
 1 

Amidated Amino Acids Are Prominent Additives for Preventing Heat-Induced 1 

Aggregation of Lysozyme  2 

Tsuneyoshi Matsuoka,1 Syunsuke Tomita,1 Hiroyuki Hamada,1 and Kentaro Shiraki1* 3 

 4 

Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 5 

305-8573, Japan1 6 

Received 30 November 2006/Accepted 16 February 2007 7 

[Key words: lysozyme, amidated amino acids, protein aggregation, thermal 8 

inactivation] 9 

 10 

Running title: AMIDATED AMINO ACIDS PREVENT AGGREGATION OF 11 

LYSOZYME 12 

* Corresponding author. e-mail: shiraki@bk.tsukuba.ac.jp 13 

phone: +81-(0)29-853-5306 fax: +81-(0)29-853-5215 14 



 2 

Abstract  1 

An additive that is highly effective in small amounts for controlling protein 2 

inactivation and aggregation has long been demanded.  In this paper we show 3 

amidated amino acids as new potent additives.  In the presence of 100 mM amidated 4 

amino acids, e.g., Ala, Arg, Asn, Met, and Val, the heat- induced inactivation and 5 

aggregation of lysozyme at pH 7.1 are one order of magnitude slower than those in the 6 

absence of additives.  Although a high Arg concentration (> 1 M) has been used to 7 

prevent aggregation among amino acids, it is worth mentioning that above amidated 8 

amino acids can prevent aggregation at submolar concentrations.  The data obtained 9 

suggest the importance of amino and amide groups rather than the guanidium group as 10 

an aggregation suppressor.   11 
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Introduction 1 

Aggregation is an intrinsic phenomenon for polypeptide chain.  The control of 2 

aggregation must be achieved inexpensively and easily for biotechnological and 3 

medical applications of valuable proteins.  To reduce aggregation in vitro, various 4 

factors have to be tested, such as pH, ionic strength, temperature, and protein 5 

concentration.  A simple but effective approach to improving the aggregation problem 6 

is the addition of a small amount of potent inhibitor to prevent protein aggregation.   7 

Many types of additives for reduc ing protein aggregation have been developed.  8 

Protein-denaturing reagents, typically guanidine and detergents, have been used as an 9 

aggregation suppressor that weakens the hydrophobic intermolecular interaction of 10 

proteins (1-4).  However, these additives ambivalently decrease the stability of 11 

proteins, which sometimes accelerates aggregation.  A compound synthesized through 12 

refolding in detergent followed by cycroamylose addition has been developed to 13 

function as an artificial chaperone (5).  Although non-denaturing reagents, such as 14 

amino acids (6), have been used to preserve protein solution, the ir use is not sufficient 15 

to solve the problems of protein aggregation.  Of those amino acids, arginine (Arg) 16 

possesses a favorable property as an additive for the prevention and dissolvation of 17 

aggregation; that is, it does not destabilize the native structure and has only a minor 18 

effect on protein stability while it enhanc ing the solubility of aggregation-prone 19 

molecules during refolding (6-13).   20 

Recently, we have reported that polyamines, specifically spermine and spermidine, 21 

prevent the heat-induced inactivation and aggregation of lysozyme more effectively 22 

than Arg.  Polyamines slightly destabilize the native structure of lysozyme but it 23 

markedly increases the solubility of aggregation-prone molecules (13).  The addition 24 

of a low concentration of polyamines (typically < 0.1 M) markedly prevents the 25 
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heat-induced aggrega tion of what as effective as that of 1 M Arg or higher.  The 1 

indispensable feature in the structure of polyamines for their function as an aggregation 2 

suppressor is the presence of multiple amines (14).  Arginine ethylester (ArgEE) is a 3 

more favorable additive for suppressing the heat- induced aggregation of lysozyme than 4 

Arg (15).  Although Arg is not effective at concentrations below 1 M, ArgEE is 5 

effective at concentrations one order of magnitude lower than that of arginine.  6 

Furthermore, several amino acid derivatives similarly prevent the heat- induced 7 

aggregation of lysozyme as effective as ArgEE (16).  Although amino acid alkylesters 8 

are promising candidate for prevent ing protein aggregation, these additives may be 9 

hydrolyzed to alcohols and amino acids in an aqueous solution.  Therefore, amino 10 

acid alkylesters are not favorable for practical applications that entail long-time storage.  11 

In this paper, we study a new class of amino acid derivatives, that is, amidated amino 12 

acids, as promising aggregation suppressors.   13 
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MATERIALS AND METHODS 1 

Materials  Hen egg white lysozyme, Arg/HCl, ArgEE/2HCl, ArgAd/2HCl, 2 

AlaAd/HCl, GluAd, ValAd/HCl, ProAd/HCl, MetAd/HCl, and AsnAd/HCl were 3 

purchased from Sigma Chemical Co. (St. Louis, MO, USA).  Na2HPO4, and 4 

NaH2PO4 were purchased from Nacalai Tesque (Kyoto).  Ala, Glu, CH3COONa, and 5 

Micrococcus lysodeikticus were purchased from Wako Pure Chemical Industries 6 

(Osaka).  βAlaAd was purchased from Tokyo Kasei Kogyo (Tokyo).  All the 7 

chemicals used were of high-quality analytical grade. 8 

Inactivation and Aggregation  The heat- induced inactivation and aggregation 9 

of lysozyme was performed as follows (15,16):  A stock solution containing 1.0 10 

mg/ml lysozyme, 50 mM Na-phosphate buffer, and 100 mM additives was prepared 11 

and adjusted to pH 7.1 by adding NaOH or HCl.  A 200-µl aliquot of the stock 12 

solution was taken and added to each microtube.  Every solution in the each 13 

microtube was heated from 25°C to 98°C at 1°C/s, then continuously heated for various 14 

periods.  After the heat treatment, all the samples were stored at 25°C for 20 min.  15 

These processes were controlled by a temperature control system, PC-880 (Astec, 16 

Fukuoka).  After the process, the samples were centrifuged at 15,000 g for 20 min at 17 

25°C, and then the concentrations of soluble protein and residual what activity were 18 

measured. 19 

Protein Concentration and Residual What Activity  The concentration of 20 

soluble protein was estimated by measuring the absorbance at 280 nm using an 21 

ND-1000 UV-vis spectrophotometer (NanoDrop Technologies, Wilmington, DE, 22 

USA).  The residual activity of the soluble fraction was determined as follows.  A 23 

total of 1.5 ml of 0.5 mg/ml M. lysodeikticus solution in 50 mM Na-phosphate buffer 24 

(pH 7.1) was mixed with 10 µl of the protein solution.  The decrease in the 25 
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light-scattering intensity of the solution was monitored by measuring the absorbance at 1 

600 nm for 60 s using a Jasco spectrophotometer model V-550 (Japan Spectroscopic 2 

Co, Tokyo).  The decreasing absorbance between 10 to 20 s was fitted to a linear 3 

extrapolation, and then the residual activity was estimated from the slope of the line.   4 

Circular Dichroism  The thermal unfolding of lysozyme in the presence of 5 

additives was measured by circular dichroism (CD), with a Jasco spectropolarimeter 6 

model J-720W.  Samples containing 1.0 mg/ml lysozyme, 100 mM additive, and 50 7 

mM Na-acetate buffer (pH 4.5) were prepared to prevent aggregation.  As these 8 

samples could not be measured by far-UV CD due to the molar ellipticity of additives, 9 

the thermal unfolding was estimated by measuring the intensity change in positive CD 10 

band at 288.5 nm at an increasing temperature rate of 0.5°C/min.  The obtained data 11 

at pH 4.5 were fitted to a two-state equation and the apparent midpoint of temperature 12 

(Tm) was determined from the change in the molar ellipticity. 13 
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RESULTS AND DISCUSSION 1 

We previously showed that amino acid alkylesters markedly prevent the 2 

heat-induced inactivation and aggregation of lysozyme (15, 16).  However, these 3 

alkylesters are prone to hydrolysis in aqueous solutions by heat.  Although ArgEE is a 4 

prominent additive for prevent ing protein aggregation, ArgEE is too labile to be used 5 

for biotechnological applications, such as those to protein crystallization and protein 6 

solution storage without freezing.  In this paper, we explore further additives, that is, 7 

amidated amino acids, for preventing aggregation for biotechnological usage.  We 8 

assume that the amidation of the carboxyl group on amino acids make better additives 9 

as aggregation suppressors because amidated amino acids have the combined features of 10 

an increased number of amino ends (13, 14), and the presence of a modified carboxyl 11 

end (15, 16).   12 

Figure 1 shows typical profiles of the heat- induced inactivation and aggregation 13 

of lysozyme in the presence or absence of additives.  Lysozyme was inactivated by 14 

first-order kinetics in the absence of additives; however, in the presence of 100 mM 15 

Arg, the aggregation rate was decelerated (Fig. 1A).  In the presence of arginine 16 

amide (ArdAd), the aggregation was markedly prevented (Fig. 1A).  The residual 17 

activity profiles were similar to those of aggregation (Fig. 1B).  The heat- induced 18 

inactivation of lysozyme was slightly decelerated in the presence of 100 mM Arg.  19 

However, the presence of 100 mM ArgAd markedly prevented heat- induced 20 

inactivation.  The heat- induced inactivation and aggregation of lysozyme were 21 

measured in the absence or presence of Arg, Ala, Glu, and the amide derivatives tested, 22 

and the rate constants for inactivation and aggregation are listed in Table 1.  In the 23 

absence of additives, the inactivation and aggregation rates were 12.4 × 10-3 s-1 and 9.7 24 

× 10-3 s-1, respectively, at 1.0 mg/ml lysozyme.  A high protein concentration 25 
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accelerated the inactivation and aggregation, indicating that the process is an 1 

intermolecular phenomenon.  The difference in rate between inactivation and 2 

aggregation indicates that the soluble fraction contains non-native molecules.  In the 3 

presence of amino acids, the inactivation and aggregation rates slightly decreased 4 

compared with that in the absence of additives.  However, in the presence of these 5 

amidated derivatives, the inactivation and aggregation rates were one order of 6 

magnitude lower than those in the absence of additives.  In the presence of ArgEE, 7 

the inactivation and aggregation were effectively prevented by heat, as shown in our 8 

previous study (15).  These data showed that ArgAd and other amidated amino acids 9 

are new candidates as additives that prevent thermal inactivation and aggregation. 10 

The samples containing 1.0 mg/ml lysozyme at pH 7.1 at various concentrations of 11 

additives were heated at 98°C for 10 min (Fig. 2).  The extent of aggregation and 12 

residual activity were determined.  In the absence of additives, the extent of 13 

aggregation was >90%; with increasing concentration of Arg, the extent of aggregation 14 

gradually increased.  At 400 mM Arg, the extent of aggregation was 30% (Fig. 2A).  15 

On the other hand, in the presence of ArgAd, AsnAd, MetAd, ValAd, and AlaAd, the 16 

aggregation was completely prevented by the addition of approximately 100 mM 17 

additives (Figs. 2C, E).  The profiles were almost identical to ArgEE (Fig. 2A).  18 

However, not all the amidated amino acid derivatives tested effectively prevented the 19 

heat-induced inactivation and aggregation of lysozyme.  Although 300 mM GluAd 20 

completely prevented the heat- induced aggregation of lysozyme at 98°C for 10 min (Fig. 21 

2C), the profiles of GluAd in Figs. 2C and 2D showed a slower pace of aggregation 22 

than those of ArgAd and AsnAd.  The profiles of ProAd and βAlaAd were almost 23 

identical to those of Arg (Figs. 2E, F).  The residual what activities in the presence of 24 

these additives (Fig. 2F) showed almost identical patterns to those of the aggregation 25 
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(Fig. 2E).  1 

It has been thought that aggregation suppressors should be protein denaturants, 2 

such as guanidine, urea, and detergent.  These additives weaken the intermolecular 3 

interaction between aggregation-prone unfolded molecules, leading to a decrease in the 4 

amount of aggregates.  The amino acids and amidated derivatives tested did not 5 

decrease lysozyme stability, as observed from thermal unfolding profiles with CD 6 

(Table 2).  The melting temperature range of lysozyme is 77.0±0.3°C-80.6±0.4 even in 7 

the presence of amidated amino acids.  These data indicate that amidated amino acids 8 

do not contribute much to the stability of the native state of protein but they can highly 9 

enhance the aggregation, similarly to the other new class of additives, such as ArgEE, 10 

amino acid alkylesters, polyamines, and diamines. 11 

In this study, we showed that ArgAd and other amidated amino acids prevent  the 12 

heat-induced inactivation and aggregation of lysozyme.  The comparative analysis of 13 

amidated amino acids revealed that these additives, ArgAd, AsnAd, AlaAd, MetAd, and 14 

ValAd, which showed a strong effect in preventing the heat- induced aggregation of 15 

lysozyme, possess amide and amino groups on their Cα atoms.  On the other hand, 16 

ProAd, βAlaAd, and GluAd, which showed a weak effect, do not possess amide and 17 

amino groups on their Cα atoms.  Actually, additives with amide and amino groups on 18 

their Cα atoms can prevent the heat-induced aggregation of lysozyme effectively, 19 

whereas those without such groups can not.  This result suggests that, at neutral pH, 20 

the positive charges of the amide and  amino groups of these additives electrostatically 21 

hinders the intermolecular interaction between unfolded molecules with positive 22 

charges due to pI of the groups ~11.  This leads to the hypothesis that the local 23 

chemical structure, that is, the amide and amino groups on Cα atoms, plays an important 24 

role in the electrostatic interaction between protein and additives in the prevention of 25 
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aggregation.  This hypothesis is consistent with the fact that polyamines and diamines 1 

prevent the heat- induced aggregation of lysozyme (13, 14) and GluAd has weaker 2 

effects as an aggregation suppressor than the other amidated amino acids tested (Fig. 1).  3 

A protein denaturant stabilizes unfolded molecules, a property that decreases the 4 

tendency for aggregation.  However, considering the above results, amidated amino 5 

acids seems to function through a different mechanism, i.e., the local interaction 6 

between the additive and unfolded molecules enhances the electrostatic repulsion 7 

between unfolded molecules.   8 

In conclusion, ArgAd, AsnAd, MetAd, ValAd, and AlaAd, are promising 9 

candidates for prevent ing the  heat- induced inactivation and aggregation of lysozyme.  10 

In this paper, we suggest that ArgAd and other amidated amino acids can be used as 11 

solution additives for stabilizing heat- labile enzymes and proteins for crystallization, 12 

preservation, and other situations that inhibit aggregation.   13 
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Figure Legends  1 

FIG. 1.  Heat-induced inactivation and aggregation of lysozyme with addition of 100 2 

mM additives.  The samples containing 1.0 mg/ml lysozyme in the absence (closed 3 

circles) or presence of Arg (open circles) and ArgAd (open squares) were heated at 4 

98ºC for various periods.  After the heat treatment, the percentage of aggregates (A) 5 

and residual what activity (B) were determined.  The curves shown by the solid line 6 

were fitted to single exponential equation.  7 

 8 

FIG. 2.  Heat- induced inactivation and aggregation of lysozyme with various 9 

concentrations of additives.  The samples containing 1.0 mg/ml lysozyme in the 10 

presence of additives were heated at 98ºC for 10 min, the amount of aggregates (A, C, 11 

E) and residual what activity (B, D, F) were determined.  (A, B) Open circles, Arg;  12 

open squares, ArgEE.  (C, D) Open circles, ArgAd; open squares, GluAd; open 13 

triangles, AsnAd.  (E, F) Open circles, AlaAd; open squares, MetAd; open triangles, 14 

ValAd; closed circles, βAlaAd; closed squares, ProAd.  15 
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TABLE 1.  Kinetic rate constants of inactivation and aggregation of lysozyme in the 

presence of 100 mM additives 

Protein 
concentration Additive Inactivation 

(× 10-³·s-¹) 
Aggregation 
(× 10-³·s-¹) 

1.0 mg/ml None 12.4±0.5  9.7±0.2  
 Arg 6.3±0.3 5.1±0.2 
 Ala 9.4±0.4 7.7±0.3 
 Glu 7.2±0.3 6.2±0.2 
 ArgAd 0.8±0.1 0.8±0.1 
 AlaAd 2.3±0.1 1.8±0.1 
 GluAd 3.5±0.2 2.6±0.1 
 ValAd 0.5±0.1 0.4±0.1 
 βAlaAd 5.5±0.2 4.5±0.1 
 ProAd 3.8±0.2 2.8±0.2 
 AsnAd 0.4±0.1 0.2±0.1 
 MetAd 0.1±0.1 0.2±0.1 
 ArgEE 0.6±0.2 0.4±0.1 
5.0 mg/ml None 16.4±0.9 16.4±0.6  
 Arg 10.5±0.7 8.2±0.4 
 Ala 13.8±1.4 13.7±0.6 
 Glu 13.0±0.9 11.3±0.7 
 ArgAd 2.3±0.2 2.1±0.1 
 AlaAd 4.1±0.2 3.7±0.1 
 GluAd 5.5±0.3 5.4±0.1 
 ValAd 1.7±0.2 1.6±0.1 
 βAlaAd 10.3±0.5 8.7±0.3 
 ProAd 7.1±0.4 6.5±0.2 
 AsnAd 2.3±0.2 1.6±0.2 
 MetAd 0.3±0.1 0.7±0.1 
 ArgEE 1.9±0.1 1.5±0.2 

The rate constants of first-order kinetics were determined as described in Fig. 1.  The 

standard deviations are estimated from triplicate experiments.   
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TABLE 2.  Melting temperature (Tm) of lysozyme in the presence of 100 mM 

additives 

Additive Tm (°C) 
None 79.7±0.3 
Arg 77.9±0.6 
Ala 80.3±0.3 
Glu 79.9±0.4 
ArgAd 77.4±0.4 
AlaAd 79.2±0.4 
GluAd 80.6±0.4 
ValAd 78.9±0.4 
βAlaAd 79.4±0.4 
ProAd 78.7±0.5 
AsnAd 79.4±0.4 
MetAd 78.5±0.1 
ArgEE 77.0±0.3 

Tm was monitored by CD 288.5 nm intensity changes.  The standard deviations are 

estimated from triplicate experiments.   
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