ 

dissolved in the same vehicle every week for 6 wk.  The NQ + OVA group received the 

combined treatment in the same protocol as the NQ and the OVA groups.  In each 

group, vehicle, NQ, OVA, or NQ + OVA was dissolved in 0.1-ml aliquots, and 

inoculated intratracheally as previously described (Takano et al. 1997).  The animals 

were studied 24 h after the last intratracheal administration. 
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Histologic evaluation 

After exsanguinations, the lungs were fixed by intratracheal instillation with 10% 

neutral phosphate-buffered formalin at a pressure of 20 cm H2O for at least 72 h.  

Slices 2 to 3 mm thick of all pulmonary lobes were embedded in paraffin.  Sections 3 

μm thick were stained with Hematoxylin and eosin to observe and to quantitate the 

total numbers of polymorphonuclear cells and mononuclear cells (defined as 

“inflammatory cells”) infiltrating to the airways.  The length of the basement 

membrane of the airways was measured by videomicrometer (Olympus, Tokyo, Japan) 

in each sample slide.  The number of inflammatory cells around the airways were 

counted with a micrometer under oil immersion.  Results were expressed as the 

number of inflammatory cells per millimeter of basement membrane as described 

previously (n = 4 in each group [Takano et al. 1997]). 

 

Analysis of lung function   

In another experiment, assessment of cholinergic airway constrictor responsiveness was 

done with a computer-controlled small-animal ventilator (FlexiVent; Scireq, Montreal, 

Canada) as previously described (Card et al. 2006; Gavett et al. 1999; Kang et al. 2003; 

Lee et al. 2004).  In brief, the mice were anesthetized with 0.1 ml per 10 g body weight 

of a 40 mg/ml ketamine hydrochloride given intraperitoneally.  Anesthesia was 

maintained by supplemental administration of 30% of the initial dose at ～25-min 

intervals, as required.  Mice were tracheostomised with a 5 mm section of metallic 

tubing and ventilated (FlexiVent) at 180 b.min-1 with a tidal volume of 8 ml/kg and a 

positive end expiratory pressure of 2 cmH2O.   

 

Both the single-compartment model (using snap shot method) and the constant-phase 

model (using forced oscillation technique (FOT) method) of respiratory mechanics were 
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applied to assess lung function and airway responses to methacholine.  For the 

single-compartment model, total respiratory system resistance (R) was determined 

essentially as described previously (Card et al. 2006; Gavett et al. 1999).  For the 

constant-phase model, Rn (Newtonian resistance) was determined as described 

previously (Card et al., 2006; Lee et al., 2004).  All data points were determined by the 

FlexiVent software (version 5.0) by using multiple linear regression to fit each data 

point to the single-compartment or the constant-phase model, as appropriate.  The lung 

volume history of the mice was standardised prior to measurement of lung mechanics 

using two deep inflations.  P and V data were generated by applying a 2 s sine wave 

volume perturbation (SW) with an amplitude of 0.2 ml and a frequency of 2.5 Hz.  

After 5 min of regular mechanical ventilation, the SW perturbation was applied three 

times and the average was taken to generate a baseline measurement.  The respiratory 

system input impedance (Zrs) was measured during periods of apnea using a 3 s signal 

containing 19 mutually prime sinusoidal frequencies ranging from 0.25 to 19.625 Hz; 

these maneuvers generated data that were fit to the single-compartment or the 

constant-phase compartment models, respectively.  The averages of these 

measurements for each mouse served as its baseline values.  Following acquisition of 

baseline data, airway responsiveness to aerosolized methacholine (MCh: 0.125 to 50 

mg/mL saline; delivered by ultrasonic nebulizer) was assessed using both snap shot and 

FOT methods.  Aerosols were delivered for 10 s with a ventilation at 150 b.min-1 with 

a tidal volume of 10 ml/kg, after which the snap shot and the FOT methods were 

applied consecutively every 6 s for 5 min.  Peak responses during each 5-min period 

were determined, and only values with a coefficient of determination of 0.95 or greater 

were used.   

 

Quantitation of IL-13 protein levels in the lung   
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In a separate series of experiments, the animals were exsanguinated and the lungs were 

subsequently homogenized with 10 mM potassium phosphate buffer (pH 7.4) 

containing 0.1 mM ethylenediaminetetraacetic acid (Sigma, St Louis MO), 0.1 mM 

phenylmethanesulphonyl fluoride (Nacalai Tesque, Kyoto, Japan), 1μM pepstatin A 

(Peptide Institute, Osaka, Japan), and 2μM leupeptin (Peptide Institute) as described 

previously (Takano et al. 1997).  The homogenates were then centrifuged at 105,000 g 

for 1 h.  The supernatants were stored at -80℃.  Enzyme-linked immunosobent 

assays (ELISA) for IL-13 (R&D systems, Minneapolis, MN) in the lung tissue 

supernatants were conducted using matching antibody pairs according to the 

manufacture’s instruction.  The second antibodies were conjugated to horseradish 

peroxidase.  Subtractive readings of 550 nm from the readings at 450 nm were 

converted to pg/ml using values obtained from standard curves generated with the limits 

of detection of 1.5 pg/ml (n = 7-8 in each group). 

 

Quantitation of MUC5AC mRNA levels in the lung   

In another experiment, total RNAs in the lung were extracted with ISOGEN (Nippon 

gene, Tokyo, Japan), according to the manufacture’s instructions.  cDNA synthesis 

were conducted according to the manufacture’s protocol.  The quantitation of mRNA 

expression was carried out by real time RT-PCR using the ABI Prism 7000 Sequence 

Detection System (TaqMan, Perkin-Elmer Corp., Foster City, CA), according to the 

manufacture’s instructions.  cDNAs were amplified according to the thermal profile of 

50℃ for 2 min then 95℃ for 10 min, followed by up to 40 cycles at 95℃ for 15 s and 

60℃ for 1 min.  Specific primers and probes were obtained from Applied Biosystems.  

The sequences of 18S rRNA and MUC5AC, which were purchased from Perkin-Elmer, 

were not disclosed by the manufacturer.  The quantitation of gene expression was 

derived from the cycle number at which the fluorescent signal crossed a threshold in the 
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exponential phase of the PCR reaction using the standard curve method according to the 

manufacturer’s protocol.  The relative quantitation of mRNA was normalized to an 

endogenous control gene (18S rRNA) (n = 6-8 in each group).   

 

Statistical analysis   

Data were reported as mean ± SEM.  Differences among groups were analyzed by 

ANOVA followed by Fisher’s PLSD test (Stat view version 4.0; Abacus Concepts, Inc, 

Berkeley, CA).  Significance was assigned to p values smaller than 0.05. 

 

Results 

 

Effects of NQ on lung histology in the presence or absence of antigen 

To quantitate the infiltration of inflammatory cells around the airways, we expressed the 

number of these cells per length of basement membrane of the airways.  The number 

was greater in the NQ (inflammatory cells number/mm airways, mean ± SEM: 1.89 ± 

0.35; N. S.) or the OVA group (5.79 ± 1.24; P < 0.01) than in the vehicle group (0.92 ± 

0.25).  The number was significantly greater in the NQ + OVA group (12.70 ± 1.38) 

than in the vehicle, the NQ, or the OVA group (P < 0.01). 

 

Effects of NQ on lung function in the presence or absence of antigen   

To evaluate the effects of NQ on MCh responsiveness, we investigated R (Fig. 1A) and 

Rn (Fig. 1B) in four groups of mice 24 h after the last intratracheal instillation.  R was 

increased in each group with dose-dependency with MCh (Fig. 1A).  The value was 

higher in the NQ, the OVA, or the NQ + OVA group than in the vehicle group, which 

was most prominent in the NQ + OVA group.  In particular, the value in the NQ + 

OVA group at the MCh concentrations of 25 mg/ml (p < 0.05) and 50 mg/ml (p < 0.01) 
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was significantly higher than that of the vehicle group.  Rn was increased in each group 

with dose-dependency with MCh (Fig. 1B).  The value at the MCh concentration of 50 

mg/ml was highest in the NQ + OVA group (p < 0.05 vs. the vehicle group), followed 

by the OVA, the NQ, and the vehicle groups.   

 

Effects of NQ on local expression of IL-13 in the presence of antigen   

To explore the role of local expression of IL-13 in the enhancing effects of NQ on 

antigen-related airway inflammation (Inoue et al. in press) and airway 

hyperresponsiveness, we quantitated protein levels of IL-13 in the lung tissue 

supernatants 24 h after the last intratracheal instillation (Table).  The level was higher 

in the OVA (N. S.) or the NQ + OVA group (p < 0.01) than in the vehicle group.  The 

level was more than double in the NQ + OVA group than in the OVA group, however, it 

did not achieve statistical significance. 

 

Effects of NQ on local expression of MUC5AC in the presence of antigen   

To investigate the effect of NQ on the expression of MUC5AC, we compared mRNA 

level for MUC5AC in the lung 24 h after the final intratracheal instillation (Table).  

The mRNA level was almost negligible in the vehicle, the NQ, or the OVA groups.  

The level was significantly higher in the NQ + OVA group than in the other groups (p < 

0.01). 

 

Discussion 

 

Our previous study has demonstrated that NQ repeatedly administered by intratracheal 

route deteriorates antigen-related airway inflammation in mice, which is characterized 

by the infiltration of inflammatory leukocytes in both the bronchoalveolar spaces and 
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the lung parenchyma (Inoue et al. in press).  NQ has also exaggerated antigen-induced 

goblet cell hyperplasia.  The facilitation has been concomitant with the increased lung 

expression of Th2 cytokines such as IL-4 and IL-5, and chemokines such as eotaxin, 

macrophage chemoattractant protein-1, and keratinocyte chemoattractant.  Also, NQ 

has exhibited adjuvant activity for the antigen-specific production of IgG1 (Inoue et al. 

in press).  First of all, the present study recomfirms that NQ aggravates lung 

inflammation related to antigen using more comprehensive morphometric analysis than 

that in our previous study (Inoue et al. in press).  Nextly, the present study expands the 

previous one to show that NQ facilitates airway hyperresponsiveness in the presence or 

absence of antigen and lung expression of IL-13 and a mucin producing gene in the 

presence of antigen.   

 

It has been documented that DEP enhance airway inflammation (Takano et al. 1997) 

and airway hyperreactivity (Takano et al. 1998) related to antigen.  Studies about their 

ingredients have suggested that chemical components are attributed to the proallergic 

reaction of DEP (Devouassoux et al. 2002; Heo et al. 2001; Delfino 2002).  We have 

also demonstrated that organic chemicals in DEP, rather than their carbonaceous nuclei, 

predominantly enhance antigen-related airway inflammation in mice (Yanagisawa et al. 

2006).  However, the contribution of DEP-derived components, in particular chemical 

ones, to the enhancement has not been fully investigated.   

 

Quinones have also been involved as chemical components in DEP (Schuetzle 1983; 

Schuetzle et al. 1981).  Quinones posses toxicological properties to serve as alkylating 

agents and to interact with, for example, flavoproteins to generate ROS, which can lead 

to biological injury (Bolton et al. 2000; Monks et al. 1992; O'Brien 1991; Cho et al. 

2004).  We have previously shown that airway exposure to PQ, one of important 
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quinones in DEP (Schuetzle 1983; Cho et al. 2004), induces airway inflammation, 

which is concomitant with lung expression of IL-5 and eotaxin in vivo (Hiyoshi et al. 

2005a).  Another study has demonstrated that PQ enhances antigen-related airway 

inflammation in vivo (Hiyoshi et al. 2005b).  On the other hand, NQ, another 

extractable chemical compound in DEP, reportedly generates free radical, binds to thiol 

containing proteins, and irreversibly inactivates them (Kumagai et al. 1995).  We have 

demonstrated that NQ also exaggerates antigen-related airway inflammation in vivo 

(Inoue et al. in press).  However, whether NQ aggravates other pivotal hallmarks of 

asthma had not been defined.  In the present study, we demonstrated that NQ 

moderately facilitates antigen-related airway hyperresponsiveness.  However, the 

facilitation did not reach statistical significance as compared to antigen alone.  This 

may be partly explained by the magnitude of airway hyperresponsiveness on the model 

and dose of NQ.  Repetitive intratracheal exposure to antigen without preceding 

systemic sensitization induces less airway hyperresponsiveness (Takano et al. 1998) 

than typical asthma model (two intraperitoneal administration of antigen plus adjuvant 

with conventional antigen inhalation).  As well, NQ at 158 ng/animal may be 

insufficient to enhance the features, although the dose of NQ can be estimated to be 

more than a hundred fold than that of DEP we had used in the previous studies (Takano 

et al. 1997; Takano et al. 1998). 

 

In the present study, lung expression level of IL-13 was almost paralleled to that of 

goblet cell hyperplasia (Inoue et al. in press) and airway hyperresponsiveness related to 

antigen.  The protein expression was greater in the NQ + OVA group than in the OVA 

group, however, it did not reach statistical significance.  IL-13 is a key Th2 cytokine 

driving pathogenic changes associated with asthma.  IL-13 reportedly induces/supports 

epithelial cell maturation and mucus secretion (Kuperman et al. 2002) and enhanced 
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contractility of airway smooth muscle cells (Tliba et al. 2003) in vitro.  Also, IL-13 

plays a role in airway hyperresponsivness, airway inflammation, and mucus secretion in 

vivo (Wynn 2003).  Indeed, antagonism of this cytokine has been shown to prevent 

these asthma-related phenotypes (Kasaian et al. 2006; Wills-Karp 2004; Wynn 2003).  

Thus, it is possible that IL-13 partly contributed to NQ facilitation on goblet cell 

hyperplasia in the previous study (Inoue et al. in press) and airway hyperresponsiveness 

related to antigen in the present one.   

 

Interestingly, repetitive exposure to NQ alone induced a tend toward increased R and Rn.  

The mechanisms of this phenomenon remain unresolved.  Damaged airway epithelium 

results in exposure of sensory neuron and consequent airway hyperreactivity.  

However, it is unlikely, because our previous study has shown that NQ alone does not 

induce significant pulmonary epithelial damage (Inoue et al. in press).  It is possible 

that NQ influence autonomic nerve system to lead to vagotonia-sympathicotonia 

imbalance.  We have previously demonstrated that NQ can cause contraction of 

tracheal smooth muscle from guinea pig in a concentration-dependent manner via the 

activation of epidermal growth factor receptor (EGFR; ref Kikuno et al. 2006).  Thus, 

it is also possible that this mechanism through EGF-EGFR pathway plays a role in this 

action of NQ on the current in vivo model.  Although further investigation is needed, 

the present result suggests repeated (chronic) exposure to NQ could impair lung 

function.   

 

Our previous report about NQ-facilitation on the asthma model has included enhancing 

effects on goblet cell hyperplasia (Inoue et al. in press).  Of the 19 human mucin genes 

identified to date, MUC5AC is considered one of master genes for secreted mucin of the 

bronchial epithelium (Rogers 2004; Zuhdi Alimam et al. 2000).  In the present study, 
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lung expression level of MUC5AC was markedly higher in the NQ + OVA group than 

in the other groups.  Thus, it is likely that this enhanced expression of MUC5AC 

contributes, at least partly, to worsened goblet cell hyperplasia induced by antigen.  On 

the other hand, however, it remains undefined whether enhanced lung expression of 

MUC5AC found in the NQ + OVA group contributes to moderate enhancing effects on 

airway hyperresponsiveness in that group.  In another point, it is somewhat atypical 

that MUC5AC was not induced by OVA alone, although IL-13 was induced in the 

present study.  IL-13 may not be positively involved in MUC5AC expression or may 

proced the expression in this experimental protocol.    

 

In summary, the present study has shown that NQ can induce/enhance airway 

hyperresponsiveness in the presence or absence of antigen.  Also, NQ amplifies lung 

expression of IL-13 and MUC5AC in the presence of antigen.  These results suggest 

that environmental quinones may play, in part, a role in the DEP-toxicity against asthma 

hallmarks in the context of airway pathophysiology.  Repeated cycles of inflammation 

and repair in the airway in asthma lead to pathological changes in the structure that are 

termed “remodeling” (Rogers 2004; Cohn et al. 2004; Davies et al. 2003).  Airway 

remodeling includes peribronchial fibrosis with increased deposition of collagen, 

smooth muscle hypertrophy/hyperplasia, and mucus hypersecretion (Cohn et al. 2004; 

Rogers 2004).  These structural changes in the airway result in irreversible airway 

obstruction with further hyperresponsiveness.  Thus, our previous study and current 

one suggest that chronic NQ exposure may terminally aggravate airway remodeling.   
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Table. Protein levels of interleukin (IL)-13 and mRNA levels of MUC5A in the lung.   

 

IL-13 MUC5AC

pg/total lung supernatants relative quantitation

vehicle 0 ± 0 0.15 ± 0.05

NQ 0 ± 0 0.17 ± 0.06

OVA   44.8 ± 30.9  0.18 ± 0.02

NQ + OVA       92.2 ± 43.5 * $         2.24 ± 0.64 * # $

Group

 
 

Four groups of mice were intratracheally inoculated with vehicle, naphthoquinone (NQ), 

ovalbumin (OVA), or the combination of NQ + OVA for 6 wk.  Lungs were removed 

and frozen 24 h after the last intratracheal administration.  IL-13 protein levels in the 

lung tissue supernatants were analyzed using enzyme-linked immunosorbent assays (n = 

7-8 in each group).  Gene levels for MUC5AC were analyzed using RT-PCR (n = 6-8 

in each group).  Results are shown as mean ± SEM.  * P < 0.01 vs. vehicle.  $ P < 

0.01 vs. NQ.  # P < 0.01 vs. OVA.   
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Figure Legend 

 

Fig. 1. Dose response curve to inhaled methacholine (MCh).  The animals were 

randomized into four experimental groups that received repeated intratracheal 

instillation with vehicle, naphthoquinone (NQ), ovalbumin (OVA), or the combination 

of NQ + OVA for 6 wk.  Total respiratory system resistance (R: A) or Newtonian 

resistance (Rn: B) was measured 24 h after the last instillation.  Data are shown as 

mean ± SEM (n = 10 in each group).  * P < 0.05 vs. vehicle, ** P < 0.01 vs. vehicle.   
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