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Abstract 

Glycerol is a main byproduct in a biodiesel production process, and the effective utilization of 

glycerol can contribute to the biodiesel promotion. One of the methods is catalytic conversion of 

glycerol to valuable chemicals, and this can also agree with the concept of green chemistry in 

terms of the utilization of renewable resources. Catalytic performance of supported metal catalysts 

(metal: Rh, Ru, Pt, Pd support: active carbon, SiO2, Al2O3) was evaluated in the reaction of 

glycerol aqueous solution under H2. It is found that Rh/SiO2 exhibited higher activity and higher 

selectivity to hydrogenolysis products such as propanediols and propanols than Ru/C catalysts at 

low temperature (393 K). We also investigated the additive effect of ion-exchange resin 

(Amberlyst). Regarding the reaction route in the reaction of glycerol, it is suggested that the 

consecutive hydrogenolysis of propanediols to propanols on Rh/SiO2 can proceed via 

1,2-propanediol, while it can proceed on Ru/C via 1,3-propanediol.  

 

1. Introduction 

Catalytic conversion of renewable feedstock and chemicals becomes more and more important 

in terms of green chemistry. Such conversion to hydrogen can promote the utilization of renewable 

energy sources 1-5, and such conversion to petrochemicals can facilitate the replacement of 

petroleum by renewable resources 6,7,8. It has been proposed that commodity chemicals derived 

from fossil resources at present will be producible in future biorefineries from renewable resources, 

such as plant-derived sugar and other compounds 9. Glycerol is regarded as one of the building 

blocks in the biorefinery feedstock 9. It has been also known as a main byproduct in the biodiesel 

production by transesterification of vegetable oils 10. Attentions have been recently paid on the 

conversion of glycerol to petrochemicals such as propanediols11 and acrolein12,13. Various catalysts 

have been attempted to the glycerol reaction to propanediols. The reaction formula is described 

below. The reaction corresponds to the substitution of the OH group with H2, which is called here as 

hydrogenolysis.  



HO OH
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HO OHor
+H2
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Using CuO/ZnO catalysts along with a sulfided Ru catalyst, the reaction of glycerol has been 

carried out at 15 MPa and 513-543 K 14,15. Raney Cu 16,17, Cu/C 18 and Cu-Pt and Cu-Ru bimetallic 

catalysts 19 at 1.0-4.0 MPa and 493-513 K were also investigated. The catalysts containing Co, Cu, 

Mn, Mo, and inorganic polyacid were applied at the reaction conditions of 25 MPa and 523 K 20. In 

the case of homogeneous catalysts containing W and group VIII transition metals, the reaction 

conditions were 32 MPa and 473 K 21. Hydrogen pressures around 6-10 MPa and reaction 

temperatures of 453-513 K have been usually applied when supported metal catalysts were used 

22-25. In addition, it has been also reported recently that copper-chromite was effective for the 

hydrogenolysis of glycerol to 1,2-propanediol at 1.4 MPa and 473 K 26, which corresponded to the 

mild reaction condition in terms of hydrogen pressure. On the other hand, they also demonstrated 

that the copper-chromite catalyst exhibited lower activity below 453 K. It has been known that 

Ru/C showed rather high activity in the glycerol reaction in the presence of H2 even at lower 

reaction temperature compared to the copper-chromite catalysts 27. One of the weak points of Ru/C 

is that the degradation reaction as well as the hydrogenolysis can be also catalyzed in the glycerol 

reaction. The degradation reaction can be due to the cracking of the carbon-carbon bond. The 

reaction formula is shown below.  

HO OH

OH

H2

HO
OH

, C2H5OH, CH3OH, CH4
 

Since glycerol is regarded as a renewable source for the C3 compounds, the aim of this study is the 

catalyst development for the hydrogenolysis reaction. Therefore, the degradation reaction is 

undesirable because it causes the decrease of the selectivity to the hydrogenolysis products. In this 

article, it is reported that Rh/SiO2 gave higher yield of hydrogenolysis products and higher 

selectivity than Ru/C in the glycerol reaction in the presence of H2. In addition, the additive effect 

of Amberlyst to Rh/SiO2 was compared to the case of Ru/C. We also discuss the formation routes of 
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hydrogenolysis and degradation products based on the catalytic performance when the products in 

the glycerol reaction were used as reactants.  

 

2. Experimental 

Active carbon supported noble metal catalysts (Rh/C (BET surface area 557 m2/g), Ru/C (485 

m2/g), Pt/C (478 m2/g) and Pd/C (348 m2/g)) were purchased from Wako Pure Chemical Industries; 

the loading amount of metal on these catalysts was 5 wt%. Noble-metal catalysts supported on 

Al2O3 and SiO2 were prepared by impregnating the support materials with an aqueous solution of 

metal precursor such as RhCl3·3H2O, RuCl3·5H2O, H2PtCl6·6H2O, and Pd(NO3)2. These chemicals 

were supplied from Soekawa Chemical Co., Ltd. The loading amount of metal was 4 wt%. After the 

impregnation procedure and drying at 383 K for 12 h, they were calcined in air at 773 K for 3 h. 

The SiO2 (G-6) (BET surface area 535 m2/g) was supplied from Fuji Silysia Chemical Ltd. In 

addition, another SiO2 (380) (380 m2/g, Aerosil) was also used as a support material. The Al2O3 

(JRC-ALO-1, 110 m2/g) was supplied from Japan Reference Catalyst. The cation-exchange resin 

Amberlyst 15 (4.7 eq/kg-resin dried, particle size 0.4-1.2 mm, highest operating temperature 393 K; 

MP Biomedical) was used as a solid acid catalyst. All catalysts were used in powdery form with 

granule size of < 100 mesh.  

The reaction of glycerol under H2 atmosphere was carried out in a 70-ml stainless steel 

autoclave; a 20-ml aqueous solution of glycerol was used. The reaction was conducted under the 

following standard conditions: 393 K reaction temperature, 8.0 MPa initial hydrogen pressure, 10 h 

reaction time, 20 mass% glycerol aqueous solution, 150 mg supported metal catalyst with or 

without 300 mg Amberlyst. Catalysts were reduced in the reactor at 393 K for 1 h under 1.0 MPa 

H2 pressure just before the activity test. Reaction conditions were changed for investigation of the 

reaction condition effect. Details of the reaction conditions are described for each result. In addition, 

we also carried out the reaction test of 1,3-propanediol(1,3-PD) and 1,2-propanediol(1,2-PD) in 

order to discuss the reaction routes of glycerol hydrogenolysis and degradation. The concentration 



of these reactants of the aqueous solution was 2 mass%. 

In all the experiments, the aqueous solution of the reactant, the catalyst powder and a spinner 

were put into the autoclave; then the reactor was purged with H2 (99.99%; Takachiho Trading Co. 

Ltd.). After purging, the reactor was heated to the reaction temperature, and the H2 pressure was 

increased. The temperature was monitored using a thermocouple that was inserted in the autoclave 

and connected to the thermo-controller. Although the hydrogen pressure decreased with reaction 

time, the decreased hydrogen pressure was 1/10 of the initial pressure at most. After the reaction, 

the gas-phase products were collected in a gasbag and the liquid phase products were separated 

from the catalyst powder through filtration. These products were analyzed using a gas 

chromatograph (Shimadzu GC-8A) equipped with FID. A Stabilwax capillary column (diameter 

0.53 mmφ, 60 m) was used for the separation. Products were also identified using GC-MS (QP5050, 

Shimadzu). As the products of the hydrogenolysis reaction, 1,2-PD, 1,3-PD, 1-propanol (1-PO) and 

2-propanol (2-PO) were observed. As the products of the degradation reaction, ethylene glycol (EG), 

C2H5OH, CH3OH and CH4 were detected. Propanols were formed by the hydrogenolysis reaction 

of propanediols as below.  

HO

OH

+H2

-H2O

OH or
OH

1,2-PD 1-PO 2-PO  

HO OH
OH

1,3-PD 1-PO

+H2

-H2O  

Conversion of the reactants in all reaction tests were calculated based on the following equation.  

           (Sum of C-based mol of all products) 

                        (Sum of C-based mol of reactant and all products) 
Conversion of reactant (%) = × 100 

 
The conversion can be also defined as (reactant before – reactant afterwards) / (reactant before)× 

100. In the present case, it is necessary to determine the conversion and the selectivity even when 

the conversion level is very low. In addition, since all the products in the reaction tests were 
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identified, each values of the product amount were utilized, and the equation above was applied for 

the estimation of the conversion. It should be noted that the conversions calculated by this method 

and the method based on the definition agree well when the conversion was beyond around 5%. 

The mass balance was also confirmed in each result and the difference in mass balance was always 

in the range of the experimental error.  

Selectivity of the products in all reaction tests were also calculated based on the following 

equation. 

     (C-based mol of the product) 
× 100 

               (Sum of C-based mol of all products) 
Selectivity (%) = 

As a result of the reaction tests, ethylene glycol, ethanol, methanol and methane were detected 

as degradation products. The degradation of glycerol can give the C2 and C1 compounds in some 

cases. On the other hand, it can give only the C1 compounds in other cases. Since the degradation 

can proceed in various ways, it is difficult to determine the formation route of each degradation 

product precisely. Therefore, we simply assume that each degradation product is formed from 

glycerol like C3→3/2C2 and C3→3C1 in the determination of the selectivity. The yield is calculated 

from Conversion (%) × Selectivity (%) / 100. The details are referred to our previous report 7. The 

surface areas of the supported metal catalysts were measured using BET method (N2 adsorption) 

with a Gemini (Micromeritics) apparatus. Temperature-programmed reduction (TPR) was carried 

out in a fix bed reactor equipped with a thermal conductivity detector using 5 % H2 diluted with Ar 

(30 ml/min). The amount of catalyst was 0.05 g, and temperature was increased from room 

temperature to 1123 K at the heating rate of 10 K/min. Transmission electron microscope (TEM) 

images were taken for determination of the particle size using equipment (JEM 2010; JEOL) 

operated at 200 kV. After reduction with H2, the samples were stored under vacuum until 

measurements were made. Supersonic waves dispersed the samples in 2-propanol, and dispersed 

samples were placed on Cu grids under air atmosphere. Average particle size was calculated by 

∑nidi
3/∑nidi

2 (di: average particle size, ni: number of particle with di)28. 
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3. Results and discussion 

The results of the glycerol reaction over various supported metal catalysts at 393 K are 

described in Figure 1. All the supported Pd and Pt catalysts exhibited very low activity in the 

glycerol reaction, and all the Al2O3 supported metal catalysts showed low activity. In the case of Ru 

catalysts, active carbon is much more suitable support than SiO2 and Al2O3. This is also supported 

by the previous reports that Ru/C is an effective catalyst for the glycerol hydrogenolysis 7,17,23-25,27. 

On the other hand, Ru/SiO2 showed much lower activity than Ru/C. It should be noted that both 

Rh/SiO2 of 380 and G-6 and Ru/C exhibited high activities for the glycerol reaction, in particular, 

Rh/SiO2 (G-6) gave much higher yield of hydrogenolysis products than other catalysts, and the 

selectivity to hydrogenolysis products on Rh/SiO2 (G-6) was higher than that on Ru/C. The product 

distribution is shown in detail later. Furthermore, the activity of Rh/Al2O3 was as low as that of 

other Al2O3 supported metal catalysts. In order to discuss the low activities of Al2O3 supported 

catalysts, the TPR profiles of SiO2 and Al2O3 supported catalysts were compared as shown in 

Figure 2. The H2 consumption peak of Rh/SiO2 was clearly observed at 350 K, and, in contrast, that 

of Rh/Al2O3 was observed in the wide temperature range beyond 350 K. Here, we have to pay 

attention to the H2 consumption behavior below the reduction pretreatment temperature and the 

reaction temperature of the glycerol reaction (393 K). The reduction degree below 393 K on the 

basis of Rh3+ + 3/2H2 → Rh0 + 3H+ is estimated to be 0.81 and 0.15 on Rh/SiO2 and Rh/Al2O3, 

respectively. This suggests that the Rh species of Rh/SiO2 can be reduced during the reduction 

pretreatment and the active metallic species is rich, however the Rh species of Rh/Al2O3 cannot be 

reduced sufficiently. From the results, the reducibility of Rh species on the support materials can 

influence the activity of the glycerol reaction strongly. On the other hand, the reduction of the Ru 

species on SiO2 and Al2O3 proceeded above the reduction pretreatment and the reaction temperature 

(393 K). This result suggests that Ru species is not reduced and the active Ru metal species is not 

formed, and this can explain the low activity of Ru/SiO2 and Ru/Al2O3. In the case of Pd/SiO2 and 
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Pd/Al2O3, the H2 consumption peak appeared in the range between room temperature and 400 K. 

The reduction degree on the basis of Pd2+ + H2 → Pd0 + 2H+ below 393 K was estimated to be 1.07 

and 1.13 on Pd/SiO2 and Pd/Al2O3, respectively. Two peaks observed on the TPR profiles of the Pd 

catalysts can be assigned to the reduction of Pd species with weak and strong interaction with the 

support surface. On the other hand, the peak intensity on Pt/SiO2 and Pt/Al2O3 was very small. The 

Pt species on Pt/SiO2 and Pt/Al2O3 are suggested to be reduced even at room temperature during the 

purge of the TPR cell with H2 containing gas. These results suggest that major part of Pt and Pd can 

be reduced under the conditions of the glycerol reaction. On the other hand, all the SiO2 and Al2O3 

supported Pt and Pd catalysts showed very low activity in the glycerol reaction. This indicates that 

metallic Pt and Pd species is not so active. Regarding the active carbon supported catalysts, the 

metal species on all the catalysts can be reduced during the glycerol reactions because the peaks 

assigned to metal species were detected by X-ray diffraction method on the used samples as 

reported previously 7. This also supports the low activity of Pt and Pd. In contrast, metallic Ru and 

Rh species are highly active, and these can be formed on Rh/SiO2, Rh/C and Ru/C. In addition, the 

tendency in the activity over two Rh/SiO2 and one Ru/C catalysts can be explained by the number 

of surface Rh atoms. From here, we focus on the catalytic performance of Rh/SiO2 (G-6) and Ru/C.  

Figure 3 shows the reaction temperature dependence of the glycerol reaction over Rh/SiO2 

(G-6) and Ru/C. It is characteristic that Rh/SiO2 (G-6) exhibited lower selectivity to degradation 

products under higher glycerol conversion than Ru/C at 393 K. At higher reaction temperature, the 

selectivity to degradation products on Rh/SiO2 (G-6) increased significantly. This result 

recommends that the reaction should be carried out at lower reaction temperature, where Rh/SiO2 

showed much higher activity and higher hydrogenolysis selectivity than Ru/C. As the details of the 

distribution of hydrogenolysis and degradation products are listed in Table 1, the main degradation 

products on Ru/C were EG and CH4, and this represents the cracking of the C-C bond in the 

glycerol to ethylene glycol and methane. In contrast, in the case of Rh/SiO2 (G-6), the selectivity to 

EG and ethanol were lower than that to CH4. This indicates that the degradation reaction route on 
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Rh/SiO2 is different from that on Ru/C, and this suggests that glycerol is cracked to three methane 

on Rh/SiO2.  

Figure 4 shows the effect of glycerol concentration over Rh/SiO2 (G-6) and Ru/C. On both 

catalysts, the glycerol conversion decreased with increasing glycerol concentration. On the other 

hand, the difference between Rh/SiO2 and Ru/C was larger at higher glycerol concentration, and it 

should be noted that Rh/SiO2 gave higher glycerol conversion even under high glycerol 

concentration conditions. Although the details are not shown here, we confirmed that the reaction 

proceeded under steady-state conditions judging from the change of H2 pressure during the test. 

Therefore it is possible to estimate the reaction rate from the results of the activity tests. In terms of 

the reaction rate of glycerol, the rate on Rh/SiO2 was about twice as high as that on Ru/C under the 

condition of 40 mass% glycerol aqueous solution, although the difference was small at 2 mass% 

concentration. In addition, another important point is that Rh/SiO2 maintained high selectivity to 

hydrogenolysis products even under high glycerol concentration.  

Figure 5 shows the effect of H2 pressure. At lower hydrogen pressure such as 2.0 MPa, Ru/C 

gave much higher glycerol conversion than Rh/SiO2. In the case of the Ru/C, the effect of H2 

pressure was very small, and the yield of hydrogenolysis products increased gradually with 

increasing H2 pressure. In contrast, in the case of Rh/SiO2, the conversion and selectivity to the 

hydrogenolysis products increased remarkably with increasing H2 pressure, and this means that the 

yield of hydrogenolysis products is enhanced by the increase of H2 pressure. It is possible to 

estimate the reaction order of glycerol with respect to H2 over Rh/SiO2 (G-6), and the obtained 

order is estimated to be second. Further investigations on the promoting mechanism of hydrogen on 

the hydrogenolysis reaction over Rh/SiO2 are necessary, however, the adsorbed hydrogen species 

on the Rh surface is suggested to promote the hydrogenolysis reaction. 

Figure 6 shows TEM images of the used Rh/SiO2 (G-6) and Ru/C catalysts after the reaction at 

393 K for 10 h under the standard reaction conditions. The metal particles were observed in both 

cases, and the average particle size of Rh and Ru determined to be about 3.8 ± 0.2 and 2.5 ± 0.2 nm, 
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respectively. In the case of Ru/C, based on the relationship (D = 1.32/d) between particle size (d, 

nm) and the dispersion (D, %) 29, 30, the dispersion is calculated as 53 ± 4%. In the case of Rh/SiO2 

(G-6), based on the relationship, (D = 1.10/d)29, 31, the dispersion is obtained as 29 ± 2%, which is 

lower than that of Ru/C. In addition, the average particle size of both catalysts after the reduction 

pretreatment were almost the same as those of used catalysts, although the details are not shown 

here. This means that the aggregation of metal particles during the reaction can be neglected, and 

this is related to the tendency that the decrease of H2 pressure during the reaction was almost 

proportional to the reaction time. In addition, based on the dispersion obtained from the TEM 

results, the turnover frequency on Rh/SiO2 (G-6) is estimated to be about five times as high as that 

on Ru/C under the standard reaction conditions.  

Here, we investigated the effect of Amberlyst addition to Rh/SiO2 (G-6) in the comparison with 

Ru/C. The results are listed in Table 1. In this experiment, the reaction temperature was chosen to 

be 393 K. One reason is based on the results of reaction temperature dependence (Figure 3), and 

another is due to the highest operating temperature of the ion-exchange resin. As reported 

previously, under the same reaction condition, the Amberlyst was stable for at least 60-hours 7. 

From the comparison between Ru/C and Ru/C+Amberlyst, it is found that the glycerol conversion 

was increased by the addition of Amberlyst, and the total hydrogenolysis product yield mainly 

increased, in particular, 1,2-PD formation was drastically promoted. This behavior can be 

interpreted by the combination of the dehydration to acetol on Amberlyst and subsequent 

hydrogenation to 1,2-PD on Ru/C as reported previously 7. On the other hand, in case of Rh/SiO2 

(G-6) and Rh/SiO2 (G-6) + Amberlyst, the addition of Amberlyst enhanced glycerol conversion, 

and hydrogenolysis product yield, however, 1-PO formation was promoted most significantly. The 

propanediols are thought to be more valuable than propanols, the combination of Amberlyst with 

Ru/C can be more suitable than that with Rh/SiO2.  

In order to explain the product distribution, the reactions of 1,2- and 1,3-PDs under hydrogen 

were also tested (Table 2). On Ru/C and Ru/C+Amberlyst, the reaction rate of 1,3-PD was much 
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higher than that of glycerol and 1,2-PD, and this can be related to very low yield of 1,3-PD in the 

glycerol reaction. In contrast, the reaction rate of 1,2-PD was much lower than that of glycerol, and 

this is associated with high selectivity to 1,2-PD in the reaction of glycerol. In addition, the 

propanols are also formed by the sequential hydrogenolysis of propanediols. The hydrogenolysis of 

1,2-PD can give 1-PO and 2-PO, and the hydrogenolysis of 1,3-PD can give 1-PO. The selectivity 

ratio of 1-PO to 2-PO is dependent on the catalysts. The selectivity to 1-PO was much higher than 

that to 2-PO in the reaction of glycerol over Ru/C and Ru/C+Amberlyst. The behavior indicates that 

1-PO is mainly formed via 1,3-PD, whose amount was very low owing to its high reactivity over 

Ru/C and Ru/C+Amberlyst. High selectivity to C2H5OH on Ru/C and Ru/C+Amberlyst in the 

glycerol reaction also indicates that ethanol is formed from the degradation of propanediols. On the 

other hand, the reaction rate of 1,3-PD was comparable to that of glycerol over Rh/SiO2 (G-6), and 

this can be related to much higher yield of 1,3-PD in the glycerol reaction than that on Ru/C, 

although the selectivity to 1,3-PD was not so high as that reported 20. The selectivity ratio of 1-PO 

to 2-PO in the glycerol reaction on Rh/SiO2 and Rh/SiO2+Amberlyst seems to be similar to that in 

the reaction of 1,2-PD. This suggests that 1-PO is mainly formed via 1,2-PD, and this is different 

from that over Ru/C. By the Amberlyst addition to Rh/SiO2, the formation of 1-PO was enhanced. 

This is because the Amberlyst catalyzes the dehydration of glycerol to acetol, as mentioned above, 

and Rh/SiO2 catalyzes the hydrogenation of acetol to 1,2-PD, and furthermore Rh/SiO2 catalyzes 

the hydrogenolysis of 1,2-PD to propanols with higher selectivity to 1-PO than 2-PO. Based on the 

results in Table 2, the model scheme of the glycerol reaction under H2 over Ru/C and Rh/SiO2 is 

described in Figure 6.  

 

4. Conclusions 

Among the various supported noble metal catalysts, it is found that Rh/SiO2 (G-6) catalyst is 

effective in the reaction of glycerol under H2. It is characteristic that Rh/SiO2 exhibited higher 

activity and selectivity to hydrogenolysis products (1,2-PD+1,3-PD+1-PO+2-PD) in the reaction of 
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glycerol than Ru/C, which can be regarded as a conventional catalyst. In particular, under the higher 

H2 pressure and higher concentration of glycerol, Rh/SiO2 was more effective catalyst than Ru/C. 

By the addition of Amberlyst, glycerol conversion on the Rh/SiO2 increased as well as on Ru/C. In 

addition, the reaction route of glycerol on Rh/SiO2 can be different from that on Ru/C. The 

consecutive hydrogenolysis of propanediols to propanols in the glycerol reaction can proceed 

mainly via 1,3-propanediol on Ru/C, while the consecutive reactions can proceed mainly via 

1,2-propanediol on Rh/SiO2. The efficient catalytic conversion into valuable chemicals of glycerol, 

which is a main byproduct in the biodiesel production, can contribute to the promotion of biodiesel 

utilization in the economical view.  
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Table 1. Result of the glycerol reaction over Rh/SiO2(G-6) and Ru/C catalyst at 393 Ka

Total yield of Total yield of 
Catalysts hydrogenolysis degradation 

products (%) products (%) 1,2-PD 1,3-PD 1-PO 2-PO EG C2H5OH CH3OH CH4

Rh/SiO2(G-6)+Amberlystb 14.3           13.0                  1.3                    26.0        9.8          42.2        12.9        0.2          1.0          0.0 7.9          
Rh/SiO2(G-6)c 7.2             6.8                    0.4                    38.1        7.9          35.2        12.6        1.1          1.5          0.1 3.4          
Ru/C+Amberlystb 12.9           9.7                    3.2                    55.4        4.9          14.1        0.9          12.9        3.6          0.3          7.9          
Ru/Cc 3.5             2.0                    1.5                    26.4        4.9          26.7        0.3          22.0        5.8          2.3          11.6        
a  Reaction conditions: 20 mass% glycerol aqueous solution 20 ml, 393 K reaction temperature,
 8.0 MPa initial H2 pressure, 10 h reaction time.
b  150 mg metal catalyst + 300 mg Amberlyst
PD=propanediol, PO=propanol, EG=ethylene glycol.
c  150 mg
d C-based selectivity.

Conversion
(%)

Selectivity of each product  (%)d
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Table 2. Reaction results of various reactants over Rh/SiO2 and Ru/C under H2
a

Conversion
(％) 1,2-PD 1,3-PD 1-PO 2-PO EG C2H5OH CH3OH CH4

Rh/SiO2(G-6) Glycerol 29.3           22.6 5.4        41.3      17.0      0.0 1.8        0.0 12.0      
   +Amberlystb 1,2-PD 17.5           - 0.0 56.5      21.6      0.0 2.1        0.0 19.7      

1,3-PD 22.6           0.0 - 68.2      0.0 0.0 6.8        0.0 24.9      
Rh/SiO2(G-6)c Glycerol 19.6 34.6 5.2 39.1 13.7 0.0 2.9 0.0 4.6

1,2-PD 9.8 - 0.0 66.5 20.9 0.0 1.0 0.0 11.6
1,3-PD 19.2 0.0 - 81.3 0.0 0.0 9.3 0.0 9.4

Ru/C Glycerol 38.8           28.8 0.8        28.9      2.4        7.4 18.7      1.9 11.2      
   +Amberlystb 1,2-PD 6.3             - 0.0 28.2      30.0      0.0 27.8      0.0 13.9      

1,3-PD 77.7           0.0 - 32.8      0.0 0.0 44.8      0.0 22.4      
Ru/Cc Glycerol 20.8           12.7 0.4 39.1      5.6        7.6 20.6 1.6        12.4

1,2-PD 6.3             - 0.0 25.1      37.1      0.0 25.2      0.0 12.6      
1,3-PD 75.1           0.0 - 26.0      0.0 0.0 49.3      0.1        24.6      

a  Reaction conditions: 2 mass% aqueous solution of reactant 20 ml,
393 K reaction temperature, 8.0 MPa initial H2 pressure, 10 h reaction time,
150 mg metal catalyst.
b  150 mg metal catalyst + 300 mg Amberlyst
PD=propanediol, PO=propanol, EG=ethylene glycol.
c  150 mg metal catalyst
d  C-based selectivity.

Catalysts Reactant Selectivity of each product (%)d
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Figure captions 

 

Fig. 1. Results of glycerol reaction over supported noble metal catalysts at 393 K. 

Reaction conditions: 20 mass% glycerol aqueous solution 20 ml, 

8.0 MPa initial H2 pressure, 10 h reaction time, 150 mg metal catalyst. 
a Catalysts were reduced in-situ at 393 K and 1.0 MPa H2. 
b Catalysts were prereduced in the fixed bed reactor at 573 K and 0.1 MPa H2, 

 and then the samples were transferred to the autoclave under air atmosphere. 
c 1,2-propanediol +1,3-propanediol +1-propanol +2-propanol  
d ethylene glycol +ethanol +methanol +methane 

 

Fig. 2. Temperature-programmed reduction profiles of supported noble metal catalysts. 

(a): SiO2 (G-6) (b): Al2O3 

 

Fig. 3. Reaction temperature dependence of the glycerol reaction over Rh/SiO2 (G-6) (a) 

and Ru/C(b). 

Reaction conditions: 20 mass% glycerol aqueous solution 20 ml, 

8.0 MPa initial H2 pressure, 10 h reaction time, 150 mg metal catalyst. 

PD: propanediol, PO: propanol, others: ethylene glycol + ethanol + methanol + methane 

 

Fig. 4. Effect of glycerol concentration in the glycerol reaction over Rh/SiO2(a) and 

Ru/C(b). 

Reaction conditions: 20 ml glycerol aqueous solution, 393 K reaction temperature,  

8.0 MPa initial H2 pressure, 10 h reaction time, 150 mg metal catalyst. 

PD: propanediol, PO: propanol, others: ethylene glycol + ethanol + methanol + methane 
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Fig. 5. Effect of hydrogen pressure in the glycerol reaction over Rh/SiO2(G-6) (a) and 

Ru/C(b). 

Reaction conditions: 20 mass% glycerol aqueous solution 20 ml, 393 K reaction 

temperature, 10 h reaction time, 150 mg metal catalyst. 

PD: propanediol, PO: propanol, others: ethylene glycol + ethanol + methanol + methane 

 

Figure 6. TEM images of Rh/SiO2 (G-6) (a) and Ru/C (b) catalysts after the glycerol 

reaction at 393 K for 10 h. 

 

Figure 7. Model scheme of the glycerol reaction over Ru/C and Rh/SiO2. 
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Figure 1. I. Furikado, et al.
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Figure 2. I. Furikado, et al. 
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Figure 3. I. Furikado, et al. 
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Figure 4. I. Furikado, et al. 
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Figure 5. I. Furikado, et al.
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