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Optical Dephasing of Excitonic Polaritons in CuCl Studied by
Time-Resolved, Nondegenerate Four-Wave Mixing

Yasuaki Masumoto and Shigeo Shionoya
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan

and

Toshihide Takagahara
Department of Applied Physics, Faculity of Engineeving, The University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113, Japan
(Received 9 June 1983)

Optical dephasing of excitonic polaritons in CuCl is directly measured for the first time
in the picosecond time domain by means of time-resolved, nondegenerate four-wave mix-
ing. Dephasing of the w, polariton pulse is probed by an interrogation w, polariton pulse
whose group velocity is faster than that of the ; polariton pulse. It is found that the de-
phasing damping constant I'/2 of excitonic polaritons is of order of 0.01 meV and increas-
es as fw; approaches the exciton resonance energy from below,

PACS numbers: 71.36.+c, 42.65.-k, 78.20.-e

Recent studies in the picosecond time domain
have revealed dynamical aspects of excitonic po-
laritons. By studying the transient induced ab-
sorption from the excitonic polariton state to the
excitonic molecule state, energy relaxation proc-
esses of excitonic polaritons have been clarified.!
In solids, it is considered that the phase relaxa-
tion is generally much faster than the energy re-
laxation. However, there has been no direct ex-
perimental information in the time domain about
the phase relaxation of excitonic polaritons. In
addition, the concept of the optical dephasing of
excitonic polaritons has not been made clear yet.

Dephasing of localized excitation can be direct-
ly measured in the ultrashort time domain by
means of time-resolved, degenerate four-wave
mixing which is a generalized modification of the
photon echo.? Under irradiation by two light puls-
es, (,,w,) and (,,w,), which are resonant with
some material excitation, the output of the (2%,
~%,,w,) pulse is measured as a function of the
time separation between the two pulses. This
measurement is based on the principle that the
third-order nonlinear polarization which gener-
ates the (2%, - 2,,w,) pulse depends on the nonde-
phased part of excitation generated by the first

,»w,) pulse at the time when the second, de-
layed (,,w,) pulse reaches the excitation. In the
study of the phase relaxation of excitonic polari-
tons, on the other hand, it is important to note
that excitonic polaritons are composite particles
of excitons and photons. Incident photons (7,,w,)
and (¢,,w,) are converted to polaritons (¢,,w,)
and (k,,w,) inside the crystal. As they propagate
at the same group velocity v (w,), the excitonic

polariton pulse (¢,,w,) cannot be caught up with
by the second, delayed pulse (k,,w,). Therefore,
it is necessary to modify this technique. If the
delayed interrogation pulse (,,w,) is suitably
chosen so that its group velocity is faster than
that of the first pulse (¢,,w,), this (,,w,) pulse
catches up with the (¢,,w,) pulse, and the third-
order nonlinear polarization which now emits a
(2k, -k, 2w,-w,) pulse is generated in propor-
tion to the nondephased part of the (%,,w,) pulse.
Therefore, we can obtain information about the
optical dephasing of the (¢,,w,) polariton pulse by
measuring the 2w, -w, output as a function of the
relative time delay between the two pulses. To
confirm the above mentioned ideas, we have tried
an experiment for excitonic polaritons in CuCl.
As mentioned below, it is demonstrated for the
first time that the optical dephasing of excitonic
polaritons can be directly measured in the pico-
second time domain by use of this time-resolved,
nondegenerate four-wave mixing.

Tunable picosecond light pulses w, and w, were
generated in the following way. Two temperature-
controlled LiNbO, parametric oscillators were
pumped by the second-harmonic radiation of a
repetitively mode-locked Nd*3-doped yttrium alu-
minum garnet laser,® and «, and w, pulses were
obtained by taking the second harmonics of para-
metric signals. The temporal widths of the w,
and «, pulses were about 20 ps. The peak powers
of the w, and w, pulses were kept at 130 kW and
85 kW, respectively. Flakes of CuCl single crys-
tals having { 111} faces were grown from the va-
por phase. They were directly immersed in su-
perfluid helium, Two beams, (¢,,w,) and (¢,,w.,),

© 1983 The American Physical Society 923
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were focused on a CuCl crystal with a spot size
of 140 um in diameter. One of them, the w,
beam, was variably delayed by use of an optical
delay. When the temporal coincidence as well as
the spatial overlap were optimum, a signal of
2w, —w, was clearly observed in the direction of
2k, ~%,. The 2w, -w, signal can always be kept
in the transparent region of the crystal, in con-
trast to the 2w, — w, signal, since 2w, ~w,;=w,

- (W, =w,)<w,. Thus the measurement of the 2w,
—-w, signal is quite feasible. The angle between
the w, and w, beams was 15°. The 2w, -w, signal
was highly directional (solid angle = 1.1x 10"*
sr), so that it was spatially separated from the
background scattering by use of a diaphragm. It
was detected by a photomultiplier and a boxcar
integrator through a monochromator. The spec-
tral width [full width at half maximum (FWHM)]
of w, and w, was 1.8 meV while that of 2w, -w,
was about 4.6 meV. The central spectral part of
the 2w, — w, signal with a spectral width (FWHM)
of 0.5 meV was selected.

In Fig. 1, the output intensity of 2w, —w, pulses
is shown as a function of the relative time delay
t,—-t,. The positive direction of {, -=¢, means that
the slower w, pulse is ahead of the faster w,
pulse. Here w, was kept almost constant at
~3,178 V. It is very helpful to note the group
velocity and the transit time of the excitonic po-
laritons w, and w, in order to interpret the re-
sults of Fig. 1. In Fig. 2, the experimentally con-
firmed dispersion relation and the group velocity
of excitonic polaritons in CuCl are illustrated to-
gether with the calculated transit time of the ex-

citonic polariton pulse through the sample of
14.15 pm thickness.* The transit time of the w,
pulse through the sample is 1.4-1.5 ps, while
that of the w, pulse varies from 3.88 ps to sever-
al hundred picoseconds. The correlation traces
1to 6 show asymmetry tailed toward ¢, -£,>0.
This asymmetry grows as we go from 1 to 3, and
then decreases from 3 to 8. Then, the correla-
tion traces 8 to 10 are sharp and almost symme-
tric. The asymmetric tail toward {; ~£,>0 sug-
gests that the phase of the w, polariton pulse sur-
vives for a while and then it is probed by the w,
polariton pulse when the latter catches up with
the w, polariton pulse. The reason why the asym-
metry grows in going from 1 to 3 is that the tran-
sit time of the w, polariton pulse increases. Be-
cause the dephasing damping of the w, polariton
pulse increases, the asymmetry decreases in go-
ing from 3 to 8.

Dispersion of excitonic polaritons including the
damping term I' is written as®

ck\?
(w> e, w)
wl—w,?

=€”<1+wg2+(7iwt/M)k2-w2+z'w1")' ®

This damping term T" has always been introduced
phenomenologically. However, we can give a
physical meaning to I'. Equation (1) is derived
from the coupled equations described below:

P+TP+[w, - (1/2M)V?]°P = °E,
€k - *VE =~ 4nP , 2)
ek, w)E =€ E +47P,

&
a2

LIS IS B S S s e S S pus SO S NS AL SO S B S S S

CuCl 8-4
2.0K
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a=15°
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FIG. 1. Intensity of the 2wy — wy beam emitted from a

CuCl crystal as a function of the relative time delay be-

tween the wy and «y pulses, f5—£.
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FIG. 2. Left: Dispersion relation of excitonic po-
laritons in CuCl. Right: Corresponding group velocity
of excitonic polariton pulses normalized by ¢ (light
velocity in vacuum) and the calculated transit time of
the pulses through a CuCl crystal of 14.15 um thickness.
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where 8 is defined by 47w,”/€ w=w,* =w,?, The
first equation, that is, the equation of motion of
macroscopic polarization P due to excitonic po-
laritons, is the same as a familiar equation of
polarization in a semiclassical laser theory® ex-
cept for the sbatially dispersive term. In the
laser theory the equation of motion of macroscop-
ic polarization is derived from the density ma-
trix formalism for the two-level system. In the
density matrix formalism, I'/2 is defined as the
dephasing damping (transverse relaxation) con- |

stant.” Therefore, it is reasonable to identify
T/2 as the dephasing damping constant of exci-
tonic polaritons.

In CuCl the third-order nonlinear polarization
Py is generated through a four-polariton para-
metric process around the exciton resonance or
a two-photon resonance of excitonic molecules.®
As a result, Py, '*)(2w,~w,) is proportional to
the product of macroscopic polarizations due to
excitonic polaritons, [Ple,t|k,,w,)PP*(z,t|k,,w,),
where the macroscopic polarization in the crystal
is given by

P, tlk,w)=Gn)lek,w) e {pw) expl~ik W)z ] E¢ ~2/v,(w)) +q ) explik W) JEG +2 /v, N }.  (3)

Here, z is the coordinate perpendicular to the sample surface, k(w) is the complex wave vector deter-
mined by Eq. (1), v,(w) is the group velocity of polaritons w, E is the envelope of the electric field of
the incident pulse, and pE and gE are the envelopes of the electrie field associated with polaritons
propagated forward and backward in the crystal, respectively. The electric field outside the crystal
E(r,t) generated by Py ‘¥ (2w, —w,) is proportional to®

[fdz expli@wy —w ) =)0, [P, t =1, 41+ (2 =d)/v e (@), w)FPHz,t + 2 =d) )l (w),w), (&)

where d is the thickness of the crystal and v, is
the phase velocity at 2w, - w,. The correlation
trace is calculated by the time integral of the ab-
solute square of E (r,?). A numerical calculation
was done based on the dispersion relation of ex-
citonic polaritons in CuCl shown in Fig. 2. The
results are plotted by the closed cireles in Fig.
1. Here, adjustable parameters are limited to
k(w,) and k(w,) which are implicitly determined
by I'(w). As a result, k(«,) and T'{w,) can be al~
most uniquely determined, because w, is fixed as
is shown in Fig. 1. Obtained values of T" are plot-
ted as a function of #w, in Fig. 3. The right ver-
tical axis indicates the dephasing time 7/(I"/2) of
the macroscopic polarization P due to the w, po-
lariton. As is seen in Fig. 3, I'/2 is of the order
of 0.01 meV and increases as fiw, approaches the
resonance energy of the exciton, fiw,. In the en-
ergy region above 3.200 eV, T'(w) could not be
definitely determined, because the correlation
trace was insensitive to the value of I'(w).

The order of I'/2 cannot be explained by the LA
phonon interaction, because the scattering rate
of excitonic polaritons due to LA phonons is by
far slower than the observed %z/(I'/2).%* The
most probable mechanism of dephasing is polari-
ton-polariton collision. It is known that four-po~
lariton parametrie scattering occurs efficiently
in CuCl and even the superbroadened distribution
of excitonic polaritons was observed.™ A model
calculation of the rate of polariton-polariton scat-
tering was performed with neglect of the wave-
vector dependence of the collision matrix ele-

ment. The absolute value of T was fitted to the
experimental value at 3.188 eV. The calculated
result is shown by a dashed line in Fig. 3. The
increasing trend of experimental I" with polariton
energy is interpreted by the calculation. This
model suggests that correlation traces should de-
pend on the intensity of the incident light. In fact,
experimental data were found to depend on the in-
tensity of the incident light. The details will be
described in a forthcoming paper.
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FIG. 3. Dephasing damping constant I" as a function
of the energy of excitonic polaritons. The three data
symbols correspond to samples of ditferent thicknesses.
Very long error bars above 3,200 eV mean that I" can-
not be definitely determined. The dashed line is the
calculated energy dependence of the dephasing damping
constant based on a model of polariton-polariton scat-
tering.
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It is instructive to compare the population de-
cay with the phase decay of excitonic polaritons
and to clarify the difference. The population de-
cay was measured by the time-resolved induced
absorption (IA) from the excitonic polariton state
to the excitonic molecule state.> %% It was found
that the w, (=3.199 eV) polaritons survive in the
crystal of 51.9 pm thickness as long as 200 ps
after the injection of the w, pulse.'’ However,
the signal of 2w, ~w, is exactly zero at 50 ps in
the same sample, since the correlation trace
shows almost the same temporal profile as is
seen in 6 of Fig. 1. Inthe IA case, all the po-
laritons which are scattered in various directions
but almost elastically can contribute to the signal.
The decay time constant of the IA reflects the en-
ergy relaxation of the ensemble of injected po-
laritons. In the case of four-wave mixing, on the
other hand, even the elastically scattered polari-
tons do not contribute to the signal, because the
signal arises from the coherent mixing of polari-
ton waves and the detection is spatially well col-
limated. Thus the momentum relaxation due to
the polariton-polariton scattering which is much
faster than the energy relaxation contributes
dominantly to the dephasing damping of excitonic
polaritons.

In summary, we have demonstrated that the op-
tical dephasing of excitonic polaritons in CuCl is
directly measurable in the picosecond time do~
main by time-resolved, nondegenerate four-wave
mixing at 2.0 K. The observed dephasing damp-

926

ing constant I'/2 is of the order of 0.01 meV and
increases as the energy approaches the reso-
nance energy of the transverse exciton from be-
low. This energy dependence suggests that the
optical dephasing of excitonic polaritons is at-
tributable to the process of polariton-polariton

scattering.
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A detailed theory is developed for the dephasing relaxation of the excitonic polariton which was
measured recently by Masumoto, Shionoya, and Takagahara [Phys. Rev. Lett. 51, 923 (1983)] in
samples of CuCl crystal by means of nondegenerate four-wave mixing. The concept of dephasing
(transverse) relaxation of the excitonic polariton is clarified for the first time and the conceptual
difference between the dephasing relaxation of the localized excitation and of the excitonic polariton
is emphasized. A method of analysis of the experimental data of the nondegenerate four-wave mix-
ing is presented in detail. The various mechanisms of dephasing relaxation of the excitonic polari-
ton are discussed and examined quantitatively. It is found that the mutual collision among excitonic
polaritons is the most probable mechanism that gives the correct order of magnitude of the dephas-
ing relaxation rate and leads to reasonable energy dependence of the rclaxauon rate in agreement

with the experimental results.

I. INTRODUCTION

Recently the dcphasing relaxation constant of the exci-
tonic polariton in CuCl was measured by Masumoto,
Shionoya, and Takagahara' by means of nondegenerate
four-wave mixing. .The relaxation constant was found to
be on the order of 0.01 meV and to increase as the polari-
ton energy approached the exciton resonance from below.
Before details are given, it is important to note that there
is a conceptual difference between the dephasing relaxa-
tion of the localized excitation and of the propagating ele-
mentary excitation. In the former case the excitation is
localized on an atom or a molecule under consideration.
The dephasing relaxation of the localized excitation is re-
lated to the decay of the coherence of the relevant optical
or nonoptical transition or, in other words, the decay of
the off-diagonal component of the density matrix associ-
ated with the transition. This dephasing relaxation con-
stant can be directly measured in the time domain by
means of time-resolved, degenerate four-wave mixing,>~>
which is a generalized version of the photon echo.® Under
irradiation by two lighg_ pulses with wave vector and fre-
quency denoted by (k;,w,) and (k;,@,), respectively,
which are resonant with some material excitation, the in-
tensity of the output pulse with (2k, —k,,@,) is measured
as a function of the time separation between the two
pulses. This measurement is based on the principle that
the third-order nonlinear polarization which generates the
signal pulse is proportional to the nondephased part of the
excitation due to the first pulse at the time when the
second delayed pulse reaches the excitation. Thus, the de-
cay of. the coherence of the localized excitation can be
probed by means of t1mc-molved degenerate four-wave
mixing.

On the other hand, the proper elemcntary excitation in
solids propagates throughout the crystal with a definite
wave vector. Furthermore, it should be noted that the ex-
citonic polariton is a composite particle of exciton and
photon, Thus, there arises a conceptual question: What is

the dephasing relaxation of the excitonic polariton? The
interpretation is not so straightforward as in the case of
the localized excitation. The definiteness of the wave vec-
tor is one of the salient features of the excitonic polariton
which make a remarkable contrast with the case of the lo-
calized excitation. The wave vector of the excitonic polar-
iton is primarily determined by the incident light pulse.
This wave vector is disturbed by any scattering process,
such as impurity scattering, phonon scattering, and
polariton-polariton collision. A change of wave vector

" will lead to the decay of the polarization wave with a de-

finite wave vector. In addition, the electron-hole relative
motion of the exciton is also one of the degrees of free-
dom of the excitonic polariton. The electron-hole relative
motion of the exciton may be changed in the scattering
processes. This change of the internal degree of freedom
leads to the fluctuation and relaxation of the polarization
wave, since the oscillator strength of the exciton: depends
on the exciton internal state. Thus, the concept of de-
phasing or transverse relaxation of the excitonic polariton
is quite different from that of the localized excitation. As
a consequence of the definiteness of the wave vector, the
wave packet of excitonic polaritons propagates in the
crystal with a definite group velocity and there arises an
interesting situation from the experimental point of ‘view.
The incident photons (k{,wy) and (k4,s,) are converted
to the excitonic polaritons (k,®,) and (k,,w,) inside the
crystal. The incident photons with the same energy prop-
agate in the crystal with the same group velocity. Thus,
in degenerate four-wave mixing, the second delayed polar-
iton pulse (k;,@,) cannot catch up with the first polariton
pulse (k;,w,). In order to make the spatial overlap be-
tween the two pulses as large as possible, it is essential to
make use of nondegenerate four-wave mixing in which the
energy of the delayed probe pulse (k;,w;) is suitably
chosen so that its group velocity is larger than that of the
first pulse (k|,w). Then the third-order nonlinear polari-
zation will be generated in proportion to the nondephased
part of the (k|,»,) pulse and the signal beam with wave
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-vector and frequency (2k; —k, 20;—ay) will be emitted.
One can obtain information about the dephasing relaxa-
tion of the (k;,w) polariton pulse by measuring the inten-
sity of the output pulse (2k; —k,, 2w, —w) as a function
of the relative time delay between the two pulses. To real-
ize the above idea an experiment was carried out for the
excitonic polariton in CuCL! It was demonstrated for the
first time that the dephasing relaxation of the excitonic
polariton could be measured directly in the picosecond
time domain by time-resolved, nondegenerate four-wave
mixing. The experimental details are given in Ref. 1.

This paper is organized as follows. In Sec. II the prop-
agation dynamics of the excitonic polariton are formulat-
ed. The third-order nonlinear polarization in the crystal
is calculated perturbationally and the signal intensity of
the nondegenerate, four-wave mixing is derived in a suit-
able form for analysis of the experimental data. In Sec.
111 experimental data of the correlation trace of nondegen-
erate four-wave mixing are analyzed to determine the de-
phasing relaxation constant of the excitonic polariton as a
function of energy. In Sec. IV, the various mechanisms of
the dephasing (momentum) relaxation of the excitonic po-
lariton are discussed and the relaxation rate due to each
mechanism is estimated quantitatively. It is found that
mutual collision among excitonic polaritons is the most
probable mechanism to cause the dephasing relaxation of
the excitonic polariton. In Sec. V, the basic equations of
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motion for the excitonic polariton are derived quantum
mechanically and also the damping constant of the polari-
zation field, which is identified with the dephasing relaxa-
tion constant of the excitonic polariton, is. derived by the
standard statistical mechanical method using the projec-
tion operator. Finally in Sec. VI, a few proposals are
presented to overcome the difficulty of nondegenerate,
four-wave mixing, that the dephasing relaxation constant
in the resonance region cannot be determined precisely.
In addition a few interesting problems are pointed out for
future study.

II. NONDEGENERATE FOUR-WAVE MIXING
VIA EXCITONIC POLARITONS

Let us now present the theoretical scheme used to
analyze the experimental data. Of main interest is the
propagation of excitonic polaritons and their nonlinear in-
teraction in the crystal. Since the excitonic polariton is a
composite elementary excitation of exciton and photon,
one has to treat the polarization of the material system
and the electromagnetic field on an equal footing. The
basic equations-of motion are given by the constitutive
equations for the material polarization due to the exciton
and the Maxwell equations for the electromagnetic field.
They are written explicitly as

_i b ’ ’ _a_ ' 2 Aﬁm' 2 — 2
P+ J T =122 P )+ 0l ==V P =—BaiErn (r1) , 2.1
_a_ — ZE(r»t) _@_ 1 hed ’ —t! ’
atI(r,t)+y”[I(;-,t) Io]————-—-ﬁmt atP(r,t)+ 7 f—wdt T(t ~t")P(rt )l s (2.2)
. LB =V E ()= —tr 2P (1) 2.3)
I
with el k,w)E (k,w)=¢€ E(k,w)+4TP(k,a), (2.5)

2 2
4B /€, =0] —a?,

where P, I, and E denote, respectively, the polarization
field, the population inversion of the material system, and
the electric field; and o, (0;), M, €, Ip, and ¥ are the
transverse (longitudinal) exciton frequency, the exciton ef-
fective mass, the background dielectric constant, the
thermal equilibrium value of I, and the longitudinal (pop-
ulation) relaxation rate, respectively. The damping func-
tion I'(2) is related to the dephasing relaxation of the exci-
tonic polariton and its time dependence leads to the
frequency-dependent damping constant I'(w). Equations
(2.1) and (2.2), for the polarization field and the popula-
tion inversion due to the exciton, are taken from the well-
known equations of motion in laser theory™® with modifi-
cation to include spatial dispersion. In Sec. V, these equa-
tions are derived microscopically and their use for the
case of excitonic polaritons can be justified. As a matter
of course, this set of equations leads to the familiar ex-
pression for the dielectric function e(k,») defined by

(2.4)

where the spatial and temporal Fourier transforms of the
electric and polarization fields are considered. In a situa-
tion with no excitation, it is calculated as’

(ko) + 4rrBo?
elk,w)=¢, .
Wt~ +Hw k2 /M +iol(o)

(2.6)

The frequency-dependent or -independent damping con-
stant ['(w) is usually introduced phenomenologically.
However, as is clear from the above argument, it has the
meaning of a2 damping of the polarization field. In this
sense I'(w) can be called the dephasing relaxation constant
of the excitonic polariton. Our main interest in this paper
is how to determine I'(w) from the experimental data of
nondegenerate four-wave mixing. This is possible because
the other material constants €, 5, @;, and M are deter-
mined fairly precisely by hyper-Raman scattering!®'! and
time-of-flight'>!* measurements.

The spatial distribution of the electric field is shown
schematically in Fig. ! when a monochromatic elec-
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FIG. 1. Schematic representation of the electric field distri-
bution inside and outside a slablike crystal.

tromagnetic field with unit amplitude enters the crystal.
The incident laser beam is assumed to propagate normal
to the crystal surface. This assumption can be justified
because of the small angle of incidence and the large
dielectric constant of CuCl. The slablike crystal occupies
the region from z =0 to z =d. The complex wave vector
k{w) is determined by the dielectric function through the
relation

2
[2& ] =élk,w), 2.7
o

iyt

Ea(’)°°5‘*’a’=fjmdwga(m)e"“"(e"""".}.e 'y /2

=1 fjmd“)[ga(m-l-wa)+ga(m-—ma)]e"°"

=Re [fomda)[g,,(m+m,,)+ga(m—ma)]ei“"]:Re [f:dm Galole@ |,

with
G lo)=g,(0+as)+g, 00—y ,
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and is taken to be in the lower half of the complex plane.
The coefficients f(w) and b(w) correspond to the
forward- and backward-propagating polariton waves,
respectively, and their expressions are obtained from the
Maxwell boundary conditions as

2AVe+1)

O e A= (Ve e >
2.8)
b(m>=-§§‘;}e-mwﬂw) .
with
Ve=ckio)/o . (2.9)
Then the electric field in the crystal is given by
[f (w)e =@k p(y)ekla|givl o ¢ 2.10)

These results are obtained for the case of a monochromat-
ic wave. When a pulse or wave packet is considered, the
electric field can be decomposed into its Fourier com-
ponents as

(2.11)

(2.12)

where o, is the carrier frequency, E,(t) the pulse envelope, and g,(@) its Fourier transform. The electric field and the
polarization field in the crystal can be written as the superposition of monochromatic waves:

E(z,t | k(w,),wz)=Re [ fo “do Golo)Lf (0)e ~*@ 4 p(p e Klei]gio!

P(z,t | k(wgy),w,)=Re [ fo“’dm Golo)elk(w),0)—e, ][ flwle = @4 p(p)e*l@i]piet s4r

(2.13)

(2.14)

When two light pulses with wave vector and frequency denoted by (k;,w,) and (k,,w,), respectively, enter the crystal,
the third-order nonlinear polarization with wave vector 2k, —k; and frequency 2w, —w, will be generated and emit the
signal beam to be measured in the experiment. The nonlinear polarization can be calculated perturbationally from the
equations of motion (2.1)—(2.3). Starting from the state with no excitation, one has, apart from a proportionality factor,

Euzt=Re | [ "doG o)l -*w2] 2.15)

Ba?G glw)flw)e ot —iklk

0} —o*+Fiw kHw) /M +ioT(w)

Polz1)=Re [ [ do (2.16)

where only the forward-propagating parts in (2.13)and (2.14) are retained and the subscript a (=1,2) indicates the first
or second laser pulse. Substituting (2.15) and (2.16) into the right-hand side of (2.2) and extracting the term proportional
to exp[i (w;—w1)t], one obtains

2 * @ B . B . * ot *y 0 ’
—ﬁgr—fo da)fo do'exp{i{o—a" )t —i[k(o0)—k*(0")]z} G, (@)G] (&) f(w)f* ('}

X {[io + @) /2]1D(w,k(0) +[ ~io'+ [0 /2]1D* (@' klo))] , 2.17)

with
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o —w? +Hw k /M +ioT(e)

Diw,k)=
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(2.18)

The population grating with wave vector k; —k, and frequency w,—a, is calculated from (2.2) as

I(kz-—kl,wz——ml)=5 0

INw)

X lw+‘T‘

fmdmfwdw’ explilw—aw')t —-.i[k(co)—-k'(w')]z}
Y Y+ilo—o')

D(w,k(w))+

G2lw)G1{a')f (0)f* (")

l"(co)

—ie' 4+ — (2.19)

‘(w’,k(w'))’ .

Then substitution of this population grating into the right-hand side of (2.1) yields the third-order nonlinear polarization

P}?{‘ with wave vector 2k, —k, and frequency 2w,—o, as

k*(')]z}

3) _ 2 r= @ (° wexplilote”—o' )t —ilk(w)+k(w")—
PNL(ZkZ-k,,Zw-_,—ml)————l [, do [ do [ deo
XDlo+o"—a' klw)+k(w")—

X flo)f(@")f*(w')

Y +ilo—w')
k¥ ))G{w)Gy(0" )G} (')

I"(w)
2

JD(w k(w))

+ |—io'+ D¥* (' k(w") (2.20)

I"(a))]

This nonlinear polarization will generate a signal electric field, acting as the source term on the right-hand side of (2.3),

which is given by

E(Zk;_—k,, 2&)2-—&)1)=

2 = © [
—*;w)—‘fo da)fo dw fo dw

where F(w,0’,0") denotes the whole integrand on the
right-hand side of (2.20). This electric field is the field
within the slablike crystal but not the signal field to be ob-
served outside the crystal. The latter has to be calculated
from the Maxwell equations and the associated boundary
conditions.

Within the nonlinear crystal, the homogeneous electric
fields are usually associated with the nonlinearly induced
electric field whose wave vector is not necessarily identical
to that of the homogeneous wave. These homogeneous
fields arise as a due consequence of the Maxwell boundary
conditions.’* In Fig. 2 the configuration of the non-
linearly induced wave and the associated homogeneous
waves is shown schematically, where the electric field cor-
responding to the backward-propagating nonlinear polari-
zation is neglected owing to its smallness. Assuming the
normal incidence of the laser beams the electric field for
each wave in Fig. 2 can be written as

Hot—K z) Hwt+Kyz) iot —ii -

E_,e 5 , E,.e 0% ’ E,e“m iKplz —d) ,
. (2.22)
ilar—Kyz) ilar+K,z)

Efe * > Ebe k »

with w=2w,—w,, K;=2k(w;)—k*(w,), Ky=w/c, and
K, =k(w), where E;, E,, and E, correspond to the non-
linearly induced field, the reflected field, and the electric
field to be observed outside the crystal, respectively, and
E; and E, correspond to the associated homogeneous
waves. From the Maxwell boundary conditions at z=0

(o +0" —0')F(o,0',0")

—e(0+0" -0 P+ k() +k (0 —k* o]’

(2.21)

I
and z =d, the four relations among E;, E,, E,, Ey, and
E, are obtained:

E,+Ef+Eb=E,., n;E,+n(Ej-—-Eb)=

Ee ..iK,d+E eniK"d+E eiKhd=E’ )

n.E.e~ i —iKnd_ iK” )=E, ,
where n; and n are defined by

ny=cK;/w, n=cK/ .

The amplitude E, is calculated as

"‘Er ’
(2.23)
+n(E e

(2.24)

z=0 z=d

Epe—

—E¢
Ep «—— —Ey

_.}Es

FIG. 2. Schematic representation of electric field amplitudes
with frequency 2w;—w,. Ei, E,, and E, represent the non-
linearly induced wave, the reflected wave, and the transmitted
wave, respectively, and E; and E, are the forward- and
backward-propagating homogeneous waves.
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E, (1=mn—n)e S M9 _1y L1 qn)(n 4 ng)e TSRy .
E - 2. iKyd o —iKyd @.25)
s (14+n)%e ™ —(1—n)%
or can be rewritten as
finl_p2 d e -
_‘F.“L_. i —n: Jo/e d fo dz[(n +1)e ks K")z+(n —1e ‘(K’+K",z] . (226

B (1pm)e™ (1 —p)te ™"

Combining all the results, the expression of the electric field amplitude to be measured outside the crystal is given by

w(nt—n?)

Eun(R0= =2 [iaz [do [ do’ [7 do l

(14n)2e™ _(1—n)%e

—iKyd

447'(0?

[yy+i (w—w’)](czK,Z—ewa)E)

]Gz(m)GT (@")

X Gyle")f (@)f* (') f (0" )D(0;,K;)

X im+L(29l}D(m,k(co))+ —m'+£‘?"’i D’(w',k(m’))}
X[(n +1)e —uK,~K,,)z+(n —lle —t(x,q-K,,)z]exp fo, (£ — R —~d l ] )
(2.27)
e

with .
wy=w+0" -, K=k(o)+k(o")-k* '),
(2.28)
Ky =k(w;), ng=cK;/0;, n=cK;/o;,

where R is the z coordinate of the observation point. This
expression is quite general but contains a fourfold in-
tegral, which is a rather heavy task to perform straight-
forwardly. It is desirable to simplify the expression by in-
troducing reasonable approximations. The integrations
with respect to o, @', and " are over the spectral width
of the incident laser pulses. If a function contained in the

]

d @ @ ) . .
Eg(RNe [ dz [ “do [ "do’ [ do"Gy(0)G:(w")GT (@ lexp

X[ 1) K

with

fi=ck(20;—w)/(20;—w,) ,

integrand is slowly varying over the region where the
spectral function G,(w) takes significant values, it can be
put outside the integral and replaced by its value at the
peak position of G,(w). In this spirit of simplification,
all of the factors within the integrand on the right-hand
side of (2.27) can be put outside the integral except for the
exponential factors. This simplification can be justified
under the condition that '

0y,0:5> 80, dw/vglwklo) <], (229
where Aw denotes the typical spectral width of the in-
cident laser puises, and v, is the group velocity of the ex-
citonic polariton. Then the expression (2.27) can be great-
ly simplified to

ilo+o"—a") t—R—_--i

T m—t)e Kt R 2.30

where the unimportant muitiplicative factors are omitted. At this stage the threefold frequency integral is reduced to a
separable form and can be performed easily. The w dependence of k (@) in the exponent is expanded up to the first-order

term as

- 2l ) 2.31)

kw)=k @)+ o) ... =k(@)+ .,

dw v (@)

where & denotes the peak position of a spectral function G(w). Then the threefold frequency integral in (2.30) can be
simplified as

—16—



8176 T. TAKAGAHARA 31

Egs(R, 1) < exp[i{2w;— a1 )tg ]

d o« « ®
X [Ldz [ do ["de’ [T do"Gy(0)G(@)G (e exp| —i[ 2k @)~k (@) +1 (A+A"— A"t}
X {(7+Dexplikpz —i(1/v3—1/v, NA+A")z +i(1/v;—1/vy)A'z]
+ (T —1exp] —ikpz —i(1/vy4+ 1/vp WA +A" )z +i(1 /v 4+ 1/v,)A2]}

with the abbreviations:

A=w—wy A=0'—0, A'=0"—0); vy=v0), v3=v{w,),

vp =0, (209 —wy), kp=k(2wy~a,), A=ck,/(20,—a,), IR-—-‘I——’C‘-‘.

Making use of the relation

fowdw Golwlet= fomda:[ga(w+ma)+ga(m —wg)le

one can further simplify (2.32) to
d
Egs(R,D fo dz exp{ —i[2k (w3)—k*(e)]z}

Ha—agt

X (T4 Ve ¥ Eqtg +(1 /0y — 1 /2)2) PE (tg +(1 /0y — 1 /v1)2)

(7 —1e T WE, (tg — (1704 +1/0)2) PE (tg — (1 /0y +1/0,)2)] -

(2.32)
(2.33)
R—d
= [T dogalo—oge" T " <Ey0), (234)
(2.35)

The second term in the second pair of curly brackets of (2.35) contains a factor which is rapidly oscillating with respect
to z and gives a smaller contribution to E g, than the first term. In the following only the first term will be considered.
The physical quantity observed in the experiment is the integrated intensity of the signal field, namely,

[ dt|Eauln)] .

(2.36)

The correlation trace is obtained by repeating the same measurement while changing the delay time 74 of the second
pulse relative to the first pulse. When the shapes of the two pulses are identical, the signal field is given by

d
E (R, 1) fo dz exp{i[ky —2k(wy)+ k™)) ]2} [Eltg +(1/vy — 1/v,)2) PE(tg + 14 +(1/vp —1/v)2) ,

(2.37)

where E(t) is the common pulse envelope. The expression is remarkably simple and important in the analysis of the ex-

perimental data.

It is instructive to look into the limiting form of the correlation trace when all the incident pulses are 8-function-like.

In this case the signal field is calculated as

d -
Egu(R1) e [ dze™[8(2g +(1 /05— 1/09)2)*8(tg +7a+(1 /0y ~1/0))2)
d
= [, dz ™ 8(er +(1 /0y~ 1/60)2) P8lrg +(1/vy— 1/01)2)

« B(ry)0(d(1/v, —1/02)—1'4)[8(3}(+(1/U1,—1/02)Td/(1/01—-1/02))]zexp[iAk'rd/(l/U1—I/U;)] s

with
Ak =kh —Zk(wz)+k'(w|) )

(2.38)

where 6 is the Heaviside step function and the inequality v, <v, is implicitly assumed because w; <@ <@ in the experi-

ment. The integrated intensity of the signal field becomes

f_m dt | Equs() | 2 e(‘fd)e(d(l/l);—l/vz)—Td)CXP[ —2[2ki(wz)+k1(f01)'—k.'(zmz—a!l)]fd/(1/01“1/1)1)} s

where k;(w) is the imaginary part of the wave vector de~
fined by

kl{w)=k(w)—ikie), klw)>0. (2.40)

Thus, the correlation trace is nonzero only within the
range from 7;,=0 to 74=d(1/v;—1/v;) and shows a
quite asymmetric form as depicted in Fig. 3. In this ideal
limit, one can estimate 2k;(wy)+ki{w;)—ki(2wr—a;)

(2.39)

from the decay rate of the correlation trace. Furthermore,
by varying @ and w, appropriately, one can determine
ki(w) at each @ and accordingly I'(w) in principle. The
decay rate in (2.39) has a clear physical meaning. The
length 74/(1/v;—1/v;) is nothing but the depth in the
crystal where the two 8-function-like pulses meet and the
nonlinear interaction occurs. Before the two pulses over-
lap spatially, each polariton wave suffers spatial damping



expl=Y(uy,ws) Tyl

T 0

FIG. 3. A typical correlation trace of nondegenerate four-
wave mixing under a limiting situation in which the two in-
cident pulses are &-function-like. y(w;,w,) is given by
2[2k{(&)2)+ki(601)—ki(zll)z—'ml)]/(1/01—l/Uz).

due to the imaginary part k; of the wave vector. The gen-
erated nonlinear polarization emits the electromagnetic
field, which is observed as a signal field outside the crys-
tal. This signal field with frequency 2w;—w; propagates
in the crystal as a polariton wave and suffers spatial
damping during the passage from z =74/(1/v;—~1/v;) to
z.=d, i.e., the rear surface of the sample. These spatial
dampings lead to the decay rate in (2.39).

III. ANALYSIS OF EXPERIMENTAL DATA
In this section the experimental data of the correlation
trace are analyzed on the basis of the general theory
developed in Sec. II and the dephasing relaxation constant

I
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I'(w) of the excitonic polariton is determined as a func-
tion of energy. The electric field at the observation point
is given by (2.37) and the integrated signal intensity is cal-
culated as

Irg)=[ _:d: | Epe(R,1) | 2
- dad
=[" at [ az [ dze®=®IE; toz)
XE(t +74+B2)EXt +az')

XE(t+744B2") (3.1

with
K=k(2&)2—0)1)—21(((02)"'](*(0)1):1{, +iK; ,

(3.2)
a=1/vy—1/vy, B=1/vy,—1/vy,

where the real and imaginary parts of K are denoted by
K, and K;, respectively. In the following the incident
pulse envelope E (1) is supposed to be Gaussian:

E(t) = exp(—12/257), (3.3)
where o characterizes the pulse width. Calculating the
time integral in (3.1) first, and changing the integration
variables z and 2z’ to x and y defined by x=z-+z' and
y=2z—2z', one obtains

Hep=% |2 m[fod&fjxdy+fdudxf:‘i;‘dy]exp _EE‘:__B;%J:E“_]Z_KI,X_D y_"Kwr 2_4%2_
= %‘lﬂexp [—% Re'f:dxexp —————-—[(G_B;;—Zfd]z —K,-x]erf vD x—izKB'— ]
+f:ddx exp -——[(—a—_—-%z-;———z‘ﬁz—lfix erf [VD lZd—x—-;Ii; ” (3.4)
r
with Rgerf[z =X +iy]=erf[x]+e“"1f0!yldt ePsin2et . (3.7

D =(22*+B%) /40, (3.5)

where the error function with complex argument z is de-
fined by

erf[z]= f:dz exp(—-:i) ,
and its real part is given by

(3.6)

-

exp[ —o*x /4 +ix(tg +14/2)]

It is now instructive to examine the case where the two in-
cident pulses have the same energy, i.e., @;=w,. In this
case the denominator y,+i{w—a') in (2.27) cannot be
simply put outside the integral because w—a«’ can become
zero. Employing the Gaussian pulse envelope (3.3) and
carrying out the frequency integral in (2.27), one obtains

d -
Eqps(R,t) fudzexp[—2k,~(w;}zj f_mdx

, (3.8)

Y“+ix
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where tg =t —(R —d)/c and k; is defined by (2.40). The
important point to be noted is that 7, and k;(w) are con-
tained in a separate manner. Thus, k;(w) or equivalently
I'lw) cannot be determined from the correlation trace, i.e.,
from the 7, dependence of the integrated signal intensity.
This confirms the importance of nondegenerate four-wave
mixing in the study of the dephasing relaxation of the ex-
citonic polariton as mentioned in the Introduction.

In the experiment the energy of the second pulse @, is
fixed at the transparent region of the crystal, while that of
the first pulse w, is varied over the resonance region as
shown in Fig. 4. The energy of the nonlinearly mixed
light 203~ lies in the far off-resonance region. As seen
from (3.2), the imaginary part K; is dependent on ['w) at
three energy points, namely, [lw;), Tlw,), and
I'(2ws—o,). The one of most interest is ['(»,), since the
others are values in the off-resonance region. The values
of T{w,) and I'(2w,—cw,) are taken from the data of re-
flectivity and transmission measurements.'® The value of
I'w,) is left as an adjustable parameter for the curve fit-
ting. In the numerical calculation of the correlation trace,
the dispersion relation of the excitonic polariton in CuCl
is used; the dispersion relation has been studied recently in
detail.!1®'316 The parameter ¢ is determined from the ex-
perimental pulse width (full width at half maximum or
FWHM) of 20 ps. The theoretical results are indicated by
closed circles in Fig. 5. The spatial overlap between the
two pulses and accordingly the integrated signal intensity
become larger, in the case of a later arrival of the second
pulse, than in the case of an earlier arrival, since the
group velocity of the second pulse is quite large. The ex-
treme case of this feature is demonstrated in Fig. 3 for 6-
function-like pulses. In reality, the incident pulse has a
finite width and the correlation trace in Fig. 3 becomes
broadened. The asymmetry of the correlation trace in
Fig. 5 can be understood in this way. The values of T
determined from the curve fitting are given in Fig. 6. The
right-hand ordinate indicates the dephasing relaxation

2
up LP
an
-
3
> 3% CuCl
2 Ma20m,
] €50
I Ta=12025¢¢
= 3 nw=a2080e
g
o s
w - = = =y o) 1
104 10 10 0 10
% (16fem™'} o wic

FIG. 4. Left: Dispersion relation of the excitonic polariton
in CuCl, shown for both the upper- (UP) and lower- (LP) branch
polaritons. Right: Group velocity of the excitonic polariton
normalized by light velocity ¢ in vacuum (lower abscissa) and
the calculated transit time of the polariton pulse through a
14,15-um-thick CuCl crystal (upper abscissal. The energy fiw is
varied from 1 to 11, whereas 7w, is fixed at the transparent re-
gion.
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FIG. 5. Integrated intensity of the 2w,—; beam emitted
f.rom a 14.15-um-thick CuCl crystal as a function of the relative
time delay 74 =t,—1, between w, and o, pulses.

time #/(T" /2) of the excitonic polariton. As seen in Fig.
6, T is of the order of 0.01 meV independent of the sam-
ple thickness and increases as the energy approaches the
exciton resonance. When the energy o, approaches the
exciton resonance, the correlation trace becomes nearly
symmetric with respect to 74=0 and insensitive to the

" change of @;. This feature can be understood on the basis

of (3.4). In the resonance region the group velocity of the
excitonic polariton is quite small and one can employ the
following approximations:

a—B=1/v,, D=(4ocW})!. 3.9
Since the ratio v, /c is typically 10~*, the Gaussian factor
expf —[(@—B)x — 21,2 /607)

in (3.4) represents a very sharp distribution whose peak
position and width are both of the order of 1 pm or less.
Thus, when the sample thickness d is about 20—30 mic-

0,18 —
cuct
016F 2.0K
[ o d=14.15um
814 L 42303 um } i {10
- = d=50.9 pm !
3 012 / ~
< ool (1s s &
15 r i i 3
ool IR Lé.
i [ {20
0.06 ‘F " \
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0.04} 7 ' 430
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00zt *« t| [ F 5_.;,/‘a§
i PR P + L :—/'5
0. PRIl tiar vt P 200
7 T8 9 320 121 322

PHOTON ENERGY (ev)

FIG. 6. Dephasing relaxation constant I" as a function of en-
ergy of the excitonic polariton in CuCl. The three data symbols
correspond to samples of different thicknesses. Long error bars
above 3.200 eV mean that [ cannot be determined precisely.
The dashed line is the calculated energy dependence of I" based
on a model of polariton-polariton scattering (see text).
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rons, the second integral in (3.4) can be neglected and one
finds for positive 74

) K? 2Ky
Tgl < €Xp ~4D—a—3
27, ik,
d —-—_r— . -
X Reerf |V D «—f D (3.10

Substitution of (3.9) into (3.10) leads to
I(7y) <exp] —(v,0K,)?—20,K;7q|Reerf[ 74 /o —iv,0K, ] -
(3.11)

Since v,0K, is large and typically of the order of 10% one
can use an approximate-formula derived from (3.7) for
y>1

e~ Reerf[x +iy]§e""zfoly|dt exp(t®—yp?)sin2xt .
: (3.12)

Because the integral factor in (3.12) has only a weak
dependence on x, the characteristic dependence of the
correlation trace on 7y is given by

(3.13)

For a typical value of K; of about 10* cm~" and for ¢ of
the order of 10 ps, the 75 dependence of the correlation
trace is dominated by the second exponent in (3.13) and
the profile becomes insensitive to the change of w, in the
exciton resonance region. Thus, the value of K; or
equivalently I'(w) cannot be determined precisely in the
resonance region. However, even in a situation where the
correlation trace is limited by the incident pulse width, the
upper limit of I'(w) can be estimated from the relation

I(ry) exp[ —2v,Kitg—(14/0)] .

J

8179

20,K; <ot {3.14)

IV. MECHANISMS OF DEPHASING RELAXATION
OF EXCITONIC POLARITONS

Let us now discuss the mechanism of the dephasing re-
laxation of excitonic polaritons. As mentioned in the In-
troduction, the relaxation to be observed in the experiment
depends in general on the method of measurement. In the
four-wave mixing experiment not only the incident laser
beams but also the generated signal beam are spatially
well collimated. Thus, any mechanism which causes a
momentum change of the excitonic polariton will lead to
the decay of the macroscopic polarization with a well-
defined wave vector. Even elastic scattering leads to the
decay of the polarization field, namely, the dephasing re-
laxation of the excitonic polariton in the case of four-
wave mixing. This is in striking contrast to the case of in-
duced absorption (IA)."~' In the case of IA all the po-
laritons that are scattered elastically into various direc-
tions can contribute to the absorption signal since only the
energy is relevant in the absorption process and the direc-
tion of the polariton wave vector does not matter. The
decay-time constant of IA reflects the energy relaxation of
the ensemble of the injected polaritons. On the other
hand, momentum relaxation by some mechanisms contri-
butes to the dephasing relaxation of excitonic polaritons.
The most likely mechanisms to cause such dephasing or
momentum relaxation are (a) impurity scattering, (b} pho-
non scattering, and (c) polariton-polariton scattering.

Assuming the impurity-polariton scattering matrix ele-
ment M to be independent of the momentum transfer, one
can calculate the momentum relaxation rate due to the
impurity scattering as

2 2k
rimp(k)=lﬁ’1 |M |23 8(E (k +q)—E(k))=iA2‘[—-7rlﬁ—K [ dg g [ d6sin68(E((k?+g7—2kq cos) )~ E ()
q

M
Zm'rzvg(k)

where V'is the quantization volume and vg (k) is the group
velocity of the excitonic polariton with wave vector k. As
seen from this expression, I'jyy(k) shows an increase in
the exciton resonance region due to the decrease of the
group velocity and the increase of the wave vector k. The
energy dependence of I'jny(k) is similar to the experimen-
tal result. On the other hand, the estimation of the abso-
lute value of T'iy,(k) cannot be precise since the magni-
tude of the matrix element M is uncertain. For a rough
estimate, one may treat the scattering classically. The
scattering cross section can be supposed to be the square
of the exciton Bohr radius which is about 7 A in CuC1.%
The group velocity of the excitonic polariton in the off-
resonance region is of the order of one hundredth of the
light velocity in a vacuum. If the impurity concentration
N; is assumed to be 10" cm™?, one can estimate the order
of Fimp as

2k 2y%2
fod M |“Vk

= s 4.1)
9= R (k) (

Timp=(7 A, N;=1.5x 108 s~ . 4.2)

This value is smaller by a few orders of magnitude than
the experimentally estimated value. However, it is prema-
ture to rule out the impurity scattering as a mechanism of
the dephasing relaxation of the excitonic polariton. To
clarify the role of impurity scattering quantitatively, it is
necessary to study the sample dependence of the dephas-
ing relaxation constant by varying the impurity concentra-
tion systematically.

To examine the second possibility, the scattering proba-
bility is calculated for both the deformation potential cou-
pling with longitudinal acoustic (ac) phonons and the
Frohlich interaction with longitudinal optic (op) phonons.
The LA-phonon scattering rate via the deformation-
potential coupling is given by

—20—
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r“(k)=2—;’-§ | Vael@) | 2[1B(E (k) = E (k +q) +Fiog )+ (1 4+ J8(E (k) —E(k —q)—Fiw,)] ,

where the first term in the square brackets represents the
contribution from the phonon absorption process and the
second term that from the phonon emission process.
E (k) denotes the energy dispersion of the excitonic polar-
iton and #iw, the acoustic phonon energy at wave vector g.
For the case of a 1s exciton, the exciton-phonon coupling
constant V,.(q) is given by?!

172
Vuld= |32 | IDSd=DAt .
with
fl@)=1/[1+{aagq/2)*}?
and (4.5)

fol@)=1/[1+(a.apq/27F, |

where p, u, V, ap, and D, (D,) denote the mass density,
the sound velocity of LA phonons, the quantization
volume, the exciton Bohr radius, and the deformation po-
tential constant for the conduction (valence) band, respec-
tively, and a;, and a, are defined by

ap=my /(my+m,), a,=m,/(my+m,) (4.6)

with the electron (hole) effective mass m, (m;). The cou-
pling constant (4.4) is usually approximated in the small
momentum limit as

_fg_
2puV

172

V,olg)= (D.—D,). @n

Strictly speaking, (4.3) should be multiplied by another
factor relating to the exciton content in the polariton
mode. However, the exciton content is a slowly varying
function with respect to the polariton energy and is al-
most unity over a rather wide range of 50—60 meV
around the exciton resonance in the case of CuCl. Thus,
the factor of the exciton content in the polariton mode
can be safely neglected. In the calculation the following
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FIG. 7. Dephasing (momentum) relaxation rate of the exci-
tonic polariton in CuCl due to the acoustic phonon scattering.
Above the longitudinal exciton energy w; the results are shown
for both the upper- (UP) and lower- (LP) branch polaritons.
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(4.3)

r
parameters are employed: u=3.8%10° cm/s,”? p=4.16

-g/em®,® D,—D,=—0.4 ¢V,** and the temperature is

taken to be 2 K. The calculated result is shown in Fig. 7.
In the energy region above w; the results are shown for
both the upper- and lower-branch polaritons. The in-
creasing trend of the LA-phonon scattering rate as the en-
ergy approaches the exciton resonance is in agreement
with the experimental result in Fig. 6. However, the abso-
lute value of the scattering rate is much smaller than the
experimental value. Thus, it can be concluded that LA-
phonon scattering is only a minor mechanism of the de-
phasing relaxation of the excitonic polariton.

Similarly the LO-phonon scattering rate can be calcu-
lated. In this case the exciton-phonon coupling is induced
through the Fréhlich interaction and its explicit form is
given by?!

12

et -
e Veld—ful@)/g

v

A

Veplq)= .

1
€

(4.8)

where €,(€y) and fiwy o are the optic (static) dielectric
constant and the LO-phonon energy, respectively, and f,
and f, are defined in (4.5). Taking intoc account oniy the
phonon-emission process, one obtains the following

* scattering rate due to the LO phonon:

ro,,(k>=27”}_‘, | Voplq) | 28(E (k) — E (k —g)—fi,) .
q

(4.9)

The relevant parameters are chosen as #iwpo=26 meV,”
€.=5.0," =€ 0}/0? Fiw;=3.2080 eV,® and
#iw, =3.2025 eV."* The calculated result is shown in. Fig.
8. The general trend of the energy dependence is similar
to that in Fig. 7. In this case also, the absolute value of T"
is too small to explain the experimental results. On the
basis of these results one can conclude that phonon
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FIG. 8. Dephasing (momentum) relaxation rate of the exci-
tonic polariton in CuCl due to the optic phonon scattering.
Above the longitudinal exciton energy w; the results are shown
for both the UP and LP branch polaritons.
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cuct i, =3.202eV
d=tpm Hu,=3178eV
At=30ps
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FIG. 9. Correlation traces of nondegenerate four-wave mix-
ing for a l-um-thick CuCl crystal. The pulse width Ar
(FWHM) is chosen to be 30 ps and the dephasing relaxation
constant ' is varied at 0.01, 0.04, and 0.08 meV (see text in Sec.
vD.

scattering makes a minor contribution to the momentum
relaxation of the excitonic polariton and cannot explain
quantitatively the experimental results.

Let us finally examine the possibility of polariton-
polariton scattering. Even when a well-collimated laser
beam is concemned, there is uncertainty with respect to the
direction of the polariton wave vector of the order of 0.1°
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This broadening of the polariton wave vector may lead to
mutual collisions among polaritons injected by an intense
laser beam. The two colliding excitonic polaritons can
scatter into various directions of the wave vector conserv-
ing the total energy and momentum. When the propaga-
tion direction of the scattered polariton is appreciably de-
flected from that of the incident polaritons, the scattered
polariton cannot contribute to the signal intensity of the
four-wave mixing. Even if the scattered polariton propa-
gates in almost the same direction as the incident polari-
tons, the energy of the scattered polariton is not necessari-
ly equal to that of the incident polariton. When detection
is spatially well collimated and is also energetically well
resolved, almost none of the scattered polaritons can con-
tribute to the signal intensity. Thus, polariton-polariton
scattering leads to the dephasing or momentum relaxation
of the excitonic polariton. When the polariton-polariton
scattering matrix element is written as

W ki kyiks,ks) CiCLCeCr, » (4.10)
denoting the creation (annihilation) operator of the exci-
tonic polariton with wave vector k& by Cj (Cg), the
momentum relaxation rate of an excitonic polariton with
wave vector k is given by

I‘c(k)=271r > ]W(kl,kz;k3,k)[2(1+Nkl)(1+Nk2)Nk38(k1+k2—k3—k)8(E(k1)+E(k2)—E(k3)—E(k)) ,

kyikyiky

(4.11)

where N (k) is the occupation number of the excitonic polariton with wave vector k. In (4.11) ¥V and Nj, can be
neglected since the wave vector and energy of the scattered polaritons are in general different from those of the incident
polaritons, The summation with respect to K is carried out over the distribution of the incident polaritons. As a result,
I'. is proportional to the laser intensity. Expression (4.11) can be reduced to a more convenient form for numerical cal-
culation. Taking the z axis in the direction of wave vector k +k; and neglecting the wave-vector dependence of W, one

can reduce (4.11) to

l"c(k)=—2;;£ | W] zsz,kES(E(kl )+ E(k+ky—k)—E(k3)—E(k))
key

14 « T
=—— | W| 3N, ["d |k | | k|2 [ dOsind
2 kzl 3f° ! f° §

with

S8, ki N=vgl | ki ) +vgl | k+hy—ky | X [y | — |k +k3 | cos8)/ | k+ks—ky |,

where v, is the group velocity of the excitonic polariton,
V the quantization volume, and the superscript a indi-
cates a number of solutions which satisfy the energy con-
servation implied by the & function. It is found numeri-
cally that the integral in (4.12) is not sensitive to the angle
between k and k; within a few degrees. Thus, it is per-
missible to replace the summation over k; in (4.12) by the
value for a typical k3 multiplied by the total number of
incident polaritons. In the numerical estimate of the ab-
solute value of T, the two colliding polaritons are as-
sumed to have the same energy 3.188 eV (| k| = |kz]|)

([ k| — KT

, (4.12)
[£16, | kS 1)

(4.13)

—

and the angle between the two wave vectors is chosen typ-
ically as 0.1°. Using the recent results of the microscopic
calculation of the collision matrix element of excitonic po-
laritons in CuCl,%% one finds a typical value

WV=48%10"" erg , (4.14)
and obtains
Teor(3,188 eV)=3.6 1010 s~ 1 . (4.15)

where the number density of the incident polaritons is
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supposed to be 10 cm™3, estimated from the power,
pulse width, beam diameter of the laser, and the crystal
thickness. This value can be compared with the experi-
mental result:

Ie®Y(3,188 eV)=1.5x 1010 s~! . (4.16)

These two values agree well within a factor 3. However,
this agreement should be considered as fortuitous since
there remains uncertainty in the estimation of the number
density of polaritons and other dynamical parameters. In
the theoretical fitting the absolute value of I is adjusted
to the experimental value at 3.188 eV and the energy
dependence of T is determined by (4.12). The calculated
result is shown by a dashed line in Fig. 6. As for the ener-
gy dependence of T, the agreement between theory and
experiment is satisfactory, although the experimental
values are ambiguous in the resonance region.

From the above arguments it may be concluded that the
dephasing or momentum relaxation of the excitonic polar-
iton is caused mainly by polariton-polariton scattering
under our experimental conditions, although impurity
scattering cannot be ruled out as a mechanism of the de-
phasing relaxation.

V. MICROSCOPIC DERIVATION OF EQUATIONS
OF MOTION AND DEPHASING RELAXATION
OF EXCITONIC POLARITONS

In Sec. I, the basic equations of motion for the exciton-
ic polariton are taken from the familiar ones in laser
theory which are derived on the picture of localized exci-

J

. 12
e Ie
(prA+A-p¥W(ir)= e

2mce

2mfic
|4

f a3 vin

where azk (@) is the creation (annihilation) operator of
the a-band electron with wave vector k. The real vector
Po is defined by

iPo=’!};'f,,od3" ule (Ppuy(r), (5.4)

where ug(r) denotes the periodic part of the Bloch func-
tion of the a band, vg the volume of the unit cell, and the
usual s-p band combination is tacitly assumed for the
conduction and valence bands. Here the wave-vector
dependence of the matrix element is neglected. In the
resonant-term approximation, (5.3) becomes

. i 172
ie C
= 2

~
Po" €42
I 172

+ + t
X (ac,k +qaukbql_auvk +qaCkb —-qA ).

(5.5)

On the other hand, the electric field is given by

2

k,q.A
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tations. However, the excitonic polariton is not a local-
ized excitation but propagates throughout the crystal with
a definite wave vector. In this section the basic equations
of motion are derived from the microscopic point of view
and it is confirmed that the same equations of motion as
in laser theory are applicable for the case of excitonic po-
laritons with a small change to incorporate spatial disper-
sion. First of all let us derive the polarization field opera-
tor quantum mechanically from the electromagnetic in-
teraction

—“—(pA+Ap),

2me (5.1)

where A is the vector potential and p the momentum
operator. In the second-quantized form the vector poten-
tial is written as

172
A~

e | e TbabT )

AlN=% g7

2

(5.2)

where b, (b,;r ) Eq,\ and V are the annihilation (creation)
operator of the photon with wave vector ¢, the polariza-
tion vector, and the quantization volume, respectively,
and the polarization index A indicates the transverse
modes in the Coulomb gauge. Calculating the matrix ele-
ment between the electron field operators, one obtains

A~

Po’€qa

PG (8 & 40k — Ok 4q8a ba+b L 00) (5.3)
i
Ern=—12 A
¢ ot
21hc 12
=2A; [———;flﬂ- eneba—bT )
'3

(5.6)

=3 e"E~(g)+E*(g)]=3e"Elq) ,
q q

where the Fourier component of the electric field E(q) is
decomposed into the positive and negative frequency parts
corresponding to b_, and b, respectively. With these
notations (5.5) is written as

€Po 1 t +
—_— E~ E+ .
me = |q | [ac.k+qauk (q)+au‘k+qack (q)]

(5.7)

Supplementing the nonresonant terms, one obtains the
second-quantized form of the electromagnetic interaction
as

poElg)

¥
(ac.k +qauk 'l"av,k +qack ). (5.8)

)

me kg lq I
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From the analogy to the electromagnetic interaction in the
dipole approximation, the polarization field operator with
wave vector g can be introduced by

ep
plg)=— ——”TZM:,H.;% Falkigan) . (59)

me | q

The prefactor of (5.9), having the dimensions of the elec-
tric dipole moment, will be denoted by p:

e|pol

= (5.10)
me |q |

where the typical value of ¢ is determined by the exciton
Energy €, as
(5.11)

On the other hand, the quantity corresponding to the pop-
ulation inversion is defined by .

fic|q | =& .

8183
= [d*reI(r), (5.13)
can be written as
a(q)=2(a:,k+qack —alk Hauk) (5.14)
k

by transforming the Wannjer operators into the Bloch
operators.

Now that the operators of the polarization field and of
the population inversion are derived microscopically, the
equations of motion for these variables will be considered.
The Hamiltonian is assumed in the simplest form as

H= SE.(kakag+ S E,(klajay
k k

+1 3 en @0k 4 g0kbor =Gk 1gbl) , (515

kg,

where E,(k) is the energy dispersion of the a-band elec-
tron and the electromagnetic coupling constant is defined

I(N=(a}a, —a}a,) /vy, (5.12) gy
: ) 2 12
where a:,, (aq) is the creation (annihilation) operator of g1lg)= €Po'€gn | 2mfic
the a-band electron in the Wannier representation and g M me Vig| (5.16)
is the volume of the unit cell. The Fourier component of
the population inversion, defined by A typical equation of motion is given as
|
d . .
—a:k+qavk = L[H’alk +qavk]= L[Ec(k +q) _Eu(k)]al:k +9%vk
dt° i #
fe | po| Nt
——WE'(GIIC_,_qaC,k_q.—a,IHq_,_q.a,,k E* Vg |, (5.17
q
—
where E*(q) is the positive frequency part of the electric d <t _ i ()Sal
field defined in (5.6). Hereafter, the electric field com- dr zk"“"-kﬂ"*—" 7\ zk:“v.kﬂ“ck
ponent parallel to po will be considered. Taking the sum
over wave vector k on both sides of (5.17), replacing | g’ | (5.20)

in the denominator on the right-hand side by a typical
value given in (5.11), and introducing the replacement

E.(k +q)—E,(k)=e.(q) (5.18)
with the exciton energy dispersion &, (g), one finds
d + i +
’d?zac,k+qauk = ;{Ex(q)zac,k +quk
k k
(5.19)

- %ﬂZa(q +q")E(g"),
< :

where the negative frequency part of the electric field is
added to the second term on the right-hand side and the
notation of (5.10) is used. In the same way one obtains

d t ie | po|
Zac,kq-qack‘ [E (k +q) E, (k)]ac k+qack+ Zime
d + ie|pg|
Iav.k-i-qauk = [E (k+9)—E, ]av k +q%uk + Fme

2 m[a:k +q +q’aukE_(q‘)—ale +qac,k—q'E +(q')] .
G

+;;—,u20(q +g")E(g’) .
e

The basic equations of motion for the polarization field
operator are derived by adding (5.19) and (5.20) or by sub-
tracting (5.20) from (5.19) as )

2 @=— e Sl ir gt —alkagan) (52D
k

d +
El‘z(ac',k +q%k — atIk +qQck)
k

. 2 2 .
= -—é—ex(q)p (q)——ﬁ"ﬁ Solg+91E(g), (5.22)
d T
where p(q) is the magnitude of the vector in (5.9).
Next, the equation of motion for the population inver-
sion is derived:

E lq ‘ [auk+q+qackE (q )—a:k+qauk—-q'E (g)], (523

(5.24)
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The first term on the right-hand side of each equation
represents wavelike behavior due to the dispersion of the
energy band. Since g denotes the wave vector of the pop-
ulation grating and is usuvally small, the first terms on the
right-hand side can be safely neglected. By repeating the
same procedure as in the derivation of (5.19) from (5.17),
one obtains

d 2i .
Lolg)= =L S E )30k 4 g g uk — 0k 4q+qGck) -
dt L r

(5.25)

Equations (5.21), (5.22), and (5.25) form the basis set for
the dynamical description of the excitonic polariton. Let
us now introduce the real-space field operators defined by

IN=LSe5ig), pin="LSe-"piq),
Zz y2

p+(r)=:~1£-2e“"7’alk+qauk , (5.26)
ke

pin= —_;,Lize "‘"”a,zk gk »
kg

where, of course, it holds that p(»)=p*(#)4-p~(r). Then
the equations of motion for these operators are obtained
as

d i . + -
—_ = — 5.27
drp(r) ﬁex(zV)[p (r\—p~(n], (5.27)

4 =1 Lt 20
dt[p (r)—p (r)]-ﬁex(zV)p(r)+ 7 I(rE(r),
(5.28)

A2 -
dtI(r)— - EnpT(r)—p~(n]. (5.29)
Here the field quantities are scalars since, as mentioned
before, the electric field component parallel to the polari-
zation field is considered.

It is quite instructive to compare these equations with
the density-matrix equations for a two-level atom. The
latter are familiar in laser theory™® and are given explicit-
ly as

d . i
‘;;P12='wopu+"s‘EU—1’Lmz ) {5.30)
-g-t-cr= x—zﬁ&E(Plz—PTz)-FYMUO—U) . (5.31)

Here the upper (lower) level of a two-level atom is denoted
by 2 (1) and o, og, fiwe, K, and ¥ () are the population
inversion defined by py;—p1;, the equilibrium value of o,
the energy difference between the two levels, the electric
dipole moment, and the longitudinai (transverse relaxa-
tion constant, respectively. The polarization defined by

p=plp+pi) , (5.32)
satisfies the equation
d .

GP="Tp +iwg(pp—pt) - (5.33)
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Another relevant equation is derived from (5.30) and is
given by

d .\ . 2ip?
;#(Plz“mz)ﬂa’op +—£ﬁ&-EU"'YJJ-"(P12—PTZ) . (534

It is easily seen that the equations of motion from (5.27)
to (5.29) have a one-to-one correspondence with the set of
equations (5.33), (5.34), and (5.31), if the relaxation terms
in the latter are dropped and the following correspondence
is supposed:

ppiep (R, pplyepT(r). (5.35)

Thus, the equations of motion, which were originally de-
rived in laser theory, turn out to be applicable in the case
of excitonic polaritons with a small change to incorporate
spatial dispersion. In fact Egs. (2.1) and (2.2) can be de-
rived from (527) and (5.29) with the replacement of
20,u% /% by Bo’.

Next, the inclusion of the relaxation terms will be dis-
cussed from the microscopic point of view.*’ The relaxa-
tion phenomena result from the reversible.dynamical
equations of motion, when some kind of coarse graining is
introduced which is closely related to the method of mea-
surements; for example, the phonon state of the crystal
lattice is not measured and the signal emitted in a particu-~

-lar direction is selectively observed. The procedure of
coarse graining can be incorporated by means of the gen--
eral method of projection®®?® to derive the irreversibility
from reversible dynamics. In the following let us derive
the relaxation terms due to the polariton-phonon interac-
tion and the polariton-polariton scattering. In the pro-
cedure of coarse graining the total system is divided into
the relevant system and the rest, which is usually called
the reservoir, and the dynamics of the total system are
projected onto that of the relevant system by eliminating
the degrees of freedom of the reservoir. To be more con-
crete, let us consider the reduced density operator defined
by

pr=Pp, (5.36)
where P is a suitable projection operator. The equation of
motion for p, is generally given by*

d i
Ep,(t)= — ;Lsp,(t)
1 pt i1 -
—gz-fod'rPLSRe i(1-PIL{t ﬂ/ﬂLSRPr(T) ,

(5.37)

where the Hamiltonian of the total system is divided into
those of the relevant system (S), the reservoir (R) and
their interaction (SR) as

H=Hg+Hg+Hg (5.38)

and the Liouville operatoss are defined, for any operator
A, by
LA =[H,A], LsA =[H5,A], LSRA=[HSR’A] . (5.39)

In the case of the polariton-phonon interaction, the
relevant system and the reservoir correspond to the exci-
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tonic polaritons and the phonon system, respectively. The
suitable projection operator is given by

Pp=pTronp=ponps » (5.40)
where pph denotes the thermal equilibrium state of the
phonon system, the trace is over the phonon states, and pg
is the density operator only for the excitonic polaritons.
It is convenient to use the polariton operator mstead of
the electron-hole excitation operator. Let cl ke (Cax)
denote the creation (annihilation) operator of the excitonic
polariton with wave vector k, where the index A specifies

|

1 - Y —ID o
~—ﬁ;3, l=(q)lzfodf{ [nge +(1+nq)e “TNCh_yCrs Cl gl
A

+ [nqe lmqa+( 1 +n )e -—iwqa][

iH, sa’/ﬁ
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the electron-hole relative motion. The polamon-phonon
interaction Hamiltonian can be written as

Hc,,:zE(q)CkﬂCk(bq-i-b_q) B (5.41)

k.q
where b' () is the creation (annihilation) operator of
phonons and Z(q) is the coupling strength dependent on
the kind of phonons and on the exciton internal motion.
Here the electron-hole relative motion is assumed to be
the lowest 1s state and the index A is dropped. Then by
substitution of H.,, for Hgg, the second term of (5.37) can
be calculated up to the second-order perturbation with
respect to Hgg as

t‘Hscr/ﬁ —iHgo/H

Ck(cr)e

s(T)e 1

( Y ~iHgo /R

Cl 1g(0)Cl0),CL_,Crl} (5.42)

where o=7—1t and @, and n, denote the frequency and the occupauon number of the-phonon with wave vector g,
respectively. The Heisenberg operator is defined in terms of Hy in (5.38), namely, the Hamiltonian of the excitonic po-

lariton. Taking into account only the secular terms and employing the Markovian approxunatlon,30

reduce (5.42) to

one can further

--zﬁlz | Z(g) | 2{ [ny8(E (k +q)—E (k) —Fiwog)+ (1 +n S E (k +g) — E (k) +Fiwg) ][ Ci Ce g2 Ci 14 Cros ()]
ka

+ [1,8(E (k +q) = E (k) +Farg )+ (141 )8(E (k +g) —E (k) —Fiwg) 1[ps(1Ch 14 Cits CACh ) =T »

(5.43)

where the polariton dispersion is denoted by E(k) and the relaxation operator Iy, is defined by this equation. Conse-
quently, the equation of motion for the reduced density operator pg in (5.40) becomes

P )
< ps(y=——[Hs,ps]+Dyps -

(5.44)

In order to derive the equations of motion for physical quantities, the average value of some operator A4, defined by

(A1) =Trdps(1),

(5.45)

will be considered. The equation of motion for the averaged quantity ( 4(1)) is given as

d d
it {A())=Tr4 dtpg(t)—

-é—Trps[Hs,A]-i-TrA s -

- (5.46)

The Fourier component of the polarization field with wave vector Q can be written in terms of the polariton operator as

P(Q)=—p(Cl+C_g).

(5.47)

The damping of the polarization field component p(Q) arising from the second term of (5.46) is calculated as

%’{-g |Z(9) |2 [ng8(E(Q) —E(Q —q)—Fiwg )+ (141 8(E(Q)— E(Q —q)+7iwg Y Ch_,Co_g)

(5.48)

—[ng8(E(Q)—E(Q —q)+7,)+(1+ng)BE(Q)—E(Q —g)—Fiw ){ Ca o Ch_ ) 12(Q)

where a decoupling approximation such as
TrCECy Cops(t={Co ){CECk) , (5.49)

is employed. When (CIC,‘) is regarded as the population
of polaritons with wave vector k, the first term of (5.48)
can be interpreted as the rate coming into the polariton

state with wave vector Q, whereas the second term can be
interpreted as the rate leaving the same polariton state. If
only the polariton state with wave vector Q is occupied in
the initial state, only the second term of (5.48) does not
vanish and gives exactly the same damping constant as in
(4.3).

—26 —
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Now let us consider the relaxation term due to

polariton-polariton scattering. In this case the relevant
system is the ensemble of polaritons with a particular
range of wave vectors contained in the incident beam; the
reservoir corresponds to the other polaritons, which will
be referred to as the reservoir polaritons. The suitable
projection operator is given by

Pp=|0)(0'|Tr'p, (5.50)
where |0’) denotes the vacuum state with respect to the
reservoir polaritons and the primed trace implies the trace
operation over the reservoir polaritons. The polariton-
polariton scattering Hamiltonian is given by (4.10). Then
by a similar calculation as in (5.42), the relaxation opera-
tor in the Markovian approximation is derived:

‘ 2 , _
rcp=_—ﬁ’l S 3 S(E(k)+Elky)—Elky)—E(ka)) | Wik kasks,ka) | H{[CE CL,, G, Cep] +[pCh Gk Ch Ciy 1)

Kyoky k3o ky

where the summation with respect to k; and k, is over
the relevant polaritons, whereas the sum concerning kj
and k, is over the reservoir polaritons and is indicated by
a prime. The damping constant of the polarization field
component p(Q) due to the relaxation operator I, is cal-
culated from (5.46) and (5.51) as ‘

S S Wk, Ok k) |
i Gk, !

X8(E (k) +E(Q)—Elks)—E(k)){p(Q)) ,

(5.52)
where the decoupling approximation as in (5.49) is em-
ployed and Ny represents { CfC;). This expression is ex-
actly in agreement with (4.11) as it should be.

In summary, the basic equations of motion for the exci-
tonic polariton are derived microscopically and given a
firm basis. It is confirmed that the equations of motion
familiar in laser theory are applicable also in the case of
excitonic polaritons with the inclusion of spatial disper-
sion. At the same time, the damping of the polarization
field that is identified with the dephasing relaxation of the
excitonic polariton is derived by the standard statistical
mechanical method using projection operators and it is
confirmed that up to second-order perturbation the sta-
tistical mechanical method gives the same result as the
golden-rule calculation.

VI. SUMMARY AND DISCUSSION

The concept of the dephasing relaxation of the exciton-
ic polariton has been clarified for the first time and the
method of analysis of the experimental data of nondegen-
erate four-wave mixing has been established. The various
mechanisms of the dephasing relaxation of the excitonic
polariton are discussed and the most probable mechanism
is identified as the polariton-polariton collision. The ob-
served dephasing relaxation constant of the excitonic po-
lariton in CuCl is of the order of 0.01 meV and increases
as the energy approaches the exciton resonance.

The conceptual difference between the dephasing relax-
ation of the localized excitation and of the propagating
elementary excitation has to be emphasized. In the form-
er the dephasing relaxation or, in other words, the trans-

(5.51)

f

verse relaxation is related to the decay of the coherence of
the relevant transition or of the off-diagonal component
of the density matrix. In the latter case, however, the ex-
citations are not localized but propagate throughout the
crystal with a definite wave vector. Accordingly, the
coherence of the relevant transition, which is usually re-
lated to the polarization field, has the degree of freedom
of the wave vector. This degree of freedom is one of the
salient features of the propagating elementary excitation
which make a striking contrast with the case of the local-
ized excitation. In addition to the wave vector the exci-
tonic polariton has a degree of freedom of the exciton
internal state, i.e., the electron-hole relative motion. The
change of the exciton internal state may lead to the fluc-
tuation and relaxation of the exciton coherence, since the
oscillator strength of the exciton depends on the exciton
internal state. The-dephasing relaxation due to the change
of the exciton internal state may be caused by a mutual
collision among the excitonic polaritons under a rather
high excitation. In this paper, however, the dephasing re-
laxation due to a change of wave vector has been dis-
cussed exclusively. : .

In the exciton resonance region, as mentioned in Sec.
111, the correlation trace becomes insensitive to the de-
phasing relaxation constant I and the experimental value
of I cannot be determined precisely. Let us make a few
proposals to overcome this difficulty. The simplest one in
principle is the use of a pulse with width comparable to
the dephasing relaxation time. In the limit of infini-
tesimal pulse width, as shown in Sec. II, the correlation
trace shows directly the decay due to the imaginary part
of the wave vector. Thus, an improvement in the pre-
cision of measuring I' can be expected by use of shorter
pulses. A second proposal is to use a thinner sample. Let
us consider a thin sample whose thickness is of the same
order as the absorption length of the excitonic polariton,
namely, the inverse of the imaginary part of the wave vec-
tor. In this case the simple expression (3.13) cannot be
used and one has to calculate the full expression (3.4).
The correlation trace can be expected to be sensitive to the
value of T". In fact, for a l-um-thick sample of CuCl one
obtains correlation traces sensitive to the value of [, as
shown in Fig. 9. Thus, the value of T can be fixed from
curve fitting if the value lies within the range shown in
the figure.
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Finally let us point out a few interesting proposals for
future study. The first one is the use of two-photon exci-
tation of the upper-branch polariton. This excitation
scheme was first devised by Frohlich er al.3"3? to mea-
sure the polariton dispersion in CuCl. By two-photon ex-
citation an upper-branch polariton can be created almost
uniformly in a sample because the fundamental photon
energy lies in the transparent region of the crystal. Furth-
ermore, this excitation scheme can create an upper-branch
polariton selectively without excitation of the lower-
branch polariton owing to wave-vector conservation.
Thus, the troublesome additional boundary conditions
(ABC) problem™ can be avoided and the dephasing relax-
ation constant of the upper-branch polariton can be mea-
sured precisely, although the tunable energy range may be
rather limited. A second proposal is the use of
reflection-type four-wave mixing. As is well known, the
pseudogap region is highly absorptive and shows a high
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reflectivity. Thus, it is desirable to measure the four-wave
mixing signal in reflection geometry rather than in
transmission geometry. In fact, four-wave mixing in re-
flection geometry is successfully observed in CuCl (Ref.
34) using nanosecond laser pulses. Since the excitonic po-
lariton in the pseudogap region has a very short penetra-
tion depth in the crystal, one can probe the relaxation of
the excitonic polariton in the vicinity of the crystal sur-
face by means of reflection-type four-wave mixing.
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Energy- and time-resolved luminescence of the one longitudinal optical-phonon Stokes sideband of the 4
exciton in CdSe has been studied in the picosecond time domain under the weak band-to-band excitation.
Dynamic energy relaxation of excitons is directly visualized in the energy-time coordinates. The observed
energy-relaxation rate of excitons is explained by a model taking into account three types of exciton-
phonon interactions, that is, the deformation-potential-type, the piezoelectric-type, and the Frohlich-type
interaction. This result clearly demonstrates the applicability of the method used in this work to the

analysis of the energy relaxation of excitons.

Recent advances of picosecond spectroscopy have enabled
us to observe directly dynamic energy-relaxation processes
of excitons.!"* In semiconductors the energy relaxation of
excitons is considered to occur via three types of exciton-
phonon interactions. They are the deformation-potential-
type, the piezoelectric-type, and the Frohlich-type interac-
tions. However, so far there have been scarcely any experi-
mental studies to reveal the role of these interactions in the
energy relaxation of excitons.

In the present work the energy- and time-resolved
luminescence of the one longitudinal optical-phonon (1LO)
Stokes sideband of the 4 exciton (4-LO) in CdSe is exam-
ined with picosecond time resolution under the rather weak
band-to-band excitation. Because of the polariton effect,
the luminescence line shape of the A4-exciton zero-phonon
band is related to the energy distribution function of exci-
tons in a rather complicated manner. On the other hand,
the line shape of the 4-LO band directly reflects this distri-
bution function.” Therefore, the analysis of the 4-LO band
is more favorable than that of the zero-phonon band to
derive the distribution function. The group velocity of the
excitonic polaritons in the 4-LO band region is so fast (-‘;
of the light velocity in vacuum) that the time-resolved 4-
LO luminescence quickly follows the time evolution of the
energy distribution of excitons. From the time evolution of
the distribution thus observed, we clarify the role of the
exciton-phonon interactions in the energy relaxation of exci-
tons.

A platelet-type CdSe crystal was grown by the vapor-
transport method. The crystal, having the ¢ axis lying in its
face, was directly immersed in liquid helium. Light pulses
given by a Rhodamine-6G dye laser synchronously pumped
by a mode-locked argon laser were used as the excitation
source. Laser light with a pulse width of 1-2 ps and the
output of 300 pJ/pulse was focused on the face of the CdSe
crystal with the spot diameter of 200 um. The lasing pho-
ton energy, 2.072 eV, with the spectral width of 2 meV cor-
responds to the band-to-band excitation of CdSe.

The spectrally resolved temporal response of the lumines-
cence was analyzed by using a System consisting of a 25-cm
monochromator, a synchroscan streak camera (HTV-
C1587), a silicon intensifier target (SIT) camera, and a com-
puter. The spectral resolution was 1.4 meV. The time reso-
lution of the combined system of the laser, the monochro-
mator, and the streak camera was 70 ps, which is deter-
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mined by the jitter and the finite slit width of the streak
camera and the spread of the light path in the monochroma-
tor. Another 50-cm monochromator and an intensified SIT
camera were used to obtain the time-integrated lumines-
cence spectra with the spectral resolution of 0.2 meV.

In Fig. 1, time-integrated luminescence spectra of the 4-
exciton band and the 4-LO sideband are shown. Under the

178 ‘
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LUMINESCENCE INTENSITY (arb. unit)
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FIG. 1. Time-integrated luminescence of the A-exciton and 4-LO
bands of CdSe (a bold line) at 4.2 K under the irradiation of (a) the
cw He-Ne laser (1.959 eV, 1 mW) and (b) the pulsed dye laser
(2.072 eV, 1-2 ps, 300 pl). The spectral resolution is 0.2 meV.
Dashed lines show smooth backgrounds assumed and fine lines
show the luminescence structures obtained by subtracting the back-
grounds from the luminescence spectra. Theoretical fits on the
basis of Eq. (2) are shown by dotted lines, assuming 7, =9 K for
(a) and 14 K for (b).
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excitation of the 1-2-ps (300-pJ) light pulses, the 4-exciton
and A-LO luminescence bands [Fig. 1(b)] are broadened
compared with those under the excitation of 1-mW He-Ne
cw laser light [Fig. 1(a)]. The line shapes of the 4-LO and
A-2L0 bands have been considered to be expressed by

(E‘E{"‘ELO)]/ZeXP[— (E"El'}'ELO)/kBTz]
and
(E—E+2E o) expl ~ (E ~ E,+2E10)/ ks T.] ,

respectively.>¢ Here, £ is the luminescence photon energy,
E, (=1.8242 eV)7 the transverse A-exciton energy, Eio
(=26.3 meV)’ the LO-phonon energy, and T, the.effective
time-averaged temperature of the exciton ensemble. The
line shape of the 4-2LO band directly reflects the Maxwell-
Boltzmann distribution of excitons. On the other hand, the
line shape of the A-LO band reflects on both the energy dis-
tribution and the g dependence of the matrix element of the
Frélich-type 1s exciton~LO-phonon interaction,?

Velg) = (/) [(2mEroe¥ V) (1 /ew— /€)1 (q.— q1) .
1)

where
ge = {1+ [(qag/2)mp o/ (me+mp) 1372 .

g is the wave vector of phonons, V the volume of the crys-
tal, e the charge of an electron, €. (o) the optical (static)
dielectric constant, me ¢y the mass of an.electron (hole),
and ag is the Bohr radius of the 1s exciton. The extra fac-
tor (£ — E,— E1o) in the line shape of the 4-LO band arises
from the asymptotic form (g — 0) of the matrix element,
noting that

(1/g)(qe—an) = (qad/2) (me—= mp)/ (mo + my)

when g < 1/ag. This usual line-shape analysis includes a
flaw, because the T, obtained for the 4-LO band was found
to be slightly lower than that for the 4-2LO band. This
discrepancy is considered to arise because the condition
g < 1/agz does not hold at the high-energy side of the 4-LO
band.

For the refined line-shape analysis, we take the following
procedure. In the procedure the polariton effect as well as
the accurate ¢ dependence of the Frohlich-type interaction
are taken into consideration. Excitons are assumed to be
populated on the following polariton dispersion obeying the
Boltzmann distribution exp(—E/kpT.).

(hck/E)? = e(k,E) =e,,[E,(k)’—EI]/[E}(k)2~EZ] ,

where Ej(k)=E;+k*%*2M and E/(k)=E +k%%2M.
Here, E and k are the energy and the wave vector of an ex-
citonic polariton, £,=1.8242 eV, E;=FE,+0.50 meV (Ref.
7), es=8.4 (Ref. 9), and M =m, + m;=0.58m¢ (electron
mass).” From this dispersion relation, the density of states
D(E) is obtained to be k¥ (w?dE/dk|). Therefore, the
luminescence line shape of the 4-LO band is proportional to
the product of D (E), exp(—E/ksT.) and |Vr(q)|* as fol-
lows: .

J(E=E—Eo)= exp(—E/kgT.)D (E)(1/k)?
X {1/ [1+ (aek ) 12— 1/[1 + (apk )32,
(2)
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where
e (my=(ap/2)my ()] (m, + my)

and ¢ is replaced by k because g = k. The values of m,, mp,
and az are 0.13mq, 0.45m,, and 53.6 A, respectively.’® The
line shapes fitted on the basis of Eq. (2) are shown in Fig. 1
by dotted lines, assuming T, =9 K for (a) and 14 K for (b).
The fitting is satisfactory. .Using the same values of T, the
line shapes of the 4-2L0O band were found to be also well
explained by

[(E"E""ZELO)‘: exp(—E/kgT,)D (E) .

Therefore, the line-shape analysis on the basis of Eq. (2) is
precise enough.

Energy- and time-resolved luminescence are shown in
Figs. 2 and 3. These figures are constructed from the spec-
trally resolved temporal response of luminescence. It can be
seen from the figures that the rise of the luminescence is
determined by the time resolution.of the instrument at the
high-energy extremity (1.806 eV). On the other hand, it
takes more than 300 ps for the luminescence intensity to
reach its maximum below 1.799 eV. Excitons relax toward
lower-energy states losing their energy.

The luminescence intensity of the 4-LO band is related to
the energy- and time-dependent distribution function f(E,¢)
by the following equation:

HE=E—E o) f(ED(E)(1/k)?
' X (/114 ook )212—1/11 + Cank )21%2 .

(3)

Using Eq. (3) and /(E,1) which is directly displayed in Fig.
2, we can deduce f(E,t). The obtained f(E,t) was found
to be approximately described by a Boltzmann distribution.
The average energy and the total number of excitons (Z,)
and N, are calculated by

8 [}
(Ee) = zE,f(E,,z)Dw,)]/ Ef(E.».t)D(E,»)l ,
Jw=1 i=1

> CdSe
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FIG. 2. Three-dimensional view of energy- and time-resolved
luminescence intensity of the 4-LO band in CdSe at 4.2 K.
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and
8
Ne= 3 f(E.1)D(E) .
iml

Here, Es (i=1~8) minus E;g are the photon energies
where the temporal response of luminescence intensity is
observed. The calculated (E.) and N, are shown in Fig. 4.
The result indicates that excitons lose their energy at the
time constant ~ 150 ps, which is much faster than their
lifetime of 2.8 ns.

The kinetic energy loss rate of excitons can be calculated
for three individual scattering processes: (i) the
deformation-potential-type interaction with LA phonons;
(ii) the piezoelectric-type interaction with LA or TA pho-
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FIG. 4. Temporal change of the number density (a fine line) and
the average energy (a bold line) of the A-exciton ensemble in CdSe
at 4.2 K. The theoretical calculation on the basis of the model
described in the text is shown by a dashed line.
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nons; and (iii) the Fréhlich-type interaction with LO pho-
nons. The matrix element of (iii) is given by Eq. (1), and
those of (i) and (if) are described by* !

Vdp(q) - (h'/zpll L) l/zq lll(cht - Dth) ’

and

Voelq) = (5/2pup 1)) V2
x [dme (ef) it/ (e0q¥®) (g —as) . @

Here, D.(,) is the deformation potential of the conduction
(valence) band, p the density, {ef)vL(m) the spherical aver-
age of the squares of the piezoelectric constant for the LA
(TA) phonons, and uy() the sound velocity of the LA
(TA) phonons. Because the ¢ dependence of Val(g),
Vee(q), and Vp(q) are different from one another, the
dominant energy-loss mechanism is alternated depending on
the wave vector of excitons.

It is very difficult to derive the energy-loss rates of the
excitons populated on the polariton dispersion using the ex-
act forms of Vap(q), Vpl(q), and Vr(q). The derivation
can be performed only numerically. On the other hand, we
can derive the analytical expression for the energy-loss rates
of the excitons populated on the parabolic dispersion, taking
the asymptotic forms of the matrix elements. As men-
tioned above, we have precisely treated the experimental
results to derive the time-resolved average energy of exci-
tons. In the following theoretical analysis, however, we take
the parabolic exciton dispersion for simplicity and for good
insight. We derive the energy-loss rates of the exciton en-
semble obeying the Maxwell-Boltzmann distribution. They
are given by the following equations for k <ag!=2

10" T T T
t CdSe
~ 10° F A exciton
£ ]
ICARIO < 3
A E Ty=a.26 ]
g 0k .
Ao -
d
S i E
i 3 ]
10° 3 E
104 '._.. adaaaal ol 1
0 10 20 30 40

FIG. 5. Calculated energy-loss rates of excitons obeying the
Maxweli-Boltzmann distribution with the exciton temperature T,.
Three individual energy-loss rates due to the deformation-
potential-type, the piezoelectric-type, and the Fréhlich-type interac-
tions are shown by a dashed line (dp), a dash-dotted line {pe), and
a dash-double-dotted line (F), respectively. A bold solid line shows
the total energy-loss rate which is a sum of the three individual loss
rates.
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x 108 cm™L.
dEe 27/ZD2M5/2 3 T TL
(50, =~ o T | 25| ®)
(d_E,> _512(27r)'“e2(e,})M7“
dt /pe Il‘se&p
2
mMe—m, 4 52 T TL
oy .+m:. 8(kgTe) l T. s ©)
and
<d_E,> _ 2220512 12 1 1)[me=m 2
dt /¥ £ € €0 || Metmy
£Er0 Eio
4 - - -
xaglexp[ k3T¢] ex T, ] , n

where D = |D.~D,|=2 eV is the deformation potential of
the 4 exciton,”?? T, =4.2 K the lattice temperature, and
{ef) = (efyL+ (ef)1. These equations can be derived fol-
lowing the same procedures as are described by Conwell,

taking the asymptotic form (g — 0) of the matrix elements
of Egs. (1) and (4). The numerical values of the parame-
ters are p=>5.81g/cm® (ef)L(m=0.0144 C¥m* (LA),

0.0189 C¥m* (TA),"*!5 =9.70,"" and €.=7.02." The
calculated energy-loss rates by using Egs. (5)-(7) are shown
in Fig. 5.

The overall energy—loss rate {dE,./dt) is given by the sum
of (dE:/dt)ep, (dEe/dt)p, and (dE./dt)r. Thus, the tem-
poral trajectory of the (dE./dt) follows the curve of the
overall energy-loss rate. Along this trajectory, the temporal
change of {E,) can be calculated with the initial tempera-
ture T.=24.2 K, noting that {(E,) = E,+ (3/2)ksT.. The
calculated result is shown by the dashed line in Fig. 4. The
agreement with experiment is good except at the low-energy

‘region. The piezoelectric-type exciton-phonon interaction

plays the predominant role in the energy relaxation of exci-
tons. Furthermore, it should be noted from Fig. 4 that the
experimental average energy is lowered below
E,+ (3/2)kgT, after 300 ps. This fact is not so surprising
because excitons can be populated on the polariton disper-
sion even below E,. Thus, it comes from the polariton ef-
fect. The numerical analysis taking account of the exact
forms of V4,(q), Vpe(q), and Vr(q) as well as the polariton
effect may give the full explanation of the experimental
results. However, our essential conclusion concerning the
energy-loss rates of excitons should still be valid. Instead,
we should note that the simple calculation procedure men-
tioned above is useful to analyze the energy relaxation of
excitons.

Ip, Wiesner and U. Heim, Phys. Rev. B 11, 3071 (1975).

2y. Masumoto and S. Shionoya, J. Phys. Soc. Jpn. 51, 181 (1982).

3T. Kushida, S. Kinoshita, F. Ueno, and T. Ohtsuki, I. Phys. Soc.
Jpn. 52, 1838 (1983).

4F. Askary and P. Y. Yu, Phys. Rev. B 28, 6165 (1983).

SE. Gross, S. Permogorov, and B. Razbirin, J. Phys. Chem. Solids
27, 1647 (1966).

6V, A. Abramov, S. A. Permogorov, B. S. Razbirin, and A. I. Eki-
mov, Phys. Status Solidi 42, 627 (1970).

1C. Hermann and P. Y. Yu, Phys. Rev. B 21, 3675 (1980).

8Y. Toyozawa, Progr. Theor. Phys. 20, 53 (1958).

9F. Askary and P. Y. Yu, Solid State Commun. 47, 241 (1983).

108 Segall and D. T. F. Marple, in Physics and Chemistry of II-VI
Compounds, edited by M. Aven and J. S. Prener (North-Holland,

Amsterdam, 1967), Chap. 3.

¢, Weisbuch and R. G. Ulbrich, in Light Scattering in Solids II1,
edited by M. Cardona and G. Giltherodt (Springer, Berlin, 1982),
p. 207.

12D, W. Langer, R. N. Euwema, K. Era, and T. Koda, Phys. Rev. B
2, 4005 (1970).

I3E, M. Conwell, in Solid State Physics, edited by F. Seitz, D. Turn-
bull, and H. Ehrenreich (Academic, New York, 1967), Suppl. 9,
Chap. 3.

14A. R. Hutson, J. Appl. Phys. 32, 2287 (1961).

15D, Berlincourt, H. Jaffe, and L. R. Shiozawa, Phys: Rev. 129
1009 (1963).

16R, E. Halsted, M. R. Lorenz, and B. Segall, J. Phys. Chem. Solids
22, 109 (1961).



PHYSICAL-REVIEW B

VOLUME 29, NUMBER 4

15 FEBRUARY 1984

Picosecond time-resolved study of excitons in GaAs-AlAs
multi-quantum-well structures

Yasuaki Masumoto and Shigeo Shionoya
The Institute for Solid State Physics, The University of Tokyo, Roppongi 7-22-1, Minato-ku,
Tokyo 106, Japan

Hitoshi Kawaguchi

A 5

M ino Electrical Ct ication Lab

rv. Nippon Telegraph and Telephone Public Corporation (NTT),

Midori-machi 3-9-11, Musashino-shi, Tokyo 180, Japan
(Received 1 December 1983)

Energy- and time-resolved measurements of luminescence of s excitons (n=1,e —hf) in GaAs-AlAs
multi-quantum-well structures have been carried out for the first time in the picosecond time domain.
Dynamical population changes of excitons are directly visualized in the energy-time coordinates. Results
indicate that excitons lose their energy in the exciton band at a rate of 1.0x 108 eV/s. This rate is much
slower than the calculated kinetic-energy-loss rate and is ascribed to the random nature of the well.

Excitons in multi-quantum-well (MQW) structures have
prominent two-dimensional characters because of the quan-
tum size effect.! Wave functions and binding energies of
excitons in MQW are quite different from those of excitons
in bulk crystals as a result of this effect.”* In addition to
the two-dimensional characters, excitons in MQW have an
inhomogeneous character which is inevitably given in the
process of the sample preparation.™® The well thickness is
considered to be fluctuated by an order of one. atomic layer.
This yields the fluctuation of the resonance energy of exci-

. tons. Thus excitons in MQW are considered as a typical ex-
ample of the two-dimensional excitons in the random po-
tential.

Energetical relaxation processes of excitons in the two-
dimensional random well are expected to be quite different
from those of excitons in three-dimensional regular crystals.
However, to our knowledge, there exist no experimental as
well as theoretical studies dealing with energetical relaxation
processes of excitons in the two-dimensional random well.
In this work, the energy- and time-resolved luminescence of
weakly excited excitons in MQW has been studied for the
first time. Energetical relaxation processes of excitons in
MQW are discussed on the basis of the experimental results
and of a simple calculation which takes account of the two-
dimensional character of excitons.

The sample used in this experiment was grown by molec-
ular beam epitaxy (MBE) on a GaAs (100) substrate. It
consists of alternate 76-A GaAs well layers and33-A AlAs
barrier layers of the total thickness 2.98 um. A window was
etched in the GaAs substrate for the optical absorption mea-
surement.

A rhodamine 6-G dye laser synchronously pumped by a
mode-locked argon laser was used, which gives 1-2-ps light
pulses of 300 pJ. The pulse duration was continually moni-
tored by using a rapid-scan autocorrelator.” The lasing pho-
ton energy was 2.063 eV with a spectral width of 3 meV.
The laser beam was focused on a GaAs-AlAs MQW sample
immersed in liquid helium with a spot size of 200 um. The
spectrally resolved temporal response of the luminescence
was analyzed by using a combined system of a 25-cm mono-
chromator, a synchroscan streak camera (HTV-C1587), an
SIT (silicon intensifier target) camera, and a computer. The
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streak camera was synchronously operated with the mode-
locked argon laser. The averaging at a high repetition rate
(82 MHz) enabled us to observe directly the spectrally
resolved [full width at half maximum (FWHM) = 1.1
meV] temporal response of the exciton luminescence from
GaAs-AlAs MQW excited by only 300-pJ light pulses.
Time resolution of the streak camera was found to be 30 ps.
However, the time resolution of the combined system of
the monochromator and the streak camera was lowered to
70 ps, because of the spread of the light path in the mono-
chromator.

In Fig. 1, spectra of the absorption and time-integrated
luminescence are shown. The absorption peak observed at
1.6225 eV with 7.5-meV width (FWHM) is ascribed to the
1s exciton (n=1,e —h#) composed of an electron and a
heavy hole belonging to the lowest state (n=1) in the
quantum well. The observed spectral width is attributed to
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FIG. 1. Absorption coefficient and time-integrated luminescence
spectra of GaAs-AlAs MQW (76-A GaAs well, 33-A AlAs barrier,
298 um) at 42 K. The spectral resolution is 0.3 meV.
Luminescence spectra were obtained under (a) pulsed dye laser
(2.063 eV, 1-2 ps, 300 pJ) and (b) cw He-Ne laser (1.959 eV, 0.01
mW) excitation.
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the fluctuation of the well thickness from the following dis-
cussion.® The energy of the 1s exciton in the well measured
from the bottom of the well (the band-gap energy of bulk
GaAs) is E,=1(1s)=16225 eV—E,=103.3 meV, where
Ey=1.5192 eV is the band-gap energy of GaAs.® Assuming
the fluctuation of the well width to be the half of the lattice
constant @ of GaAs and noting that E,.(1ls) is approxi-
mately proportional to the inverse square of the well thick-
ness L;, %3 one can calculate the fluctuation of E,~(1s) in
MQW as

5Eyw1(ls) =2E,1(15)(8L,/L,)
=2E, . (15)(a/2L;) =7.7 meV . (48]

Here 8E,-1(1s) is the fluctuation of Eym1(1s), L, =76 & is
the well thickness, 8L is the fluctuation of L,, and a = 5.64
A.® Because this estimated value of 7.7 meV almost coin-
cides with the measured value of 7.5 meV, it is concluded
that the width of absorption arises from the fluctuation of
the weil width which is ~ /2.1

A time-integrated luminescence band under the 1-2-ps
pulse excitation is observed at the lower-energy side of the
absorption band as shown in Fig. 1. Peaks of the lumines-
cence and absorption spectra are separated by 6.5 meV,
This fact indicates that photogenerated excitons are populat-
ed at the low-energy states in the exciton band, because the
lumninescence spectra reflect the energetical distribution of
excitons. The excitation photon energy ( =2.063 eV) in the
present case is above the band-gap energy of GaAs and
below the indirect (=2.229 eV; X) as well as direct { =3.13
eV; T') excitonic band-gap energy of AlAs.!! Therefore,
only the GaAs well layers are photoexcited. The number of
photoexcited layers is less than 20, because the absorption
coefficient for 2.063 eV is above the detection limit (5% 10*
ecm~'). The luminescence band changes little, even when
the excitation level is reduced to 0.01 mW (CW) He-Ne
laser excitation. Therefore, it is sure that the luminescence
band observed under the 1~2-ps (300 pJ) pulse excitation
arises from ls excitons. Any other luminescence bands,
such as those due te 2s excitons and 1ls excitons
(n=1,e-th) in MQW, the AlAs barrier layers, and the
GaAs substrate, were not observed.

The energy- and time-resolved results of luminescence
are shown in Figs. 2 and 3. These figures are constructed
from the spectrally resolved temporal response of lumines-
cence. As is seen from the figures, the observed rise of the
population of excitons is determined by the time resolution
of the instrument at the high-energy extremity (1.6228 eV).
On the other hand, it takes about 400 ps for the population
of excitons lower than 1.616 eV to reach its maximum. Be-
cause the reflectivity in the relevant energy range was found
not to change very much (AR/R < 0.2), the change of the
refractive index also should be small. Thus the energy and
time responses of luminescence can be regarded as directly
reflecting the dynamics of the exciton population, because
the energy dependence of the emission probability of exci-
tons can be neglected. The temporal change of population
is clearly observed in Fig. 3. Excitons drift toward lower-
energy states losing their energy. The spectrally integrated
luminescence does not show a single exponential decay.
However, a characteristic time to decay to the 1/e value of
the maximum is about 480 ps. This decay characteristic
does not depend on the excitation intensity down to 10%.
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FIG. 2. A bird’s-eye view of energy- and time-resolved lumines-
cence intensity of the excitons (n = 1,e-hh) in GaAs-AlAs MQW at
4.2 K.

Therefore, we need not take account of the effect of the bi-
molecular recombination.

To discuss the energetical relaxation of excitons, the aver-
age energy (E(t)) of the ensemble of excitons is defined

as follows:
12
/[ Ef(E,.z)] . )
=1

12
(E(t))=[ zlE'f(E"”

e
where f(E;,t) is the spectrally resolved temporal response
of the luminescence shown in Fig, 2, and E’s (i=1-12)
correspond to the observed photon energies. The temporal
change of (£(t)) is shown in Fig. 4. The result clearly
shows that the average energy of excitons decreases at a
constant rate of 1.0x 10%eV/s.

The kinetic energy decreasing rate of two-dimensional ex-
citons via the deformation-potential-type interaction with
LA phonons is calculated by the following equation, which
is a direct extension of the expression describing the energy
decreasing rate of two-dimensional hot electrons, -4

(dE(1)/dt) gom — (2M*DY5%p) [kpT.(+) ~ ks T.] , (3
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where M is the exciton translational mass, D is the exciton
deformation potential, p is the areal mass density in a layer
thickness L;, T.(¢) is the effective temperature of two-
dimensional excitons, and 7T, is the lattice temperature.
The piezoelectric-type interaction with LA or TA phonons is
considered to give the minor contribution to the energy-
decreasing rate of two-dimensional excitons compared with
the deformation-potential-type interaction in GaAs except at
the large wave vector of excitons.’>!® The Fréhlich-type in-
teraction with LO phonors also does not contribute to the
energy relaxation of excitons in the exciton band, because
LO phonon energy (=36.2 meV) is larger than the ob-
served luminescence bandwidth. Equation (3) is integrated
as follows, because (E (1)) =kpT.(1):

T, (t) =T, +[T.(0) — T ]expl — 2M2D¥5%):1] , (4)

where T,(0) is the initial temperature of the excitons. Us-
ing the values of M = 0.7m, (clectron mass),'? D =9.6 eV,!%
p = pigimL: = (5.3 g/cm?) x (76 x 107% cm) = 4.0 x 10~¢
g/cm?,? and T = 4.2 K, the exponent in Eq. (4) is obtained
as — (M DYp)r=—(4.1x10"° s~1)z, This indicates
that two-dimensional excitons lose their kinetic energy at a
time constant of 24 ps. This calculated decay rate is much
faster than the observed one, if all the energy losses are at-
tributed to the kinetic-energy loss.

In the above calculation, we have taken account only of
the two dimensionality of excitons. In reality, not only the
two dimensionality but also the randomness due to the fluc-
tuation of the well width contributes to the energetical re-
laxation of excitons. In MQW there should be a number of
clusters in which the well width is homogeneous. The la-
teral characteristic size 1. of the clusters is estimated to be
an order of the exciton Bohr radius as=136 A, " because
the absorption spectrum of excitons does not show sub-
structures. Because the excitation spot size of 200 uwm cov-
ers many (an order of 10%) clusters, the statistical distribu-
tion of the lateral size of clusters in each photoexcited well
structure is expected to be the same. Supposing the ex-
treme case that the cluster lateral size is much larger than
ag, the exciton energy levels in each cluster are different
from each other by the multiple of 7.7 meV in our sample,
because the fluctuation of the well width is the multiple of
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a/2. Around the cluster boundaries, the intercluster
translational motion of excitons is restricted, because the
mismatch of the resonance energy of 1s excitons should be
compensated by the emission or absorption of acoustic pho-
nons. Thus excitons are localized in clusters with the. loss
of the kinetic energy and intercluster movement of excitons
is weakly allowed with the emission or absorption of acous-
tic phonons.

Similarly to the three-dimensional case, photogenerated
two-dimensional electron-hole pairs will quickly lose their
energy to form excitons with the emission of a number of
phonons within the present time resolution.?® The calcula-
tion described in Eq. (4) shows that the kinetic energy loss
of excitons is almost completed within the present time
resolution. What process is responsible for the observed
energy-loss rate of excitons? In the random well, there can
be two channels for the energetic relaxation processes of ex-
citons. On the one hand, excitons lose their kinetic energy
via the acoustic-phonon interaction. On the other hand, ex-
citons lose their energy migrating toward the lower-energy
positions in an inhomogeneous well with the emission of
acoustic phonons. After most of the kinetic energy is lost,
the kinetic-energy-loss process works little because
(dE(t)/dt) g is proportional to the excess Kinetic energy
kgT.(t)—kpTy, so that excitons lose their energy mainly
via the latter process. If this is correct, the estimation based
on Eq. (3) and the result of Fig. 4 show that the alternation
of the energy-loss channels occurs when the excess kinetic
energy of excitons becomes smaller than 0.024 meV. Then
the localization of the excitons is established with the loss of
the kinetic energy. After that, excitons lose their energy
slowly, migrating toward lower-energy positions in the inho-
mogeneous well with the emission of acoustic phonons. As
stated above, the intercluster migration of excitons presum-
ably interprets the observed slow energy-decreasing rate of
excitons, although at present we cannot calculate quantita-
tively the energy-decreasing rate on the basis of this model.
Detailed experiments on various samples having different
degrees of two dimensionality and randomness are now in
progress.

In summary, picosecond relaxation processes of 1s exci-
tons {n=1,e-hh) in GaAs-AlAs MQW have been studied
by observing the energy- and time-resolved luminescence.
The decreasing rate of the average energy of excitons is
constant and found to be 1.0% 10% eV/s. This rate is much
slower than the kinetic-energy-loss rate calculated by taking
account qf the two dimensionality of excitons. Instead, the
energetic relaxation process due to intercluster migration of
excitons with the emission of acoustic phonons is proposed
to interpret the observed slow rate,
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Picosecond energy relaxation processes of excitons in the well
layers of GaAs-AlAs multi-quantum-well structures have been
systematically studied for the first time. It has been
observed that excitons lose their energy in the exciton band
much more slowly than expected by the kinetic-energy-loss
theory. The measured energy-loss-rate remarkably increases
with the decrease of the GaAs well thickness. These facts
suggest that excitons are localized in the disordered well and
that slow energy relaxation is attributed to the phonon-assist-
ed cross relaxation between localized exciton states.

1. Introduction

Excitons in multi-quantum-well structures (MQW) have inhomogeneous
as well as two-dimensional characters. The resonance energy of excitons
is spread, because the well thickness is laterally fluctuated by an order
of one atomic layer. As a result, absorption, luminescence and
excitation spectra of excitons in MQW are inhomogeneously broadened
depending on the degree of the fluctuation [1-3]. The energy relaxation
process of excitons in two-dimensional disordered systems provide one of
the most important open subjects in semiconductor physics. The exciton
in GaAs-AlAs MQW is suitable for this study, because two-dimensionality
and disordered character in MQW are controllable by the recent
semiconductor technology. In this work, we present for the first time a
systematic study on the picosecond energy relaxation processes of
excltons in GaAs-AlAs MQW made with changing the GaAs well thickness.

Sample Code | L (&) | L,(A) | a(um) | E__ (eV) |8E__, (meV)
#1 43 62 2.1 1.683 16
#2 53 50 2.3 1.672 20
#3 58 71 2.2 1.642 11
#4 76 33 3.0 1.622 7.5
#5 108 36 3.5 1.572 3.1

Table I. List of GaAs-AlAs MQW samples. L,: GaAs well thickness; Lp:
AlAs barrier thickness; d: total thickness of GaAs-AlAs MQW; Ep-1: energy
of the absorption peak due to the 1s exciton (n = 1, e~-hh) at 4.2 K;
S§En=1: line-width of the absorption spectrum at 4.2 K.
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2. Experimental Procedures

In this work five samples grown by molecular beam epitaxy on GaAs
substrates were used. Their properties are listed in Table I. They
consist of alternate GaAs well layers and AlAs barrier layers. Window
portions in the samples where the GaAs substrates were removed were used
for the luminescence experiments as well as the absorption experiments.

As the excitation source a rhodamine 6-G dye laser synchronously
pumped by a mode-locked argon laser was used. It gives 1-2 ps light
pulses of 300 pJ. The laser beam was focused on GaAs-AlAs MQW samples
immersed in liquid helium. The excitation photon energy is 2.0-2.1 eV
which is above the lowest quantum state (n=1) in GaAs well layers of all
the samples and below the indirect (= 2.229 eV; X) as well as direct
(=3.13 eV; T) excitonic band-gap energy of AlAs. Thus only the GaAs well
layers were excited. The spectrally resolved (resolution = 1 meV)
temporal response of the luminescence was analyzed by using a combined
system of a 25 cm-monochromator, a synchroscan streak camera (Hamamatsu
C1587), a silicon intensifier target camera and a computer. The time
resolution of the system was 70 ps.

3. Experimental Results and Discussions

In Fig.l, spectra of the absorption and time-integrated luminescence
of typical two samples (#3 and #4) are

4
T TrrTTTeeeTTTTY 53;’10 shown. The absorptior} peak observed

T | 42K n=t E at 1.6420 eV with 11 meV width in #3
5 #3 e-hh 02l 350 and that observed at 1.6225 eV with
E 3 7.5 meV width in #4 are ascribed to
= E the 1s exciton (n=1, e-hh) composed of
.% ok ) _ an electron and a heavy hole belonging
] ER '?; to the lowest state (n=1) in the
& | s quantum well. As is seen, the
g —22)8046 absorption spectral width is sample-
z E dependent. This fact is not strange,
_§J - because the origin of the spectral
Eld width is attributed to the fluctuation

3 of the well thickness. As listed in

T T TSR TR T ¥ Table I, the energy position of

PHOTON ENERGY (eV) . absorption peaks En=1 and their spec-

tral width aEn_ are varied depending

Fig.l. Absorption and time- 1

integrated luminescence spectra on the well thickness L. As the
of two GaAs-AlAs MQW samples, #3 fipst ) . z £ (E_ =
and #4, at 4.2 K. Luminescence 1irst approximation, E__, - g =

spectra were obtained under the band-gap energy of GaAs = 1.5192 eV)

irradiation of pulsed dye laser _
(2.063 eV, 1-2 ps, 300 pJ). and GEn:l are expected to be propor



1. Slow Energy Relaxation of Excitons in GaAs-AlAs Multi-Quantum-Well Structures 351

2 -3
and LZ ,

tional to LZ_
and GEn=1
Energy- and time-resolved results of luminescence of samples, #3 and

#4, are shown in Figs.2 and 3.

respectively [1] . Actually, however, E - E

n=1 g
do not increase so much with the decrease of Lz'

These figures are constructed from the

spectrally resolved temporal response of luminescence by means of

computer graphics. The energy and time response of luminescence directly
Thus it 1is clearly
observed from the figures that excitons drift toward lower energy states

losing their energy in both of the samples.

reflects the population dynamics of excitons.
The temporal change of the
average energy of the exciton ensemble is shown by bold dashed lines in
the figures. It is found that the energy-loss-rate of excitons is
sample~dependent. In #3, the energy-loss-rate varies from 12.5x106 evV/s
(at the initial stage) to 3.7x106 eV/s (at the later stage), while it
eV/s to 2.8x10°% ev/s in #4.

In the disordered well,

varies from 4.5x106
there can be two channels for the energy
relaxation of excitons.
Fig.4.

are scattered to smaller k states via the exciton-phonon interaction.

These two channels are schematically shown in
One channel is the kinetic-energy-loss process, in which excitons

The other channel is the cross relaxation process, in which excitons lose
their energy migrating toward lower-energy positions in an inhomogeneous-
In MQW
The kinetic-energy-loss rate

ly broadened exciton band accompanied by the emission of phonons.
both the processes are expected to occur.
of two-dimensional excitons via the deformation-potential-type exciton-LA
phonon interaction is calculated to be <dE/dt>d = -(2M2D2/ﬁ3p)[kBTe(t) -

kBTL] [3]. Here M is the exciton translational mass, D is the exciton

1000 800T .

b [ :

80of soo} ;

L L ]
~ 600F - r ]
8 & 400 .
X 400F 3 s .
Bt & 200¢ ]
w 200F g ‘ :
.E-' of 1= 0 AP0 T m—— E

-200F i -200f F @ -
E 1 ] T | bedda .i -AO E\ |;\ ?I-. al 43 AQ..A:
=400 163 164 1.65 06101617 1614 1516 1618 1620 1622 1824

PHOTON ENERGY (eV) PHOTON ENERGY (eV)

Fig.2. A contour map of the energy-
and time-resolved luminescence in-
tensity of the 1ls excitons (n=1,
e-hh) in a GaAs-AlAs MQW sample
(#3) at 4.2 K. A bold dashed line
shows the average energy of exci-
tons.

Fig.3. A contour map of the energy-
and time-resolved luminescence in-
tensity of the 1s excitons (n=1,
e-hh) in a GaAs-AlAs MQW sample
(#4) at 4.2 K. A bold dashed line
shows the average energy of exci-
tons.
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1)Kinetic Energy Loss 2)Cross Relaxation deformation potential, p is the areal
mass density of well layers, Te(t) is
the effective temperature of two-di-
mensional excitons and TL is the
lattice temperature. From this equa-
tion it is derived that the average

> energy of excitons exponentially decay
k r
to reach the 1lattice temperature.
Fig.4. Two energy relaxation USing the values of M = 0.7 mj
processes of excitons in the (electron mass), D = -9.6 eV, p =
disordered system. _
y P3_gimlz = 3.1x107° g/cm® (for #3),

4.0x10"%g/em? (for #4) and T_ = 4.2 K,
the decay time constants are estimated to be 19 ps (for #3) and 24 ps
(for #4), respectively.

From the above-mentioned simple calculation, it is concluded that
the kinetic-energy-loss process is completed within our present time
resolution (= 70 ps). In MQW it is considered that a well layer consists
of a number of clusters in which the well width i1s homogeneous [1,2].
The lateral size of clusters is estimated to be an order of the exciton
Bohr radius ag = 136 K, because the absorption spectra of excitons do not
show substructures [3]. With the loss of the kinetic energy, excitons
are localized in respective clusters, because the intercluster transla-
tional motion of excitons is 1limited owing to the mismatch of the
resonance energies of excitons in individual clusters. After that,
excitons lose their energy slowly via the intercluster transfer process.

To describe this cross relaxation process, the localized exciton
transfer model proposed by Cohen and Sturge [4] is helpful. This model
was first proposed for the three-dimensional semiconductor alloys.
Afterwards the model has been extended for the two-dimensional excitons
in MQW by Takagahara [5]. Two-~dimensional localized excitons lose their
energy in the exciton band via the one-phonon-assisted transfer
processes. Supposing the intercluster transfer Hamiltonian in the form
of J(r) = Joexp(— r/aB), the transfer rate from the a cluster to the b
cluster due to the deformation-potential-type exciton-phonon interaction

wdb is expressed by

al
2 2 2 f(AE_ )
4 _8r°. 2 2,2. _ 1 Qs ab
Wab = 7R Y0 2B Ca [t (12022 g7slexp (- =) ————g(E,) . (1)
+ap Q) AEab
where Gd is the deformation-potential-type coupling constant which 1is
proportional to Lz"l/2 and asymptotically depends on q1/2 (q + 0). Here

q is the wavevector of phonons, & is the localization extent of excitons,

AEab

in the a and b clusters, f(AEab) is the two-dimensional density of phonon

is the difference between resonance energies of excitons localized
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1,619 e ———r— states and g(Eb) is the density of
F GaAs-AlAs exciton states for which we can

#4
1618 4.2K 3

substitute the absorption spectrum
of the exciton. We obtain the
expression for the transfer rate
1.6175‘ — due to the pilezoelectric-type
interaction waI.Jb by substituting

~. 1 7%/1n ana Gp2 for 872/A and G 7,
respectively [5]. Here the piezo-

AVERAGE ENERGY (eV)
5
o»
,I
’l

electric-type coupling constant G

1.615 6 it ianide "560 teevreed  §s proportional to Lz-l/z ank
TIME DELAY (ps) asymptotically depends on q3/2

(g + 0). Using the transfer rate

Fig.5. Experimental temporal change w, = w3 + wP, the population

w s
id 1line of the average ab ~ “ab ab
éiergs;lgf 1s e))tcitons in a Ga.Ag-— dynamics of excitons are described

AlAs MQW sample (#4) at 4.2 K and by a rate equation. A numerical
calculated change (a dashed line) . ]
based on the model described in the  calculation is done based on this

text. Here an adjustable parameter model adopting the GaAs parame-

i 0.34 V.
J0 is set to be 34 me ters. The temporal development of

average energy obtained by this
way is shown in Fig.5 by the dashed line. Fitting is satisfactory. The
physical origin of the slow energy relaxation comes from the factor of
exp(-—qgc‘;z/z) in eq.(1). Localized excitons can only interact with
phonons whose wavevectors are smaller than the inverse of the localiza-
tion extent of excitons 1/& which is estimated to be the inverse of the
lateral cluster size. As a result, only small energy phonons (< 1 meV)
participate in the cross relaxation of localized excitons.

As stated above, the observed energy-loss-rate is sample-dependent.
What characterizes the energy-loss-rate? To answer this question, we
have measured the energy-loss-rates of five samples in Table I whose well
thicknesses are different from one another. In Fig.6 the energy-loss-~
rate and the absorption line-width of the 1s excitons (n=1, e-hh) are
plotted as a function of the well thickness Lz. It is obvious that the
energy-loss-rate as well as the line-width increase with the decrease of
LZ. The energy-loss-rate is approximately expressed by Lz"a. At present
we can not fully explain this dependence. However, the qualitative
tendency observed 1is consistent with the theoretical model. We are
considering two reasons to account for the Lz dependence of the
energy-loss-rate. One reason 1is the LZ dependence of the transfer rate

2

w With the decrease of L,» Gy and Gp2 in eq.(l1) increase in

ab’
proportion to l/LZ. Another reason is the increase of the absorption
line-width with the decrease of Lz. As the slope of the density of

exciton states g(Eb) at the low energy tail region decreases, the cross
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«10° T T T T T relaxation rate increases. Because we
= 20 ™ {20 _ can substitute the absorption spectrum
% 3 E for the density of exciton states
w o 10p [ q10 2 g(Eb), the cross relaxation rate
= o N| g——i] K increases with the increase of the
% 5[ — 15 % absorption line-width.

70 i 1 ¢
é [ N " 1 = 4. Conclusion
w AY
& r \ 12 We have systematically studied
. . . l.....\ : the energy relaxation processes of
10 20 50 100 200 excitons in GaAs-~AlAs MQW with chang-
Lz (A) ing the GaAs well thickness. Energy-

) loss~rate of excitons in the exciton
?é%‘?‘ ;ﬁf the :S:gfgg%g:siiiZf band is much slower than the calculat-
width (m) of 1s excitons as a ed kinetic-energy-loss rate. A new

function of well thickness Lgz.
Open circles are the energy-
loss-rates at the initial stage processes of two-dimensional localized
of time and closed circles are
those at the later stage of
time. A dashed line shows the slow energy-loss-rate. The measured
Lz‘2 dependence.

model describing the energy relaxation
excltons well explains the observed

energy—-loss-rate remarkably increases
with the decrease of the well thick-
ness. This fact is considered to be a result of increased disordered
character as well as twq—dimensionality.
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A theory of energy transfer of the quasi-two-dimensional excitons in GaAs-AlAs quantum-well
heterostructures is developed, and the recently observed slow and nonexponential energy relaxation
of excitons is explained quantitatively in terms of the one-phonon-assisted transfer of localized exci-
tons among islandlike structures within a quantum well. The nonexponential behavior of energy re-
laxation is clarified as a general feature to be observed in the low-cnergy tail of the density of states.
The dependence of the energy relaxation rate on the quantum-well thickness is discussed along with
the same dependence of the absorption bandwidth. The correlation between the energy relaxation
rate and the absorption bandwidth is explained qualitatively on the basis of the scaling property of
the rate equation for the exciton distribution function.

I. INTRODUCTION

Recently, semiconductor quantum-well (QW) hetero-
structures have been extensively investigated because of
interest in their fundamental physical properties as well as
in their potential device applications. O{)tical techniques
such as time-resolved photoluminescence'~* and resonant
Raman*® and Rayleigh scattering,® are quite promising to
elucidate the salient features of the quasi-two-dimensional
excitons in QW structures. Recently, Masumoto et al.?
studied the time-resolved photoluminescence of 1s exci-
tons (n=1, e-hh) in GaAs-AlAs multiple-quantum-well
structures and found the anomalously slow relaxation of
the average energy of luminescence, which shows a nonex-
ponential decay for about several hundred picoseconds
after photoexcitation. In addition, the decreasing rate of
the average energy of luminescence is too small to be ac-
counted for in terms of the kinetic-energy relaxation on
the dispersion curve of the quasi-two-dimensional exciton
accompanied by emission of acoustic phonons. In the ex-
periments of Masumoto et al. the GaAs layers are selec-
tively excited by choosing the laser energy suitably and
ensuring that the AlAs barrier layers are sufficiently thick
to rule out the possibility of interlayer migration of exci-
tons. On the other hand, it is well known that the topo-
logical disorder of the interface produces sizable optical
effects. From the linewidth analysis of the luminescence
and excitation spectra, and from transmission electron mi-
croscopy, an islandlike structure of the QW, interface
measuring one monolayer high and about 300 A laterally
was pro =% On the basis of this model, a theory is
developed to explain the experimental results of photo-
luminescence in terms of the intralayer migration of local-
ized excitons among islandlike structures with different
well thicknesses.

After photoexcitation, the generated electron-hole pairs
quickly lose their energy and form excitons with emission
of a number of phonons. At the next stage, the kinetic-
energy relaxation on the dispersion curve of the quasi-

3

two-dimensional exciton takes place with a relaxation rate
that is 1 order of magnitude faster than the observed rate.
After these processes are completed, the anomalously slow
energy relaxation begins showing nonexponential
behavior. In this stage the lowest 15 exciton in the GaAs
layer can be considered to be localized at some islandlike
structure since the Bohr radius of the quasi-two-
dimensional exciton in the sample of Ref. 3 is estimated
to be about 100 A according to recent theories'®~12 and is
less than the average lateral size of the islandlike struc-
tures in a QW. Furthermore, the fluctuation of the well
thickness of one monolayer produces the fluctuation of
the exciton energy of about several meV.* This amount of
energy fluctuation is sufficient to localize the excitons at
the energetically local minimum sites. The localized exci-
‘tons will then migrate among the local minimum sites in

-search of the lower-energy sites with emission of acoustic

phonons. This intralayer migration of localized excitons
is the key idea for explaining the anomalously slow energy
relaxation. In fact, our theory explains the salient features
of the experimental results quantitatively or qualitatively.
The paper is organized as follows. The two-
dimensional aspects of the localized excitons and their in-
teraction with acoustic phonons are essentially new and
have not yet been investigated fully. In Sec. O the in-
teraction Hamiltonian of the quasi-two-dimensional exci-
ton with the acoustic phonons is derived microscopically
for the first time. In Sec. III the kinetic-energy relaxation
rate of the quasi-two-dimensional excitons is estimated on
the basis of the result obtained in Sec. II and is shown to
be 1 order of magnitude larger than the observed value.
Thus the kinetic-energy relaxation is ruled out as the can-
didate which can explain the slow energy relaxation. In
Sec. IV the one-phonon-assisted exciton transfer between
localized sites is formulated from the microscopic point of
view, making use of the perturbation theory with respect
to the exciton-phonon interaction Hamiltonian and the in-
tersite transfer Hamiltonian. In Sec. V the matrix element
of the intersite transfer Hamiltonian of the localized exci-
tons is calculated microscopically. In Sec. VI the exciton
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citon transfer rate is estimated explicitly for both the
deformation-potential coupling and the piezoelectric cou-
pling, and for various cases of the localization form and
the type of intersite transfer. In Sec. VII the rate equation
for the distribution function of localized excitons is de-
rived, neglecting the interlayer transfer of excitons and
thus reducing the problem to that of a single QW. By in-
tegrating the rate equation numerically, the average ener-
gy of luminescence is calculated and compared with the
experimental data. From the comparison between theory
and experiment the constant of the exciton transfer in-
tegral is determined and found to be in good agreement
with the theoretically estimated value. The experimental-
ly observed nonexponential behavior of energy relaxation
is clarified theoretically from a general point of view. Fi-
nally, in Sec. VIII the dependence of the energy relaxation
rate on the QW thickness is discussed on the basis of the
scaling property of the rate equation, and the observed
correlation between the energy relaxation rate and the ab-
sorption bandwidth is explained in a qualitative way.

. INTERACTION OF QUASI-TWO-DIMENSIONAL
EXCITONS WITH ACOUSTIC PHONONS

In this section the interaction Hamiltonian of the
quasi-two-dimensional exciton with acoustic phonons is
derived for both the deformation-potential and piezoelec-
tric coupling. In the case of GaAs-AlAs QW structures,
the electron and hole of the excitons are considered to be
well confined within a QW since the band-gap discon-
tinuity is quite large. On the other hand, the lattice prop-
erties of GaAs and AlAs, for example, the lamce constant
and elastic moduli, are in close proximity.® Thus the
acoustic phonons which interact with the quasi-two-
dimensional exciton in a GaAs layer can be considered to
have three-dimensional character. One can derive the in-
teraction Hamiltonian of the quasi-two-dimensional exci-
ton with acoustic phonons starting from the three-
dimensional exciton-phonon interaction Hamiltonian.

_1

. fl(k,k';K")=zl—z— [ a2y [ dz, [ dzy Falryzoz) explile Ky — k) —ikez, +ikizi]

where a, and a, are defined by

a,=m,/(m,+my) and a,=my/(m,+my) .

6553

Let us now consider the quasi-two-dimensional exciton
state with a total wave vector K, and represent it as

Yo KR
H—vK")“"E z el "F;,(r,,,—-r,,”,z,,z,, )ac?r‘aurh |0},
ol

2.

where vg and L are, respectively, the volume of the unit
cell and the linear dimension of the quantization volume,
a,f,, (a4 ) the creation (annihilation) operator of the ath-
(conduction- or valence-) band electron in the Wannier
representation, |0) the crystal ground state, and R the
coordinate of the exciton center of mass defined by

2.2

with the electron (hole) effective mass m, (m,). The en-
velope function for the Ath electron-hole internal motion
is denoted by F,. In the following any position vector or
wave vector will be decomposed into components parallel
and perpendicular to the QW interface as r=(ry,z) or
k=(k;,k;). Then, rewriting the operators in the Wannier
representation with those in the Bloch representation by a
well-known relation

R=(m r,+myry )/ (me+mg) ,

(23)

where N is the number of unit cells related to L by
Nug=L?>, and transforming the discrete sum over the lat-
tice sites into a spatial integral by

E "’;1- f d’r, , 2.4)
r, Q
one obtains
IWEp=3 f;_(k,k';K")8k“__kl,l'xua:ka,k- [0, (25
Ly
with
(2.6
2.7)

The three-dimensional electron-phonon (e-ph) interaction for the deformation-potential (DF) coupling is written as™

12
Alql
2puV

H%=3
kq

= 3 {E(@) it e+ Eo( @) r@udlbg+b o)
kq

(e8] v s qex+ Dol ks )by +b1g)

2.8)

2.9)

where D, (D,), p, and u are the deformation potential for the conduction (valence) band, the mass density, and the sound
velocity of the longitudinal-acoustic (LA-) phonon mode, respectively, and the coupling functions =, and Z, are intro-
duced by (2.9) for later use. The interaction Hamiltonian of the quasi-two-dimensional exciton with acoustic phonons
for the deformauon-potenual coupling is obtained by calculating the matrix element of HB,,,. between two exciton states

[A,K;) and |3,Kj),
The result is given as

where for simplicity, the change of the electron-hole internal motion is not taken into account.
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Ky B2 WKy ) = 3, 3 E U= R LUK AGKSKS, B,y x Ber

ki LI
-3 SEX-IULEKDAKKES, 08, o B (2.10)
Kk LI | il Kt i R i}
Substituting expression (2.6) and converting the discrete sum over k into an integral by
3
L 3
5 .1
23 Jak, @.11)

one can reduce the first term as
S =Ky -Kya,) [ [dz [ dz [ d%y [ dz. [ dz, Fiiepzi .z Falnpze.z,)
9z -
X 8 (xy —x})8(z, —z;, )8(z, ~ 2, ) explig,z, —ian (Ky—Kj )]
=3 E(K)—Kyg:) [ a7y [ dz, [ dzy | Falnze,z) | ? expligze —icy (Ky—Kj)ry],  (2.12)
9z .

where the arguments of =, are written explicitly; the first argument is the component of the phonon wave vector parallel
to the QW interface and the second is the perpendicular component. Similarly the second term in (2.10) can be reduced
as

- 2 5Ky —K)pq;) f dz"u fdzz f dzy, | Fi(rypze,2s) | ? explig;z, +ia.(K)—Kj) ] . (2.13)
9

Thus the quasi-two-dimensional exciton-phonon interaction Hamiltonian H 31%9”” for the deformation-potential cou-

pling is given by
HOR@D - 3 [E(K|—Kpq Hail—a (K —Kj).gz)
KipKipz
~ B (K Ky (e Ky~ K g ) ] LK LK [ (b g +b;'("_Kh'_qx) , (214
with
H Q)= [ d’ry [ dz, [ dz | Falryze,z) | 2expliQ.z, +iQpry) , (2.15)

where the symmetry F;(ry,z,,25)=Fy(r,24,2,) is supposed to hold. This is a quite general expression for the
deformation-potential coupling. To obtain a more explicit expression, the envelope function F(rj,z,,2,) must be speci-
fied. For the lowest (1) exciton state, a variational envelope function was assumed as'!

e

L:

F(1),2e,24 ) =N, exp{ —[a?rf + Bz, —2,)*1'/*} cos cos

Tk 2.16)
| :

where N, is the normalization constant and o and $ are variational parameters to minimize the energy. Here the infinite
band-gap discontinuity is assumed and the envelope function is zero outside the region of |z, | <L,/2 and | z, | <L,/2.
With use of this envelope function, the function H,(Qy,Q;) is calculated as

5 L2 L/2 i 5
Hy(Qu@)= [ dry [, pdz [} don expliQuze +iQumy) | FislripZeszs) |

TZ,

LX/Z Lz/z » .
=N,ffd2r” f__Lz/zdz, f—L,/zdz" exp|{iQ.z, +iQy 1y —2[a?r ] +BUz, —2,)*]"*}cos?

cos? | =t
L, |

(2.17)

'z

By making the variables nondimensional, this can be reduced to

N2L? 172 172
=2 [aty [ dz [, don expliQiLoz, +iQury fe—20r] +B7Lize 2 '] /) cos’lmz, ) cosmz,) . (2.18)

a
Introducing the two-dimensional polar coordinate for 1), and making use of the decomposition formula'®

elzeosf— i J(zyexplin(8+7/2)] , (2.19)

n=-—c0
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one can further reduce (2.18) to

211-N i 11
—_— f dr rJy(br) f 1/zdz, f 1/zdz" exp{iQ, L.z, —2[r*+B3L Xz, —2;)*]'?) cos¥(mz, ) cosHwzy ) , (2.20)

where b = ] Q| /& and Jj is the zeroth-order Bessel function. By use of the formula!®

212y,
f dx xJo(bx)exp[ —a(x>+yH)'?]= a[lr(::z!;a/)z exp[ —y (a2 +52)1?], (2.21)
the integral over r in (2.20) can be performed as
4rN2L}

172 172
2(4+bz)3”' f—l/Z ef 1/zdz" exp[le 22¢-(4+b2)1/2ﬁL |2¢-Zh|]

X[1+(44+62'2BL, | z, —z;, | ] cos*(mz, ) cos¥(mz )

4mNZL}
=me((4+b2)‘ﬂﬁL,,Q,Lz), (2.22)
where the function G (y,8) is defined by
12 12 . ) 5
G(y,8)= f_mdz, f__l/zdz;, explidz, —v |z, —zy | 147 | 2, —2; | ) cos™(mz, ) cos*(mrzy) , (2.23)
and the explicit expression of G is given in the Appendix. Consequently, one obtains
LD
Hu(Qu,Qz)=WGU4+b V*BL,Q.L,), (2.24)
with b=|Q| /a.

Let us now determine the normalization constant &, in (2.16). The quasi-two-dimensional exciton state given by (2.1)
is normalized as

2
v
1=(A-,K|| | K7K|;)=’i%' > |Fl(r,"—-r;,",ze,zh)|z

Tely

e f d’r, f d3r,, |Fx(r,"—r,,",z,,z;,) I 2 » (2.25)

where the discrete sum is converted into an integral by (2.4). Substituting the variational envelope function (2.16), it is
calculated as

TZy
L,

"z,
- (:OSz
L,

L L, ' '
1=N,ffd2r” f—L,/zdz= f-L,/zdz" exp{ —2[a®r} +B Xz, —2z;,)*]'?) cos?

w L.2 L2 e, TZp
=2aN; [drr [, pdz [, ,don exp(~20a’r?+ Bz 2] cos? I ] cos® I I ] : (2.26)
By use of the partial integration, the r integration can be performed as
fo" dr rexpl —2a?r2 + AD) 2 =e 2181 (1 42| A ] ) /402, 227
where A is independent of r. Then the normalization condition is reduced to
aNIL? i 12 )
=—" j_mdz, N 421 (1+2BL; | 2, —2y | ) exp(—2BL | 2,24 | )cosi(mz, ) cos™(mz, ) , (2.28)
where the variables are made nondimensional. Let us introduce an integral I(y) defined by
12 172 —viz,~2 | 5 ‘
Iy)=1 f_.mdz, f_l/zdz,,(l-z—y |z, —2z | Je ' cosHmz, ) costmzy) , (2.29)
whose explicit expression is given in the Appendix. Finally, the normalization condition becomes
1=aN2L(2BL,) /2%, (2.30)

and the normalization constant N, is determined as
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o
N, = ————— |
" L{=I(2BL)1'?

Summarizing all the results, the quasi-two-dimensional exciton-phonon interaction for the deformation-potential cou-
pling is obtained as

231

* l/z
(K, — K +¢71'7

DF (Q2D) 1
H ex-th =7 2

KypKipaz i
D.GU(4+b}?BL,,q,L,) D,G(4+b})'"BL,,q,L;) /I (26L.)
[1+(by /222 [1+(b, 722372 i
x | 15,K})) (1s,Ky; | (b bt ) 2.32)

e
with
by=ay | K“"'K;[ |/a, be=a,| KIl'_Kil | /e,

where , and a; are defined in (2.7) and & and S are the variational parameters in (2.16). This expression is rather com-
plicated, and thus it is instructive to look into the expression under a few limiting situations. When the QW thickness L,

is zero, namely in the extremely two-dimensional case, H 3‘;%,@"3) may be simplified to
1/2
#| K =K | D D,
HPFUD) iy prDF QD) ] (3 _ '
ex-ph L—0 ex-ph K%(il 2pllS [l+(bh /2)2]3/2 [1+(be/2)2]3/2

X |15} (15 Ky | (b, e +b;“_xh) , (2.33)

where the component g, of the phonon wave vector is set equal to zero, the quantization volume ¥ is replaced by the
quantization area S, and use is made of the relation

G(0,0)=2I(0)=+ . (2.34)

Secondly, let us consider the three-dimensional limit where L, becomes infinite. Since in this case there is no preferential
spatial direction, g, is set equal to zero and the subscript || on K is dropped. It is seen that

Gly,0)=2I(y), (2.35)
and the limiting form of (2.29) is given as

lim J(y)=3/4y . (2.36)

Y—+

Then, when the QW thickness L, is infinite, i.e., in the three-dimensional case, Horpnl>' may be simplified to

14 1/2
‘2
X De D [15,K){1s,K | (bgr_x +bkxr) . (237
—_ s, S, o —x'). .
[14+(by /2P [1+(b, /22 KK TIR-K

This is exactly the well-known result for the three-dimensional exciton.!* Comparing (2.33) and (2.37), it is found that
the most striking difference between the two- and three-dimensional cases consists in the power law in the second set of
large parentheses. For the long-wavelength phonons, this difference may not be significant since the quantities in the
second sets of large parentheses of (2.33) and (2.37) are both essentially D.—D,. On the other hand, when the short-
wavelength phonons are concerned, the difference in the power law will lead to a significant difference in the optical and
transport properties.

So far, the deformation-potential coupling has been discussed exclusively. However, it is known that the contribution
from the piezoelectric coupling is not negligible in GaAs. The piezoelectric coupling arises from the longitudinal electric
field induced by the strain field associated with acoustic-phonon modes. The piezoelectric electron-phonon interaction
Hamiltonian for the zinc-blende type crystal with T, symmetry is given by’



31 ... EXCITONS IN GaAs-AlAs QUANTUM-WELL HETEROSTRUCTURES 6557

172

811'9614 ( ) + + t
gx‘]sz +§nyQz +§=Qny (ac.k+qa:k+au,k+qauk)(bqa +b —qo ),

_f
2pw.(q)V

Hip=3

; (2.38)
kao €od

where ¢4, €, and £, are the piezoelectric constant, the longitudinal dielectric constant without the piezoelectric contri-
bution, and the ath component of the phonon polarization vector, respectively, and the subscript ¢ specifies the
longitudinal-acoustic (LA) or transverse-acoustic (TA) phonon mode. The Cartesian components in (2.38) are referred to
with respect to the cubic crystallographic axes of the zinc-blende type crystal. The derivation of the piezoelectric
exciton-phonon interaction for the quasi-two-dimensional exciton is straightforward. Repeating the same procedure as in
(2.10)—(2.15), one obtains

4reeq, P 172

P
X - N
? 2ou, V(| Ky—Kj | 2 +4; )"

)

K",Khnﬂ,.o

X [gx(Kl'l _K")sz +§y(K;[ —'Ku)xQz +§z(K;| ‘K” ).x(Kh - K“)y]

[ G4+ BL, q,L,)

GU(4+bD)' L ,,q,L,)
[1+ (65 /2772 f1asLo

[14(b, /272

X 15Ky 15,Ky | by bl (2.39)

.|_
K)|—K g0 Kn"‘h--q,.a) ,

where the functions G and I are the same as in (2.32), and b, and by are given under (2.32). In this case the factor
within the small square brackets of (2.39) gives rise to the anisotropic effect. If the extremely two-dimensional case is
considered and g, is set equal to zero, the anisotropic factor becomes &,(Kj—K,).(Kj,—K,),, which simply implies that
the piezoelectric coupling is possible only with the TA-phonon mode having the polarization vector in the z direction.
On the other hand, in the limit L,=c expression (2.39) exactly reproduces the well-known result'® for the three-
dimensional exciton as

12

8mee 14
(8x8y9: +6y4xq: +£:9:4y)

R
2p0{q)V

1 1
[1+(ay|q| 227 [1+(a.|q]| /22)*]

PZ(3D) _ 1; PZ (Q2D) __
H ex-ph = Lhm " ex-ph = 2 2
Z 3 K.q0 €04

|15 K+q){15,K | (bgo+b1e0) .

(2.40)

Thus, Eq. (2.32) for H. 21_=P§IQ2D) and Eq. (2.39) for H fxz_p(Bm’ give quite general expressions of the exciton-phonon interac-
tion for the quasi-two-dimensional exciton that reduce smoothly (as L, — ) to those for the three-dimensional exciton.

r

III. KINETIC-ENERGY RELAXATION
OF QUASI-TWO-DIMENSIONAL EXCITONS

We now discuss the kinetic-energy relaxation on the
dispersion curve of the quasi-two-dimensional exciton,
adapting Conwell’s argument,'’ which was originally
developed for the three-dimensional case. It will be
shown that the kinetic-energy relaxation is too fast to ex-
plain the experimentally observed energy relaxation rate.
The quasi-two-dimensional exciton state with a total wave
vector K| is denoted by ]K"), assuming the lowest 1.5
state for the electron-hole internal motion. The matrix
element of the exciton-phonon interaction derived in Sec.
II will be denoted by H..n{Q,Q;) for the phonon wave

vector Q defined by Q=(Q,@;). The increasing rate of
the number of phonons with wave vector (Qy,Q;) due to
phonon emission by excitons is given by

2 ‘HCX'Ph (Q",Qz) ' 2(1+nq)f(K“+Q||)
Ky

2
#i

XB(E(K“-FQH)*E(K“)—%Q) > (3.1)

where n and f are the phonon occupation number and the
exciton distribution function, respectively, E(K;) the par-
abolic two-dimensional exciton energy, and #iwq the ener-
gy of acoustic phonon with wave vector Q. Similarly, the
decreasing rate of the number of phonons with wave vec-
tor (Qy, Q. ) is given by
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2
T KE | Hesopn(QpQ2) | *mof (K)
i

XS E(K,)—E(K+Q)+Fnqg) - (3.2)

The common argument of the & functions in (3.1) and
(3.2) can be written as

=702Ky'Q+Qf)/2M —Hiwg, (3.3)

S|

dNg

where 8 is the angle between K| and Q satisfying the
energy-conservation condition and L is the linear dimen-
sion of quantization volume defined in Sec. II. In the fol-
lowing let us assume that

Mu/ic|Q)| /2, (3.6)

where u is the sound velocity of acoustic-phonon modes
and rewrite the integral over K, in (3.5) with that over the
energy defined by E =#K? 1/2M. Then it is calculated as

dNq _Ar L? _A_l_ : |Hex-ph(Q||’Qz)|2 7
dt B i (277_)2 ﬁz [Q”[ VM
X [ dEL(1+nQ)f (E +1ing)
—ngf(E)I/VE |sinby| , %))
with

Eo=1PK% /2M =#Q} /8M .
By the inequality (3.6), one may approximate as
cosfy=(2Maq/Ai—Q8) /2 | Ky Q| =—Qyl 72| Ky ,
(3.8)
and one has
sin€g | =(1—Eg/Eg)'?, 3.9)

where Ey is defined by ﬁzK /2M. Equation (3.7) is the
general expression for the i mcreasmg rate of phonon num-
bers. In the following, the exciton distribution function is
assumed to follow the Boltzmann statistics, namely

f(E)=foexp(—B.E) (3.10)
with
Be = 1/kB Te ’

where T, is the effective temperature of excitons and fj is
some constant. In fact, the experimentally determined ex-
citon distribution function can be described by the
Boltzmann statistics fairly well, as will be shown in Sec.
VII. This situation may be attained by frequent collisions
among excitons. Then, calculating the integral

4 L? = x
= Ham( Q00| s [ dK Ky [ a0
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where M is the exciton translational mass. The energy-
conservation condition leads to the condition that the
magnitude of exciton wave vector K must satisfy

| Kyl 2 | 2Moq/i-QF | 72| Q,] =Kq . (3.4

where Kq is defined by the right-hand side. Then the to-
tal increasing rate of the number of phonons with wave
vector (Q,Q;) is calculated as

M8(6—8p)

W[(1+"a>f<Ku+Qu)—an(K”)], (3.5)
| w —B.E iz
fEQdEm= | e e
one obtains

o =47 L? .M}Z VT | Hepn(Qp0:)]2
dt i (20 | # | QMBI [Ql

X foe "PFe(14+nq) exp( —B.fing)~ng] . (3.12)

The average energy relaxation rate of excitons is given

(%)=-

where N is the total number of excitons defined by

by

N% Qar

, (3.13)

2

oML
N= zf(E(K,,))_f

# 2B (3.14)

The explicit expression of (3.13) is written as
<dE> (2rMpB, )"
dt 7

Ich-ph(Q"an) !2 >

Tidq

x%‘, Q!

xe PERp(1 4 nglexp(—B,Fiwg)—ng] -

(3.15)

To obtain a more explicit result, the deformation-potential
coupling derived in Sec. II will be substituted for the
exciton-phonon interaction He, . Since the function G
in (2.32) is a slowly varying function with respect to
Q| and Q; for the physically important range of pa-
rameters, one may safely set Q:=0, i.e, |Q,|=]Q] in
G to obtain

— 57—
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HY, Q0. = | 21Ql " D
2puV [1+(a; | Q| 12a)2*"2
D,
T [1+(a, [Q] /227
# 172
= 2puV (Dc‘“Du)’ (3.16)

where to simplify the algebraic manipulations, it is sup-
posed that b, and b, in (2.32) are small, and that
(4 + b2 and (4+ 173)’/2 are nearly equal to 2. Substi-
tuting this expression into (3.15), one obtains

dE\_ 12D =D, P
( = >_ (GaMp =
x [Tdooie™™"

X [(1+nglexpl —B.fiwg) —nql
(3.17
with
EQ=ﬁ2Q2/8M.
By using the experimental data
T,=20K and T,=42K,

where T is the lattice temperature and, choosing the ma-
terial parameters of GaAs given in detail in Sec. VII, the
energy relaxation rate is calculated as

<£)gzox 105 eV/s .
dt

This value is 1 order of magnitude larger than the ob-
served value of (2—3)X 105 eV/s. Furthermore, it can be
shown that the effective temperature of excitons decreases
from 20 to 4.2 K within several tens of picoseconds.
Since there is an additional relaxation mechanism due to
the piezoelectric coupling, the theoretical value of the en-
ergy relaxation rate becomes larger and the discrepancy
increases. Thus it is concluded that the observed slow en-
ergy relaxation cannot be explained by the kinetic-energy
relaxation on the dispersion curve of the quasi-two-
dimensional exciton. When the excitons relax on the
two-dimensional dispersion curve and accumulate on the
low-energy portion of the density of states, the excitons

become more and more immobile and can be considered
N

(3.18)

(a) (Rb;nQi:I l-ch-ph I Ra;nQ) N

(Rb;nqi'l ng IRg;"Qi‘l)(Ra§nQil IHex-ph I RaQnQ)
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as distributed among the energetically local minimum
sites which are induced by the well-thickness fluctuation
in the lateral direction of a QW. Under such a situation
the energy relaxation occurs through the exciton migra-
tion in search of the lower-energy sites, and the exciton
system eventually approaches the energetically global
minimum state. This process of energy relaxation is con-
sidered slow compared to the kinetic-energy relaxation
and, in fact, explains quantitatively the experimental ener-
gy relaxation rate.

IV. ONE-PHONON-ASSISTED
TRANSFER OF LOCALIZED
QUASI-TWO-DIMENSIONAL EXCITONS

Let us now consider the quasi-two-dimensional exciton
transfer among localized sites, such as the islandlike
structures in a QW that are induced by the well-thickness
fluctuation in the lateral direction. A general theory will
be developed without recourse to the details of the local-
ized sites, namely the microscopic structure of the disor-
der. In the process of exciton transfer the energy
mismatch of excitons is compensated for by acoustic pho-
nons. At low temperatures only the one-phonon-assisted
process needs to be taken into account, since the relevant
energy mismatch is less than 1 meV and rather small.
The exciton state localized at site R, will be denoted by
| R, ), assuming the lowest 1s state for the electron-hole
internal motion. The relevant Hamiltonians for the
phonon-assisted exciton transfer are the exciton-phonon
interaction Hamiltonian denoted by He.pn and the inter-
site transfer Hamiltonian denoted by H. Then there are
three possibilities for the exciton transfer from site R, to
site Ry, namely

(a) |Rgng) — |Rynqil), 4.1)
H:x-ph

() [Rgng? — |Rangxl) — [Ryngxl), (42)
Hex-ph : He
(c) lRa;nQ)—> |R,,;nQ) s |Rb;nqi1) y (4.3)
Hy Heon S
where nq represents the occupation number of phonons
relevant to the exciton transfer. Term (a) arises from the
first-order perturbation process with respect t0 Hexpn,
whereas terms (b) and (c) are the contributions from the
second-order perturbation process using both H,,.,, and
H,, once for each.'® As will be seen later, term (a) is pos-
sible through the overlap of exciton wave functions and is
short ranged in nature, while terms (b) and (c} are effec-
tive over a long range, in general. The transition ampli-
tude of the exciton transfer for each process in (4.1)—(4.3)
is given as follows:

(4.4)

(b) Thag

(RyinqEl | Hexon | Rping Y Resng | He | Rasnig)

(c) .

(4.5)

(4.6)
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where wq is the phonon frequency with wave vector Q.
The intersite exciton transfer Hamiltonian Hy, arises from
the electron-electron interaction Hamiltonian, and the ma-
trix element is independent of the phonon state. Thus it
can be written as

J(|R;—Ry | )={Ry | Hs | R, ) . @7

The explicit calculation of J(R) will be given in Sec. V.
To calculate the matrix element of Hepp, the localized
exciton state must be specified more explicitly.

The localized quasi-two-dimensional exciton state can
be represented as

I Ra ) =Vp 2 G(R“—Rn )F],(r,"-—-r;,”,z,,zh)
TesTh

Xak ay, |0), 4.8)
where the 1s exciton envelope function Fy, is given in
(2.16) and the function G describes the two-dimensional
localization of the exciton center of mass R defined by
{2.2). The notations vo, @y, and a,,, are given in Sec. IL

The function G is normalized as
[ @R 1G(R—R,)| =1,

] Ri ) =V E G(R"—Ra )le(r.||_rh[ilz¢:zh )a:r‘aurh | 0>

TerTh
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and thus the localized exciton state |R,) is normalized
correctly

(R, |R,)=1. (4.10)

The functional form of G depends on the details of micro-
scopic configuration of the localized state. Until now,
there has been no systematic study of this subject. How-
ever, the dynamical properties of the system, such as the
energy relaxation, are not expected to be very sensitive to
the microscopic details of localization, but may be charac-
terized by only a few parameters, such as the localization
length. In this paper two typical cases of exciton localiza-
tion will be examined, namely (1) the Gaussian case,

G(Ry)=—=— 1/-5 exp(-R" 126%), (4.11)
and (2) the exponentla] case,
G(Ry)=T5=> V«—-g exp(— | Ry | /26) , 4.12)

where £ is the characteristic localization length. Then, in-
troducing the two-dimensional Fourier transform of the
localization function by

Ky R
= f de”g(K“,Ra)vo 2 e it "Fl;(ren_fh"yzuzh )a:r‘aurh 10>

TerTh

=L [ K, g(K;,R,) | K})

where use is made of (2.1). Thus, evidently, the localized
exciton state consists of the superposition of extended ex-
citon states. The explicit expression of g is given as fol-
lows: (1) Gaussian case,

e(ER, )='2}§x7?? exp(—iK, 'R, —£K3/2) ,

(4.15)

and (2) exponential case,
]

(Rp;ngEl | Heppn | Rasng?) = szd‘Kfl fd?'K”g (K[, Ry (K R (K snq 21 | Hexpn | Ky )

G(R—R,)= f de[l e'K“.R"g(Ku:Rq) s (4.13)
4.9) one obtains
|
(4.14)
-
—IKI
g(K )Ry ) = e iR f dR RIo(KR) exp(—R /2£)
e—"KII 28

, 4.16
VT [14+(26K,)*P2 “.16)

where (K = | K};{, Jo(x) is the zeroth-order Bessel func-
tion, and the following formula 15 is used:

[ dxxemeryom= (4.17)

—a
(a2+b2)P72 "

The matrix element of the exciton-phonon interaction can
be calculated by using the expression (4.14) as

(4.18)

The matrix element on the right-hand side is taken between the two-dimensionally extended exciton states and can be

written as

(Kjinqtl|Heapn | Kypna) =8ys1q x,

(Kjj | Herpn | Kydo= 12

(2m)?

8(2)(Ki|iQ”—K")H“.ph(Q“v Qz) ? (4 19)

where in the second equality the Kronecker 8 function is changed to the Dirac 6 function and a factor related to the pho-
non absorption or emission is not written explicitly by incorporating the factor in Hepn(Qy,Q:). As shown in Sec. II,
the matrix element (K| | Hexpn | Kj)q depends only on the phonon momentum Q and thus is written as H e, pn(Qy, Q2)-
Then, in the case of Gaussian localization one obtains
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QR 4Ry £0F  (R,~R,

(Rb;”Qil]ch-ph’Ra;”Q>=exp = 2

Heoon(Q: 02) » (4.20)

4 47

while, in the case of exponential localization, the resuit is given as

2
(Ryinqt! | Hoppn | Rasng ) =i exp[ —iQ(Rq+Ry)/2]
v . I

CXP[Z‘K"'(Rb —Ra )]

x [dk

1+ (2¢ Ky—Qu/2| PPA[1+(28 | Ky+Qu /2| P12

Hex‘ph(Q”,Qz) . (421)

Now, the transition amplitude of the exciton transfer from site R, to site R, for the case of Gaussian localization is

calculated as

(Ry [T |Rg)q=e

JUR;—R;]) (e~ Rs _,—iQR,

En _Eb

The first term on the right-hand side is the contribution
from process (a) in (4.1) and the second term combines the
contribution from processes (b) and (c) in (4.2) and (4.3).
The first term contains the Gaussian . factor
exp[ — (R, —R; )*/4£%] arising from the overlap integral
between two localized exciton states and has a short-range
character. On the other hand, the second term in (4.22)
depends on the distance | R, —R; | through the function
J(|R, —Ry; | ) and the coherence factor

exp(—iQ'Ry)—exp(—iQ 'R, ) ,

which are generally effective over a long range. The com-
mon factor exp( —-§ZQ|2[/4) implies that the magnitude of
the wave vector of phonons which can interact with the
localized exciton is limited within a few times the inverse
localization length. In the case of exponential localiza-
tion, the transition amplitude shows similar features, al-
though its expression is more complicated. When the

~iQR 4R | é‘zQﬁ _ (R,—R,;)?
P T m

) exp {— i

,Hex-ph(Q{[er)

£07

]Hex-ph(Q”: Qz) . (4.22)

transition amplitude is obtained, the exciton transfer rate
can be calculated by

2
T Ea~Ey |, |Re—Rs )= 3 [ (R4 | TR, Do
=
X8(E, —Ep +Hing) .

(4.23)

In the absolute square of the transition amplitude, there
appears the interference between two terms in (4.22).
However, this interference term will be neglected since the
relevant spatial range of the two terms is quite different
and the contribution from the interference term may be
small. To calculate the exciton transfer rate more expli-
citly, the matrix element of the intersite transfer Hamil-
tonian H, must be calculated. This matrix element,
J(R), will be studied in the next section.

V. INTERSITE TRANSFER MATRIX ELEMENT FOR LOCALIZED QUASI-TWO-DIMENSIONAL EXCITONS

In this section the matrix element J(R) of the intersite transfer Hamiltonian H is calculated, and it is shown that’
J{R) behaves like the dipole-dipole interaction at a distance much longer than the exciton Bohr radius and the localiza-
tion length. As given in (4.8), the localized quasi-two-dimensional exciton state can be represented as

| Ryy=vg 3, Flr,,t4iRo)ak a,r, [0)=vp 3 G(R—R,

TerTh TeeTh

a )FB(I'E”—I},”,Z,,Z}, )a:,.ea,,,h | O) . (5.1)

The intersite transfer Hamiltonian Hy is given by the electron-electron interaction Hamiltonian, namely

2
=1 3 3011 Freny___ €~
Hn-—lfdrfdr#;(r)w(r)eolr__r’l

P (r),

(5.2)

where €; and ¥(r) are the dielectric constant and the electron-field operator, respectively. Then the matrix element is cal-

culated as
J(|R;—Ry | )=(Ry | Hs |Ry)

=}3 3 F‘(r’,,r},;Rb)f(r,,r,,;R,,)(O}af,a 'H‘Sa:"ea”'ﬁ [0)

Ul'h Cfe
o1y Terh
=0} 3 3 F*r, 1Ry Fr,, ;R Vel vmyier, vt ) — Vier,, vty uth,er, )] (5.3)
LN A o
re,rh eth

— 60—



6562 T. TAKAGAHARA : 31

with

V(alnl,aznzga3n3,a4n4)=-}fd3rfd3r’¢;l,,l(r)¢zz,,z(r')

W“ba:n}(f)qsa,n‘(r) ’ (5.4)

where @, (r) is the Wannier function of the ath band at site n. When the intersite distance is longer than the localiza-
tion length £ and the two-dimensional exciton Bohr radius a2, i.e.,

| Rg =Ry | >>§"1123D ’

(5.5)

it turns out that the exchange term, namely the first term in square brackets on the right-hand side of (5.3), is dominant.

Then, by using the usual multipole expansion of the Coulomb interaction,' one obtains
2
v
JU|R;—R, | )=——q-—3pt(1—3n-n)y > 3 B,e,,,IS . .F (e, 1Ry IF (r,, 15 R,) (5.6)
2 | R,—-R, | FouTh o1,
with
p=e [ d° ¢ (1)Mr—1,)d. (1) and n=(R,—Ry)/|R,—Ry ]| , (5.7

where the Wannier functions are assumed to be well localized at each site. To calculate (5.6) more exphcnly, the Gauss-

ian localization in (4.11) will be employed as
~ 1
Flr,,tp;R, )= 71—72 exp(— | Ry—

Using the normalization factor N, in (2.31), one obtains

13 3 3 Frr,0sReF(r,, 1R, . 8,

TerTh o ry. 0y
TeiTh 1,1

Ry | 2/280)F y(Tey — ThipZer2h) - (5.8)

. 2
1 Lz L2 L
= —‘/;Tg fdzr" exp( — | ry—R|?/2£?) f-L,/:dz" f_;_z/zdzgf‘},(o,z, 126 WF15(0,2,,2,)

=N2rEL2=(af)*/I(2BL,) ,
where the function I(x) is defined in (2.29). Then the
matrix element in (5.6) becomes

2 1 —n-
TR, —Ry )= GES _pU=3nal g,

2L, [R,—R, |

This is a typical form of the dipole-dipole interaction. In
the following the angular dependence in (5.10) is dropped
and the isotropic form will be assumed as

PRCIA 1
2I2BL;) |R,—R,|*’

J(|R,—Ry | )=
with
A=[{(1=3n-nP)]"2=(4 )2,

(5.11)

(5.12)

where the angular brackets denote the angular average.
As is well known, the longitudinal-transverse (LT) split-
ting of excitons at the zone center is given by'®

2
ALT(k=O)=iH§_ )
ag

(5.13)

where ajp is the Bohr radius of the three-dimensional exci-
ton. Finally, one arrives at the expression

J(|R,—Ry|)
_BAuadleg?d 1 T
8I(2BL,) |R,~R,|® |R,—R,|3 "’
(5.14)

(5.9)

By chooging the values Ayr=0.08 meV,? ap=136 Al
£=150 A, a~'=100 A, and BL,=0.37, 1 it is calculated
as

Jitheor)=5.3 102 eV A3 . (5.15)

This value will be compared with that which gives the
best fit of theory to experiment for the energy relaxation
in Sec. VII.

So far, the behavior of J(R) has been studied at long
distances, i.e., under the condition of (5.5). In the inter-
mediate range, in which the intersite distance is compar-
able to the exciton Bohr radius and/or the localization
length, the calculation of J(R) is a rather involved prob-
lem. In this range, an exponential-type tunneling transfer
is usually assumed without a rigorous theoretical basis.?
Some interpolation between tunneling-type transfer and
dipole-dipole type transfer may be appropriate to simulate
the true behavior of J(R). However, the details of the
distance dependence of the intersite transfer do not affect
sensitively the energy relaxation of localized excitons,
since the energy relaxation rate is determined by the spa-
tial integral of JXR) multiplied by other functions. In
this paper both cases, dipole-dipole type transfer and
tunneling-type transfer, will be examined.
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VI. ESTIMATION OF EXCITON TRANSFER RATE

Now that the matrix elements of the quasi-two-dimensional exciton-phonon interaction and the intersite transfer Ham-
iltonian have been determined, the exciton transfer rate can be estimated explicitly. The transition amplitude is given by
(4.22) for the case of Gaussian localization. As mentioned there, the interference between the two terms in (4.22) will be
neglected. Then one has

| (Rs | T |Rglq | =exp |—

202 R,—R,|?
52 - I 262 2 | Hexpn(Qp Q:) |
g0}

JH|Rg—Ry |) e HURs iR 2
2

IEa_Ebl2

| H o ( Q2 (6.1)

exp (-—-

where the exciton-phonon matrix element is abbreviated as H .y, and the arguments Q; and Q, are the components of
the phonon wave vector parallel and perpendicular to the QW interface, respectively. In the second term, there appears
the coherence factor |exp(—iQ,-R,)—exp(—iQ,'R,)|? due to the interference between phonon emission or absorption
at different sites. The matrix element of the quasi-two-dimensional exciton-phonon interaction for the deformation-
potential coupling is given by (2.32) as

Lo |7 GUa+b) 8L, QL GU4+5D2BL,,Q.L,)
Hg?LQZD)(Q”,QZ):‘I- ﬁ(QIH‘Qz) X ( -+ h B;;/sz z)__ ) ( + e Bzz;/sz z /I(ZﬁLz) (6.2)
2 2 2V [1+(b; /2] [1-+(b,/27]
=Ep( |QH | ’Qz)/"/I7 ) (6.3)

with
b],=ah IQ"I/a and b¢=a!lQ"[/a N

where a factor related to the phonon absorption or emission is omitted and Zp is defined by (6.3). In the summation
over Q=(Q,Q;) in (4.23), the magnitude | Q | =( Qﬁ +02)17 is fixed by the energy-conservation factor and only the
angular integration remains. The integration of the coherence factor over the polar angle ¢ resuits in

[ ag e TR 21 gy Q] |Ra=Rs 1], o

where Jj is the zeroth-order Bessel function. Then the transition probability for the deformation-potential (DF) coupling
is calculated as

Toe( | Eo—Ey |, [R,_R,,|>=%g—2 IRy | T | Ry Dq | ®8(E, —Ey +ing)
Q

2 R, —R, |2 - 202 gin2
~ 2 "‘_zél_b'l”] J; a6singexp | - S 1220 06,0 cost)
@ JHR—Ry[) o o £0%sin’0
d6 -
B, B, |1 do 0o | =5

X[1—=Jo(@ [Ry—R, | sind)I=5H (0 sind,Qcosh),  (6.5)

where the magnitude of phonon wave vector Q is denoted simply by Q and is given by | E, —Ej | /#iu with the sound
velocity u of the longitudinal-acoustic phonon mode. Similarly, in the case of exponential localization, one has

27 T . 2 —2 .
[ de fo d@sin8 KX Qy,R, —R;)=5(Q sind, Q cosh)

TDF(IEa_Ebllea_Rbl)z( 0

2V
0* JA|R,~R;|)
ﬂ‘ﬁzu [Ea -—Eb Iz

fo"desineﬂ(g sind)[1—Jo(Q | Rq —Rj | siud)1

X EL(Q sind,Q cosd) , (6.6)
where

1
{1426 | Ky—Qy/2 | PP 1426 | K+Qu/2 | PP’

2
10 Ql ’=§1§F [ax 6.7

— 62—
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CXp[iKII'(Rb "Ra )]
1426 | Ky —Qy/2 | PPA1+(28 | Ky+Qy/2 | PP2

2
K(QuR,~Ry)=E= [ a%, [ (6.8

Here, I is a function of only the magnitude of Qy;, while the function X is dependent also on the angle between Qy and
R;—R,. These are the complete expressions of the exciton transfer rate for the case of deformation-potential coupling.
In practice, however, the calculation of the angular integrals in (6.5) and (6.6) is rather cumbersome, and it is desirable to
simplify these expressions by introducing a reasonable approximation. It is confirmed numerically that the function
Zp(| Q@) is a slowly varying function with respect to | Q| and Q; for a physically important range of parameters,
where [Qul,]0Q:| < 10° cm ™! and L, <100 A. Thus one may safely set 6=7/2 in Z,(Q sin6,Q cosd) and put it out-
side the integral and further replace the integral over 6 by 7 times the arithmetic mean of the values of the integrand at
6=0 and 8=m/2. Then the transition probability in (6.5) can be approximated as

2 —R, |2 2032
Tos( | Ea—Ey |, ]Ra—Rbl)zzgﬁzexp ——]Rf—zg;"—'—_.gz& 23(Q,0)

02 JH|R,—R,])
Wu  |E,—E, |’

exp [_g ]{I—JQ(Q |R,—R, IZHQ0).  (69)

With use of relation (2.35), Zp(Q,0) can be written as

V2 DI((4+b22BL,)  D,I((4+b1'BL.)

[14(b, /277 [1-+(be 22712

Q.
2pu

Ep(Q,0)=

/ I(BL,) . (6.10)

Noting that b, =by, <1 for the wave vector | Q| <10° cm™!, it can be approximated as

172 D, Du

(146, /222 [14+(b, /277

#Q

2pu

Z5(0,0)= (6.11)

In a similar way, one can simplify (6.6) for the case of exponential localization. As seen from (6.8), the function
K*Qy,R) is sensitively dependent on the angle between Q; and R. However, when integrated spatially over R, the an-
gular dependence vanishes and the result depends weakly on {Q|. In the rate equation for the exciton distribution
function, as will be shown later, the spatial integral of K is physically relevant. Thus, in anticipation of their later use
in the rate equation, the 8 and ¢ integrations in (6.6) can be simplified as

2
-2
Tor( | Ba—Ey |, | Re—Ry | )= 25-K¥Q Rs —Rs)Z5(0.0)

0* JA|R—R,|)
Zﬁzu [Ea —Eb Iz

THON1-Jo(@ | R, —R; | )]E3(0,0) . (6.12)

Equations (6.9) and (6.12) with (6.11) are the basic expressions of the exciton transfer rate via the deformation-potential
coupling that will be used in the rate equation.

Next, the probability of exciton transfer via the piezoelectric coupling will be calculated. In this case the coupling is
highly anisotropic. Let us introduce a piezoelectric coupling function Z3( | Qy;|,Q;) defined by

4’11'8514 172

€0

#
2puq(QF+0H?

E%(]Qul:Qz)=

G((4+b\2BL,,0.L,) GU4+b?BL,,0.L,)
(35 Bz 3?2 - ’ Bzzslgzz /I(Z,BL,) ’
[1+(by/2)% [1+(b,/2)*]

(6.13)

where the functions G and I and the variables b, and b, are the same as in (2.32) and the suffix o specifies the
longitudinal-acoustic (LA-) or transverse-acoustic (TA-) phonon mode. Then, for the case of Gaussian localization the
exciton transfer rate via the piezoelectric coupling is calculated as
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TPZ( IEa"Eb I’ |Ra—Rb I )

=27"§‘, [ (R, | T | Ry ) q | B(E, —E, tHimg)
Q

£202 sin®0
2

_ |Ra"Rb | 2
282

1
=2 P -

Qi 217 ™ .
\;:‘;—fo do fo d@sinfexp
X[E3(Q, sinb, 0, cosd) P 42(6,5)

1 JA|R,—R,|)
(2w#?  |E,—E,|?

£202 sin%0
2

Qz 27 * A
%::—fo dé fo d0sind exp

x| e 'R _e ™% Ra 1 21z8 (0 sing, 0, cos®)2A2(6,4), (6.14)

where the magnitude of phonon wave vector Q, is determined by | E, —E,, | /#iu, with the sound velocity u, for o (LA
or TA) phonon mode, and the anisotropy factor 4,(68,4) is given as

Apall,d)= % sin®6 cosf sin2¢ , (6.15)
Atal6,0)= {-(sinG—B sin38)sin2¢ or -;— sin26 cos2¢ , (6.16)

where the results are shown for two possibilities of the polarization direction of the TA mode. Formula (6.14) is quite
general, but its calculation is rather complicated. Thus it is desirable to simplify the expression by introducing the same
kind of approximation as to reduce (6.5) to (6.9). As noted before, the function G in (6.13) is a slowly varying function
with respect to | Q| and @, for the physically important range of parameters, and thus Z3( | Qy|,Q,) is also such a
function. Furthermore, since the main contribution to the transfer rate comes from the range £Q < 1, the localization
factor exp( —£*Q?sin9/2) may be regarded as slowly varying with respect to 8. Thus one may suppose that f==/2 in
both =5 and the localization factor and put these factors outside the integral. The piezoelectric coupling function is re-
duced to

V2 I04+b1)12BL,)  I((44-b2'2BL,)

[14-(b, 727F7 ~ [14(b, /22"

8172214
€o

#
2pu,Q

22(0,0)= / 1(26L,), (6.17)

with
by=a,Q/a and b,=c.Q/a.

By noting that by =b, < 1, the piezoelectric coupling function is further simplified to

8mee # 12 1 1
E3(Q,0)= - . 6.18
20 €& |2pu,Q [1-4+(85 722 [14(b, /27 6.18)
Then performing the angular integration of the anisotropic factor and the coherence factor, one obtains
i 1 R, —R 2 QZ 212
Tzl | Ea=Es |+ [Ra—Ry D= e {— | T 2> P ~£22 \i=z0,,015,
pt o Uy
1 R =R ) Q2 £07 | -
(zﬂ_ﬁ)z iE iEb | 2 2 ”;;:— exp | — 2 < =$(Q¢770)]zfu B (6.19)
a o
with
BLA = 121"/35, BTA= 167 /35 ,
fra=2Bp,— 9—27- foﬂde 5in°0 cos?8[Jo(Qra R Sinf) —J4(Qr A Rgp 5inb) cos(4¢,)] , {6.20)

fra=2B1a— % f:d& §in*8(sin%0 —2 cos?0)*[Jo(QraRas SinO)—J4(QraRop 5in8) cos(de )]

—% fo”de §ind sin?26[Jo{ OraRap 5in6)+J4( Ora Ras Sind) cos(ddy)]
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where Jg and J4 are the zeroth- and fourth-order Bessel function, respectively, and R, = | R, —R; | and ¢, is the an-
gle between R, —R,; and one of the crystallographic axes in the QW interface plane. These formuias are sufficiently
simple to be useful in practical calculation of the exciton transfer rate.

For the sake of completeness, the results for the case of exponential localization will be given. The general formula is

given as
—E;|, IR, ~R,
Tpzl | Es—Ep |, |R.~Rp | )= (ZMZE
1 JH|R,~Ry|)
(zm2 iE,,—Eb |2

f do [T d6sind KX(Qy Ry — Ry [ E5(Q, sinb, 0, cost)[45(6,¢)

xz f dé f dBsind 1A Q, sind)

X e

Introducing the same kind of approximation as used in reducing (6.14) to (6.19), one can simplify (6.21) to

TPZ( lEa —Eb ‘ >

—Ry )=
IRa—Ry )= Q) 4

1 -72 ({Ra—Ry |)

2 KZ(QU!RG Rb)[

(27#)

where B, and f, are the same as defined in (6.20), and
the meaning of K%(Q,R) is given above (6.12).

In the rate equation for the exciton distribution func-
tion, there appears the two-dimensional spatial integration
of the transfer probability T([E,—Ep|, |R,—Ry|).
Let us now calculate the spatial integral assuming a suit-
able form for the inter-site matrix element J(R). In Sec.
V, it is shown that J(R) behaves as

J(R)=J/R?,

like the dipole-dipole interaction in the region where R is
larger than both the localization length and the Bohr ra-
dius of the two-dimensional exciton. However, it is quite
difficult to derive, theoretically, the behavior of J(R) over
the entire range of R. Thus a dipole-dipole type transfer
will be assumed for J(R), with a lower cutoff at the local-
ization length £. As another choice, the tunneling-type
transfer given by

(6.23)

’Ea'—Eb [2

~Rs _ =% %Ra | 22510 sind, Q, cosd)]2A2(6,4) .
(6.21)
#(Q,,01’B,
2 u, Qa :P(Qavo)]zfa 3 (6.22)
(-4
]
J(R)=T exp{—56R /2) (6.24)

will be examined, where 5~! is the order of the two-
dimensional exciton Bohr radius and J is a phenomeno-
logical constant. In this case it is not necessary to intro-
duce a cutoff. Since there appear a few types of spatial
dependence on |R,—R; | in the exciton transfer rate, it
is sufficient to give the results for typical terms. In the
integration the spatial distribution function F(R) of
nearest-neighbor sites at a distance R must be included.
In the two-dimensional case, F(R) is given by

F(R)=exp( —aR%/ay) (6.25)
where o | is the areal number density of 1slandl1ke struc-
tures. Since og is of the order of 10~!! em? F(R) can

often be neglected, in comparison with other more rapidly
decaying functions. Then the typical spatial integrals are
calculated as

.|
[ @R exp(—R?/26%)=2mg? (6.26)
1
d*R K¥Q,,R)=256 d*K . (6.27)
/ A e V1428 | Ky~ Q2| PPI1+(26 | Ky +Qy/2| PP
For the dipole-dipole type transfer (6.23), one obtains
@ 2r «© 27
fg dRR [ dé THRIF(R)1-Jo(QR)]= fg dR R fo dg JXRIF(R)[1—Jo(QR)+cos(44)J4(OR)]
F2
2T T L e /e —H(QE) (6.28)
& |29
with
Hix)= 4_[ dz Jy(z) exp( —mz* /crOQz)/z (6.29)
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where I'(z,p) i$ the incomplete T’ functlon defined by

T(z,p)= f dre~t*=1, (6.30)

Here, the nearest-neighbor site distribution function F(R) is included explicitly, because both the dipole-dipole type
transfer J(R) and the zeroth-order Bessel function Jo(QR) show rather slow spatial decay. Similarly, for the tunneling-
type transfer (6.24) the above quantity is calculated as

ok 1— 1
8 [1+(Q/8) P2

where formula (4.17) is used. By combining all of the results, the exciton transfer rate and its spatial integration can be
calculated for both the deformation-potential and piezoelectric coupling, for both cases of the Gaussian and exponential
localization, and for both cases of the dipole-dipole type and tunneling-type transfer.

Finally, for illustrative purposes, let us calculate the spatially integrated transfer rate for the simplest case of Gaussian
localization and tunneling-type transfer. For the deformation-potential coupling, making use of (6.9), (6.11), and (6.31),

J dPRIAR[1-T4(QR)]= . (6.31)

one obtains

J 'R Tpp(E,R)= [§— Sip

T 1+(Q /81
D,

exp

£g*
”21

D.
x ‘[1+(az,,Q/2a)2]3/2 -

[1+(a,Q/2a)'}

2
] . (6.32)

Similarly, for the case of piezoelectric coupling, it is calculated as

8mee
[ 4R Tep(E,R)= T

g o2

T,
8E?

2
}gg.exp [___..
u; 2

£'0;

s

2
. 1
X - , 6.33
’[H(ahQ,/zaﬂm [1+(2,Qq /2] } 633
with
BLA=121I'/35, Bra=161/35, )
b 9 T .5 2 1
= d@sin°fcos*6 |1—
fia=% fo cos [ [1-(Qra sinf/87 "2 l , (6.34)

7TA=§ fo”desinle(gswe—1ssin29+s> [1_

where the suffix o indicates the LA- or TA-phonon mode.
The material parameters chosen in the numerical calcula-
tion are given in Sec. VII. The results are shown in Fig.
1. It is found that the contribution from the piezoelectric
coupling is smaller than that from the deformation-
potential coupling, but it is not negligible. The energy
dependence is similar for both cases of the deformation-
potential and piezoelectric coupling. Roughly speaking,
the pwk posmon is determined by the localization factor
expl( —~§ Q2/2), namely E=#u,£~". In fact, this esti-
mate gives the right order of 0.3—0.4 meV. The overall
features in Fig. 1 are preserved for other cases of com-
bination of the Gaussian and exponential localization, and
the tunneling- and dipole-dipole type transfers.

1I. RATE EQUATION FOR EXCITON
DISTRIBUTION FUNCTION AND NONEXPONENTIAL
BEHAVIOR OF ENERGY RELAXATION

Now that the transition probability of -the exciton
transfer is derived, one can set up the rate equation for the

exciton distribution function. In the following the inter--

1
[14(Qra sind/82]?72 ] ’

I
layer transfer of excitons through the AlAs barrier layer is

neglected and only the exciton transfer within a QW will
be taken into account. Thus the problem is reduced to
that of a single QW. As noted in the Introduction, due to
the fluctuation of the well thickness in the lateral direc-
tion of a QW, the quasi-two-dimensional excitons can be
localized at such islandlike structures. The energy relaxa-
tion occurs through the exciton migration in search of
lower-energy sites. Now for simplicity an assumption will
be introduced that the line broadening is microscopic,”
i.e., that there is no correlation between the energy of the
localized exciton and its position in space. Thus the ener-
gy distribution of the localized exciton at any particular
site depends only on the overall density of states but not
on the nearby configuration of the localized site. In addi-
tion, the density of states of localized excitons is assumed
to be proportional to the absorption spectrum at low tem-
peratures. This assumption is reasonable because in the
low-energy tail of the density of states the contribution
from the localized excitons is dominant. Under these as-
sumptions the rate equation for the distribution function
S(E,1) of the localized exciton with energy E is derived as
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%f(E,t):—yof(E,t)—oE‘ [d*RFR) [ dE'D(E"f(EN(n(E'~E)O(E'~E)
+[1+n(E—E"]®E —EN\T(|E—E'|,R)
+05! [ d®RF(R) [ dE'D(E"f(E',)){n(E —E")O(E —E")
+[14n(E'—E)]O(E'—E)}T(|E—E'| ,R), 7.1

{ N
where yq, 05, n, T, and © are the generally energy-  The second and third terms in (7.1) represent the probabil-
dependent decay rate including both the radiative and ity leaving and coming into the exciton state with energy
nonradiative contributions, the areal number density of is-  E, respectively. For the exciton transfer rate T(E,R), the
landlike structures, the phonon occupation number, the  contributions from both the deformation-potential and
exciton transfer rate calculated in Sec. VI, and the Heavi-  piezoelectric coupling are taken into account, namely
side step function, respectively; F(R) is the distribution -
function of nearest-neighbor sites given by (6.25) and =
D(E) is the density of states of loca.ligzled excitons normal- TER)=Tpr(E,R)+Trz(ER) . @3

ized as In the numerical integration of the rate equation (7.1),

f dE D(E) =v1 . (72)  the following parameters are chosen:
]

p="5.3 g/cm® (Ref. 23), uy, =4.81X10° cm/s (Ref. 20), ura =3.34X10° cm/s (Ref. 13),

L,=76 A (Ref. 3), ap=136 A (Ref.21), £=150 A, 0o=10""cm?,

: (74)
a=10% cm~" (Ref. 11), D,=3.1 eV (Ref. 24), D,=—6.5 eV (Ref. 25), m,=0.067mg (Ref. 26) ,

my,=0.45mg (Ref. 26), ey3=1.6x10"° C/cm? (Ref. 27), €,=12.56 (Ref. 28), ¥5 ' =480 ps (Ref. 29),

I
where my is the free-electron mass and 7 is determined  representing the exciton distribution function f(E,¢).
from the experimental decay curve of the spectrally in-  Surprisingly enough, the experimental f(E,t) can be
tegrated luminescence intensity®” and is assumed to be en- described by the Boltzmann distribution fairly well, espe-
ergy independent, for simplicity. The transfer-integral  cially in the higher-energy region E >1.614 eV. The
constant J in {6.23) or (6.24) is left as an adjustable pa- Boltzmann statistics may be maintained by the frequent
rameter. The density of states D (E) is approximated by a  collisions among excitons. As for the initial distribution
Gaussian with a peak at 1.6225 eV and a half-width of 7.5  function in the numerical integration of the rate equation,
meV. The initial distribution function is taken from the  the effective temperature of excitons is assumed to be 20
_experimental data of the time-resolved luminescence spec- K above 1.614 eV and —10 K below that energy, respec-
trum. In Fig. 2 the time-resolved luminescence spectrum tively, to simulate the experimental distribution function
divided by the absorption spectrum is plotted on the loga- at t=100 ps. The calculated average energy of lumines-
rithmic scale”® This figure can be considered as  cence shows a nonexponential behavior, i.e., decay with an

(10°sh

(log scale)

Q5

Spatially Integrated TransferRate

00 5
Energy(meV)
FIG. 1. Energy dependence of the spatially integrated one- FIG. 2. Experimental data of the time-resolved luminescence
phonon-assisted transfer rate of excitons for deformation- spectrum divided by the absorption spectrum which can be con-
potential coupling (DF) and piezoelectric coupling (PZ). sidered as representing the exciton distribution function.
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almost constant rate. At first, let us assume for J(R) the
dipole-dipole type transfer in (6.23). In Fig. 3 the theoret-
ical result for the case of Gaussian localization is com-
pared with the experimental data of Ref. 30. The best fit
is obtained by adjusting J as

F(Gaussian)=11.7x 10? eV A’ . 1.5)

A similar result is obtained in the case of exponential lo-
calization by taking

J(exponential)=10.2 X 10* eV A® . (7.6)

In the latter case the magnitude of the wave vector of
phonons participating in the exciton transfer, or,
equivalently, the possible energy mismatch of excitons, is
larger than that in the former case, as seen from (4.15)
and (4.16). This leads to the faster energy relaxation in
the case of exponential localization than in the case of
Gaussian localization for the same localization length §,
and thus the smaller value of J is obtained in the former
case. For the tunneling-type transfer in (6.24), the param-
eter § is assumed to be 10° cm ™!, which is on the order of
the inverse Bohr radius of the quasi-two-dimensional exci-
ton. From the fitting to the experimental curve, the
- phenomenological constant J is determined as 0.44 and
0.31 meV for the case of Gaussian localization and ex-
ponential localization, respectively. These values are on
the same order as those of the dipole-dipole type transfer
in (6.23) estimated at R=§. For the case of dipole-
dipole—type transfer, the agreement within a factor of 2
or 3 between the theoretical value in (5.15) and the values
estimated from the experiment in (7.5) and (7.6) is quite
satisfactory in view of ambiguities in the material parame-
ters. This confirms the adequacy of both our model for
the localized excitons in QW heterostructures and our
theory of the energy transfer.

Let us now explain the observed nonexponential
behavior of energy relaxation. Experimentally, the aver-
age energy of luminescence showed decay with an almost
constant rate. The average energy of luminescence at time
t is defined by

%7@,:):- [ dE' D(EVFENT(|E—E {n(E'—E

+ [ dE' D(ENFE\OT(| E —E'|){n(E —E"O(E —E")+[1+n(E'—E)O(E'—E)] .

It is easily found that
d ~
> ,t)=0,
= [ dEDBF(E
and, correspondingly,

[ dED(E)F(E,n=Dy,
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FIG. 3. Comparison of the theoretical calculation of the
average energy of luminescence with the experimental data cited
from Ref. 30.

(E)o)= [dEEDEV(E [ [ dEDES(ED, (11

where D(E)f(E,t) is proportional to the intensity of
luminescence with energy E at time t. The energy relaxa-
tion rate is then calculated by d{E)/dt. On the basis of
the analytical expression of d{E )/dt, the nonexponential
behavior of energy relaxation will be clarified. To simpli-
fy the rate equation (7.1), the spatial integral of the exci-
ton transfer rate will be denoted by T, namely
T(|E—E'|)=o5"' [d*RT(|E—E'|,RIF(R). (1.8)
Furthermore, the time dependence due to the radiative
and nonradiative decay processes will be separated out by
setting

FEN=e "FEDN. (7.9)
Then the rate equation for F(E,1) can be written as
JO(E'—E)+[1+n(E —E"]O(E —E")}

(7.10)
(7.11)
(7.12)

where Dy is the initial value of the total exciton population. This relation implies simply that the total luminescence in-
tensity or the total exciton popalation decreases with the decay rate . Next, by multiplying ED (E) on both sides of

(7.10) and by integraiin-. wver £, one ohtains
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L ([ dEED(BF(ED |= [ dE [ dE'DEDEFE NE~ET( E~E'|)
X (n(E —E"O(E —E")+[1+n(E' —E)OE ~E)} . (7.13)

As shown in Fig. 1, the function T(E)isa rapidly decreasing function compm-'ed to the density of states D(E) and the
phonon occupation number n(E). This is simply due to the exciton localization factors in (6.5), (6.6), (6.14), and {6.21).

Thus it is allowed to expand as

dD(E')

D(E)=D(E)+= 2=

(E—E')4-

(7.14)

Substituting this expansxon into the integrand on the right-hand side of (7.13) and changing the mtegratlon variables

from (E,E’) to (E’, E.—E"), one finds

= [ f dEED(E)f(E,t)]:—- [dEDHEVFE ) [T dEET(|E )

+de’D(E' dD(E’

The average energy of luminescence defined by (7.7) can
be rewritten as

(EXo= [ dEEDEFED [ [ dEDEFED
=D5' [dEED(EfE), (7.16)

where the cquatioh (7.12) is used. Then the eneréy relaxa~
tion rate is calculated as

_dE) _ pd

- 4 ([ aeEpEFED|

=p;' [T4EET(|E|) [ dE'DUEVF(E D,

(7.17)

where only the first term on the right-hand side of (7.15)
is retained. As shown in (7.12), the integral
f dE D(E)f{(E,?) is exactly time independent. Thus it is
expected that the right-hand side of (7.17) is almost time
independent, if the functional form of D¥E) is not very
different from that of D(E). This may be the case be-
cause at the later stage, after photoexcitation, the excitons
have accumulated on the low-energy tail of the density of
states. In this energy region, D(E) is a smooth function
and one may approximate (7517) as

d (E > _ ' Y2 O F( R

=W [ dE' DHENFE", D)

=WD [ dE'D(E"F(E',1)

=D [ dEET(E), (7.18)

with
. —l « —
w=D;5' [“dEET(E),
where D is a representative value of D(E) at the peak re-
gion of f(E,t). The final expression is exactly time in-
dependent. This explains qualitatively the observed

nonexponential behavior of energy relaxation. In fact, ex-
pression (7.18) gives the right order of the observed energy

S AE f dE E*T(|E | 1420 (E)]+ - -

(7.15)

I

relaxation rate. The generality of the above argument
suggests that the nonexponential behavior of energy relax-
ation is a universal feature to be observed in the tail region
of optical transitions which is induced by any kind of in-
homogeneity or disorder.

VIIL. DEPENDENCE OF ENERGY RELAXATION
RATE ON THE QUANTUM-WELL
THICKNESS

Here the dependence of energy relaxation rate on the
QW thlckness L, is discussed. Experimentally, the depen-
dence of L% is observed along with the same dependence
of the absorption bandwidth, as shown in Fig. 4.3° This
experimental result suggests that there is some kind of
correlation between the energy relaxation rate and the ab-
sorption bandwidth. In fact, according to (7.18), the L,
dependence of the energy relaxation rate arises from D
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FIG. 4. Observed dependence on the quantum-well thickness
L, of the energy relaxation rate and the absorption bandwidth
of the 1s exciton. The dashed line shows the L, dependence.
The open circles represent the energy relaxation rates at the ini-
tial stage after photoexcitation, while the solid circles are those
at the later stage.
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since the integral factor f dE ET(E) is only weakly
dependent on L,. When the width of the density of states
is increased, the value D at the low-energy tail becomes
larger, since the density of states is normalized by (7.2).
Thus the above correlation can be understood qualitative-
ly. To investigate in more detail the relationship between

the energy relaxation rate and the absorption bandwidth,
|

one can make full use of the scaling property of the rate
equation.

‘The characteristic width of the density of states of exci-
tons will be denoted by o, which is identified here with
the absorption bandwidth. Then, by expressing the o
dependence explicitly, the rate equation (7.10) can be writ-
ten as

%7(5,0,”:_ [ dE' D(E"\ ) F(E,0,0T(|E~E'| ){n(E'~E)O(E'~E)+[1+n (E —E"]O(E —E")

+ [ dE'D(E",0)F(E"0,0T( | E—E'){n(E —E"O(E —E)+[1+n(E'—E)]O(E'—B)} ,

(8.1)

where T(E) is defined by (7.8) and is not dependent on o. Since the density of states D (E,o) is normalized as

[ dED(E,0)=1,
the following scaling relation can be postulated,
oD(oE,0)=D(E),

(8.2)

(8.3)

‘»vheré D is a universal function independent of . By scaling the variables (E,E’) as (¢E,cE") and using (8.3), one finds

-;—j;-f(a'E,a,t)= — [ dE'D(E"floE,0,0T (0 | E—E'|){n(o(E'~E)O(E'—E)+[1+n(o(E —E")]O(E —E")

+ [ dE'D(E"floE",a,0T(0 | E —E'|)[n(o(E —E'NO(E —E")+[1+n(o(E'—E)]O(E'—-E)] . (8.4)

Furthermore, the transfer rate T is supposed to be scaled
as

T(g|E—E'|)=c"U(|E-E'|), (8.5)

where U is a universal function that is independent of, or
weakly dependent on, the scaling parameter o. Conse-
quently, (8.4) can be rewritten as

L foE,0,0=~0%| [ dE'K(E,E"F(0E, 0

— [ dE'L(E,ENfloE ,0,0) | .

(8.6)

Here, K and L are the integral kernels corresponding to
each term on the right-hand side of (8.4) which can be re-
garded as universal functions since the parameter o in-
cluded in the phonon occupation number n gives rise to
only a weak dependence on . Scaling the time variable
as

t—t/c%, 8.7)

one finally arrives at the universal rate equation,

g?f(a'E,a',t/a“)=-— [ dE'K(E,EVJ(0E, 0, t/0%)

+ [ dE'L(E,E"f(0E",0,1/0%) .

(8.8)

Since the integral kernels K and L are universal functions,

f
the solution of the rate equation (8.8) can also be regarded
as universal, namely

FloE,0,t/6%)=G(E,D , (8.9)

where G is a universal function independent of ¢. This is
an important consequence of the scaling property of the
rate equation.

Now the average energy of luminescence is calculated
by

[ dEED(E,0)f(E,0,1)

(E)o= =
[ dED(E,0)f(E,0,1)

(8.10)
Scaling the integration variable E as oE and using the re-
lation (8.3), it is rewritten as

o [ dE ED(E)f(0E,0,1)
~ [4ED(E0E,0,n

(E)s

o [ dE ED(E)G(E,0®)
~ [dEBEIGE,e%

(8.11)

where the scaling property (8.9) is used. Then the energy
relaxation rate is calculated as

d 4 | [ dEED(E)G (E,u)
“AE)Y =o't —
dt du | [ dE D(E)G(E,u)

u=0%
(8.12)

Here the derivative term with respect to u is a universal
function since D and G are universal functions. It can be
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expected that the derivative term is a smooth function
with respect to u at the large argument, and that it takes
an almost constant value independent of o at large ¢
Thus the energy relaxation rate can be scaled as

AR (8.13)
in terms of the absorption bandwidth o, where the ex-
ponent  is determined by the scaling property of the
transfer rate as shown in (8.5). The exponent a can be es-
timated, in principle, from the dependence of the transfer
rate on the energy or the phonon wave vector. However,
as investigated in Sec. VI, the expression of the transfer
rate contains these variables in a rather complicated way
and the determination of the exponent e is not straight-
forward. The exponent a should be determined in the en-
ergy region in which T'(E) takes a significant value and
from which the contribution to the exciton transfer pro-
cess is dominant. For example, in Fig. 1, where TpelE)
and Tpz(E) are shown for the case of Gaussian localiza-
tion and for tunneling-type transfer, the relevant energy
region is considered to be 0.2<F <0.8 meV. In this re-
gion the exponent o can be considered to be 0 since there
is no definite power-law dependence on energy. The same
situation holds for other cases of combinations of the
Gaussian and exponential localization and the tunneling-
type and dipole-dipole—type transfer. Consequently, it

. can be concluded that ¢=0 and that

Lm0, (8.14)
The scaling argument successfully explains the observed
correlation between the energy relaxation rate and the ab-
sorption bandwidth, though in a qualitative way. On the
other hand, the observed dependence of the absorption
bandwidth on the QW thickness L, is different from the
expected one. Since the kinetic energy of the electron and
hole confined in a QW is approximately proportxonal to

L; ~231 the fluctuation of the exciton energy is propomon-

al to L3 if the amount of well-thickness fluctuation is

independent of L,. In reality, however, the bandwidth of
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excitons is determined by the details of atomic-scale disor-
der of the QW interface and a naive theory fails to predict
the observed dependence on L. A detailed theory based
on the microscopic morpholog gy of the QW interface will

be necessary to explain the L,”* dependence of the absorp-
tion bandwidth.
IX. SUMMARY
The slow energy relaxation of the quasi-two-

dimensional excitons in GaAs-AlAs QW heterostructures
is explained quantitatively in terms of the intralayer mi-
gration of excitons localized at the energetically local
minimum sites induced by the fluctuation of the well
thickness along the QW interface. The nonexponential
behavior of energy relaxation is clarified theoretically as a
general feature to be observed in the low-energy tail of the
density of states. The dependence of the energy relaxation
rate on the QW thickness is discussed along with the same
dependence of the absorption bandwidth. The correlation
between the energy relaxation rate and the absorption
bandwidth is explained qualitatively on the bams of the
scaling property of the rate equation.

Finally, let us briefly comment on the energy relaxation
of excitons in three dimensions, such as the excitons in
mixed semiconductors. The underlying physics is analo-
gous to that in the quasi-two-dimensional case discussed
in this paper, although the origin of the inhomogeneity or
disorder is different in two cases. In fact, the slow and
nonexponential energy relaxation of excitons in the band-
edge region was observed recently in mixed semiconduct-
ors.’? This can be regarded as one of the experimental
verifications of the general feature of the nonexponential
relaxation clarified in Sec. VIL. -
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APPENDIX

The explicit expressions of I{y) defined by (2.29) and G(7,8) defined in (2.23) are given in the following. The argu-

ment 8 of G is changed to 25 for simplicity of expression:

Iy)=
Lea

m[3y7 2825 £ 96m%y) — 1120%y 2 + 12875 — 19278 + 167 ~7(y} + Ty 4Py + 12077)]

(A1)
Gly,28)= flj/zdze flmdzh expli20z, —7 |z, —24 | X147 |z —25 | ) cos*(mrz, ) cos*(mzy) (A2)
_ | P(y,8;0)5in8+-Q(y,8;0)cosd | Ply,8m)sind+Q(y,8m) cosd
T 28 -8 (m+8)(4m+28)
+ Ply,8; —m)sind+0Q(y,8; —m) cosd (A3)

(r—8)(47—28)

with
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1
(P4 4 +8P2F

P(y,8;x)=
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(277 +8[x 2+ (x +812]y° + 16[x* +(x +56)*]°

—28(2x +8)e ~7{y0+4y° +4[x2+ (x +872]7*+8[ 8%+ 2x(x +8)]°

1
(P2 +dx [y +4(x +8)*)?

Qy,8x)=

+16x2(x +8%?]) , (A4)

X(—3(2x +8)Yy —4[(x +8)° -+ 6x (x +8)+6x2x +8)+x3 ]yt

—16[3x (x +8)*+2x%x +-8 + 23 (x +82+3x*(x +8) ]2

—64x3(x 4-8)* —64xH(x +8P+(2x +8)e T [y7 4+ 35+ 4[x?+ (x +82+x(x +8)]y°

+4[x2+(x +8+5x(x +8)]y*
+16x (x +8)[x2+(x +8)+x(x +8)]y°
+16x (x +8)[x2+(x +8)2+3x(x +5) 428212

+64x3(x +-8Py +64x3x +57)) . (AS)
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We have studied the oscillator strength of the lowest 1s heavy excitons in GaAs-AlAs quantum wells as a
function of well-layer thickness by means of optical absorption. The oscillator strength of the lowest ls
heavy excitons is largely enhanced with the decrease of well-layer thickness. The result is the first full ex-
perimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells.

It is interesting to clarify experimentally the form of the
exciton wave function in semiconductor quantum wells,
both from the viewpoint of general physics as well as from
that of semiconductor physics. This is because excitons in
quantum wells are excellent analogues of hydrogen atoms in
one-dimensional square wells.! By reducing the well thick-
ness, we can continuously change the wave functions of ex-
citons or hydrogen atoms from the three-dimensional to the
two-dimensional state. Recent advances in semiconductor
technology allow us to study experimentally this dimension-
al problem for excitons by creating quantum wells whose
thickness is comparable to the exciton Bohr radius. The ef-
fect of dimensionality on the oscillator strength of the exci-
ton*~ as well as on the binding energy of the exciton has
been extensively studied by theorists.>® The recent magne-
toabsorption experiment has revealed the binding energy of
excitons in quantum wells.””® However, there has been no
full experimental study of the oscillator strength.

Compared with the binding energy, the oscillator strength
is a more direct probe for the investigation of the nature of
the wave function of excitons. This is because the oscillator
strength is directly proportional to the square of the ampli-
tude of the exciton wave function at the point where the
two constituents of the exciton, an electron and a hole,
overlap. It is expected that the overlap amplitude of the
electron and the hole rapidly increases with the decrease of
the well-layer thickness L., when L, is smaller than the ex-
citon Bohr radius ag. Then the oscillator strength of exci-
tons will rapidly increase. Some authors have reported the
enhancement of the exciton oscillator strength with the de-
crease of well-layer thickness by comparing the lifetime of
excitons.”!® However, the lifetime of excitons does not al-
ways reflect the oscillator strength, owing to the consider-
able contribution of the nonradiative processes. In fact, the
observed reduction of the lifetime is too small compared
with the enhancement of the oscillator strength directly
presented in this paper.!! In this work, we systematically
study the oscillator strength of the lowest 1s heavy excitons
in GaAs-AlAs quantum wells as a function of well thickness
by means of optical absorption. The results give the first
full experimental observation of the nature of the exciton

32

wave function in quantum wells. )

In this work ten multi-quantum-well samples grown by
molecular-beam epitaxy on GaAs(100) substrates were
used. Their characters are listed in Table I. Samples
(GaAs-AlAs, QW1-QWI10} consist of alternate undoped
GaAs well layers and undoped AlAs barrier layers. The
thickness of the GaAs well layers ranges from 30 to 254 A.
A hole in the GaAs substrate of all the samples was made
by means of selective chemical etching. Samples were
directly immersed in superfluid helium. For the optical-
absorption measurement, an incandescent lamp and a 50-cm
monochromator were used. The light beam was carefully
set to pass vertically through the hole in each GaAs sub-
strate and the quantum-well layers. .

In Fig. 1 absorption spectra a(E) of six representative
samples are shown. Here the absorption coefficient is de-
fined as a(E) = —In(I/Io)/d(GaAs), where Iy and I are
the incident and transmitted light intensities, respectively.
The total thickness of the GaAs, d(GaAs), is equal to the
well-layer thickness L, multiplied by the number of GaAs

TABLE 1. List of samples. L, is the GaAs well thickness, Ly the
AlAs barrier thickness, ®{GaAs) the total thickness of GaAs, and
E, -, the energy of the absorption peak due to the lowest ls
heavy-exciton state at 2.0 K.

GaAs-AlAs L Ly #CaAs) Epmy
sample numbers (A) (A) (pm) . eV)
Qw1 30 4 0.30 1.845
Qw2 43 62 0.86 1.683
Qw3 53 50 1.18 1.672
Qw4 58 71 0.99 1.642
Qws 7 33 2.08 1.622
QW6 83 93 1.43 1.579
Qw7 96 91 0.96 1.571
Qw8 108 36 2.63 1.572
QW9 154 131 2.00 1.540
QW10 254 122 2.03 1.524
4275 ©1985 The American Physical Society
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FIG. 1. Absorption spectra of the lowest heavy and light excitons in six representative GaAs-AlAs multi-quantum-well samples at 2.0 K.
Heavy and light excitons are denoted by kand I, respectively. The hackground comes from the reflection loss, which is shown by dashed
lines. Absorption areas of the heavy excitons plotted in Fig. 2 are those surrounded by solid lines and dotted lines. Absorption coefficient at

the continuum plotted in the inset of Fig. 2 are indicated by arrows.

well layers. Observed absorption peaks located at the lowest
energy are ascribed to the 1s heavy exciton (n=1, ¢-HH),
which is composed of an electron and a heavy hole belong-
ing to the lowest state (n=1) in the quantum well. The
absorption peaks located at the higher energy are ascribed to
the 1s light exciton (n =1, e-LH), composed of an electron
and a light hole. The absorption spectra are steplike above
the 1s light-exciton energy. They correspond to the contin-
uum transition from both the heavy and light valence bands
to the conduction band. Steplike absorption spectra reflect
the steplike two-dimensional density of states of the conduc-
tion and valence bands in a quantum well. The absorption
coefficient at the continuum-band positions increases with
the decrease of well-layer thickness L..'? Simultaneously,
the integrated areas of the absorption peaks due to heavy
and light excitons increase.

The integrated areas of the absorption peaks are directly
proportional to the oscillator strength fas follows:

= 272e%
(EYdE=—"—"~—f ,
'I‘El “ moc~/ Ebf

where mg is the mass of electron, e is the charge of elec-
tron, c is the light velocity, €, is the background dielectric
constant, and the lower and upper limits of the integral, £,
and E,, cover the absorption peaks. Thus, we can directly
estimate the oscillator strength f from the absorption area.
The oscillator strength f of excitons in quantum wells is
considered to vary spatially, because quantum wells consist
of many islandlike clusters whose thickness fluctuates by
the height of 2 monolayer.'* The exciton in each cluster has

€Y

the oscillator strength for that cluster. Therefore, the oscil-
lator strength fin Eq. (1) is regarded as the spatially aver-
aged one.

In Fig. 2, the obtained absorption areas of the heavy-
exciton peaks are shown as a function of L.. In the inset of
Fig. 2, the absorption coefficients at the continuum posi-
tions indicated by arrows in Fig. 1 are plotted.'* From Fig.
2, one can find that the absorption coefficient at the contin-
uum and the absorption area of the heavy-exciton peaks are
strongly enhanced with the decrease of L,. The absorption
coefficient is proportional to 1/L,, while the absorption area
of heavy-exciton peaks is enhanced much more with the de-
crease of L;.

From the same variational calculation described previous-
ly, we can obtain the oscillator strength of 1sexcitons in an
infinite square well.** Dropping the plane-wave term, we
take the following trial function for the 1s exciton wave
function:

Y= Ncos(mz /L) cos(az, /L;)

xexp (= [a?(x? +y?) + 8%z, — z,)21'3} . ¥))

Here two variational parameters « and 3 are related to the
spatial extent of the exciton in directions parailel (x,y) and
perpendicular (z) to the well layer, respectively. The quan-
tum well is assumed to have infinite wall at z= + L, /2 and
the z coordinates of the electrons and holes are z, and z,
respectively. N is determined by the normalization condi-
tion. This trial function contains that used by Bastard,
Mendez, Chang, and Esaki as a special case.’ The oscillator
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FIG. 2. L, dependence of the absorption area (O) of the lowest
1s heavy exciton. The solid and dotted lines are the oscillator
strength calculated on the basis of Eq. (3) with and without taking
account of the energy dependence of the optical transition, respec-
tively. The dashed line shows the 1/L, dependence. Calculated
lines are normalized to fit the experimental data of QW9. In the in-
set the L, dependence of the absorption coefficient (@) at the con-
tinuum indicated by arrows in Fig. 1 is plotted. The dashed line
shows 1/L, dependence.

strength of 1sexcitons is calculated by

F={LNY2mokw) | M )2 F (kL. [2) , ()]

where M., is the matrix element of the optical transition
from the valence to the conduction band, fw is the optical
transition energy, and k, is the z component of the photon
wave vector in the well layers. A factor F(x)
= [(sinx/x)m/(x*—=72)]? arises from the wave-vector
mismatch between excitons and photons. Because the rela-
tion k.L;/2<0.35 holds in all the samples, it is exact
enough to regard F(kL,/2) in Eq. (3) as 1.0 for the
analysis of the experiment. As L, approaches zero, Eq. (3)
converges to {(4a*/mrmofwl;)|M,,|% In the limit of small
L,, o goes to 2/ag. Then expression (3) agrees with the
well-known formula (16/7mqkwL,ad)|M,,|? for the two-
dimensional exciton.? As is shown by Chang and Schul-
man,' the square of the optical matrix element |M.,|? cap
be regarded ag independent of L. in the present range (30 A
< L, <254 A). Thus we calculated the relative oscillator
strength regarding the term |M,,|? in Eq. (3) as a constant.
The calculated oscillator strength is shown as a function of
L, by solid and dotted lines in Fig. 2. The solid and dotted
lines are calculated with and without taking into account the
energy dependence of the optical transition energy fw
(=F,, in Table I), respectively. Here we have adopted
the values of static dielectric constant € =12.5 and the re-
duced mass of exciton in the xy directions pu=0.04m,, 50
that the Bohr radius ag=e #%/ue’ is taken to be 165 A.
The calculated curves are normalized to fit the absorption
area of the 1s heavy exciton in the QW9 sample. As a
result of normalization, the calculated curves depend little
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on the values of &, u, and az. The agreement between the
experimental values and the calculated curvegis fairly good
unless the well thickness is thinner than 60 A. It is noted
that almost the same calculated curves have been obtained
even with other forms of trial functions by Bastard et al. or
Greene and Bajaj,® although the present trial function in Eq.
(2) gives the largest binding energy for excitons.

It is instructive to compare the L, dependence of the ab-
sorption area of the heavy-exciton peaks with that of the ab-
sorption coefficient at the continuum. With the decrease of
L., the absorption coefficient grows larger in proportion to
1/L,. This dependence comes from the fact that the square
of the overlap amplitude of the wave functions of the elec-
trons and holes is proportional to 1/L;, because the un-
bound states of electrons and holes are confined in the well
of thickness L, in the z direction but are extended in the xy
directions, while the 1s exciton wave function shrinks in
both the zand x,y directions. In the z direction, the exciton
wave function shrinks in proportion to L., while in the xy
directions the exciton wave function shrinks in proportion
to 1/a. In the limit of smail L,, 1/aaz goes to {r This fact
explains the more drastic increase of the absorption area of
the heavy-exciton peak compared with the increase of the
absorption coefficient at the continuum. Thus, the
enhancement character of absorption area presents direct
experimental verification of the two-dimensional shrinkage
of the exciton wave function in quantum wells. In the case
that the well layer is thinner than 60 A, the experimental
values are much larger than the calculated ones. The
present experiment presents the relative increase of the os-

" cillator strength of excitons in quantum wells. The calculat-

ed curve varies little even if weg change the value of the
Bohr radius ap from 100 to 200 A. This is because the cal-
culated curve is normalized to fit the experimental data of
the QW9 sample. Thus the disagreement between experi-
ment and calculation is unavoidable. :

The experimental data definitely show that the exciton
wave function shrinks much more than calculated for the
infinite-well model. This deviation is enhanced even more
if we take the finite-well model. Then the exciton wave
function does not shrink as much with the decrease of L,,
because the wave function penetrates somewhat into the
barrier layer. The effect of the image force on excitons
somewhat enhances the oscillator strength with the decrease
of L,. However, the enhancement expiains only a part of
the deviation.'® If we assume that the reduced mass u of
the exciton is enhanced by =20% below L.==60 A, the os-
cillator strength increases by ==40%, so that the deviation is
canceled. This is because the Bohr radius aj is proportional
to 1/u, and because the oscillator strength of the two-
dimensional exciton is enhanced in proportion to the
enhancement of 1/aj. In this connection, we note the re-
cent magneto-optical experiments.””® The enhancement of
the reduced mass of excitons deduced from our present ex-
periment qualitatively agrees with that deduced from the
magneto-optical experiments. The nonparabolicity of the
heavy-hole subband probably explains the increase of the
reduced mass with the decrease of L,, because the hole
states with larger wave vectors contribute to the exciton
wave function with its shrinkage.

In summary, the oscillator strength of the lowest 15 heavy
excitons in GaAs-AlAs quantum wells is studied as a func-
tion of well-layer thickness by means of optical absorption.
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The oscillator strength of the lowest ls heavy excitons is
largely enhanced with the decrease of well-layer thickness.
The enhancement character gives the full experimental veri-
fication of two-dimensional shrinkage of the exciton wave
function in quantum wells. The exciton wave function
shrinks much more than the calculated one when the quan-
tum well is thinner than 60 A. This fact suggests that the
reduced mass of excitons is then enhanced by ==20%.
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The mechanisms of dephasing relaxation (homogeneous linewidth) of quasi-two-dimensional excitons in
quantum-well heterostructures are clarified for both localized and delocalized excitons. The recently ob-
served energy and temperature dependences of the homogeneous linewidth T'; are explained quantitatively.
Furthermore, a new exponent for the temperature dependence of I, of the localized excitons at low tem-
peratures, the energy dependence of I’y of the delocalized excitons, and the dependence of I'y on the

quantum-well thickness are predicted.

Recently, the homogeneous linewidth and the diffusion
constant of quasi-two-dimensional excitons in GaAs-
Al,Ga;-..As multiple-quantum-well structures have been
measured by Hegarty, Goldner, and Sturge' with various
techniques, such as resonant Rayleigh scattering, hole burn-
ing, and the transient grating method. Their measurements
revealed the salient features of the energy and temperature
dependence of the homogeneous linewidth of quasi-two-
dimensional excitons. They found that the homogeneous
linewidth increases sharply as the exciton energy increases
through the center of the absorption line, and that below
the line center the homogeneous linewidth is thermally ac-
tivated. These experimental results suggest the existence of
the mobility edge for the quasi-two-dimensicnal excitons in
quantum-well heterostructures. From the linewidth analysis
of the luminescence and its excitation spectra,? and indepen-
dently from transmission electron microscopy,™* it was sug-
gested that the quantum-well interface has a kind of disor-
der, namely, islandlike structures having a_ height of one
monolayer and a lateral size of about 300 A. In the low-
energy region the excitons can be localized at one of these
islandlike structures since the exciton energy changes by
several meV because of the one monolayer difference of the
quantum-well thickness, and the Bohr radius of the quasi-
two-dimensional gxciton is about 100 A for a typical well
thickness of 100 A.>7 The excitons localized at such islands
of local minima in energy will migrate among the islands to-
ward the lower-energy sites emitting acoustic phonons. The
phonon-assisted migration of excitons among localized sites
within a quantum-well layer was the key to understanding
the behavior of energy relaxation in the low-energy region
of photoluminescence spectra.®?

In this paper the energy and temperature dependence of
the homogeneous linewidth, which will be referred to as the
dephasing relaxation constant hereafter, of the quasi-two-
dimensional exciton and its absolute value are explaineﬁ

quantitatively on the basis of the same model. In the fol-
lowing calculation the dephasing relaxation rate is identified
with the rate at which the exciton state changes some of its
degrees of freedom, for example, energy, momemum, site,
and polarization.!?

First of all, the mechanisms of dephasing relaxation
shouid be identified.!’ In the localized regime the excitons
can tunnel to other localized sites accompanying absorption
or emission of acoustic phonons in order to compensate for
the energy mismatch. As another mechanism contributing
to the homogeneous linewidth, one can consider the
phonon-assisted transition to the extended (delocalized) ex-
citon states. The latter mechanism is effective in the inter-
mediate temperature range (»2_ 10 K) because the transition
is associated with phonon absorption. Obviously this
mechanism leads to the activation-type behavior of the tem-
perature dependence of the homogeneous linewidth (1‘,,),4
which was observed experimentally.! On the other hand,
the tunneling mechanism is working even at low tempera-
tures (~1 K) and leads to the variable-range-hopping'?
behavior of T, which was also claimed to be observed.! As
for the delocalized exciton state, dephasing relaxation is
caused by acoustic phonon scattering on the two-
dimensional dispersion curve. In fact, the phonon scatter-
ing rate is found to be enhanced by two orders of magni-
tude over that for the three-dimensional case because the
phonon momentum perpendicular to the quantum-well in-
terface can be arbitrary in the scattering. Another mechan-~
ism of dephasing relaxation of the delocalized exciton is
elastic scattering by the potential fluctuation due to the
layer-thickness fluctuation within a layer.

Now let us discuss the dephasing relaxation in the local-
ized regime. The homogeneous linewidth of the localized
exciton state with energy £ due to phonon assisted tunnel-
ing is calculated by

riE) = [ dE'DEVFUE=EDn(E ~EYO(E' = E)+[1+n(E~ENIO(E-E)]), m

where D is the density of states of the localized exciton state, n is the phonon occupation number, and T(|E—E' |) denotes
the spatially integrated exciton transfer rate whose expression is given in Ref. 9. The dephasing relaxation rate due to the

activation process is given by

FEC(E)"
Ky

Ezl(Kl(lHexpth )QIZ"QB(E EK" +ﬁ"-‘Q) (2)

where |K,) is the delocalized exciton state with a wave vector K parallel to the quantum-weil interface, |R,) is the local-
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FIG. 1. The calculated homogeneous linewidth AT, and activa-
tion energy AE as functions of exciton energy. The dashed line in-
dicates the assumed exciton absorption spectrum. The region indi-
cated by a double arrow is the supposed transition region between
the localized and the delocalized regimes.

ized exciton state at site R,, and H.,.p, denotes the quasi-
two-dimensional exciton-phonon interaction derived in Ref.
9. As for the envelope function of the localized exciton, it
is found that a Gaussian form is not adequate because the
energy dependence of the calculated T'j° is too sharp to ex-
plain the experimental results. Instead, an exponential
function is adopted for the localization envelope. Calculated
dephasing relaxation constants are shown in Fig. 1. The
density of states of the exciton is assumed to be proportion-
al to the absorption spectrum and the mobility edge is set at
the center of the absorption line. The absolute value of the
exciton energy in the figure has no particular meaning.. The
quantum-well thickness is taken as 80 A and the infinite-
barrier model is adopted for the exciton state. The tempera-
ture is 5 K and other material parameters, e.g., the exciton-
phonon coupling constants, are the same as chosen in Ref.
9. Below the center of the absorption line, the calculated Iy
is of the order of 0.1 meV and increases with the exciton
energy. This is in good agreement with the experimental
results. The temperature dependence of I', is examined in
this energy region. The Arrhenius plots of I'y at various ex-
citon energies are given in Fig. 2. The activation energies
determined from the temperature dependence in Fig. 2(a)
are plotted in Fig. 1 as AL on the left ordinate axis. As
seen from Fig. 2(b), in the temperature region about 10 K
there occurs a crossover in the dephasing mechanism from
thermal activation to phonon-assisted tunneling because the
latter mechanism is effective even at low temperatures (~ 1
K). Accordingly, the temperature dependence of T’y experi-
ences a crossover between activation-type behavior and the
behavior exhibited by I'}. From the least-squares fit in the
temperature range between 2 and 0.5 K, T}l is found to
obey the temperature dependence

TR(T)=ToexplB/T], 3

where B is positive and the exponent « is estimated to be
: ]

@

o

Tlh(meV)

E=1622 eV

o
pard

001 .

05
™Kh

FIG. 2. Arrhenius plot of the homogeneous linewidth 4T, at
varfous exciton energies in the localized regime; (a) for I'}° and (b)
for both ' and I'}\.

about (—1.7)~(—1.6), depending weakly on the exciton
energy. This exponent is different from that for variable
range hopping in twe dimensions.'* This difference arises
essentially from the difference in the quantity to be mea-
sured. The hopping conductivity is induced by the activa-
tion of electrons near the Fermi surface by phonon absorp-
tion, while both the phonon absorption and emission
processes contribute to the dephasing relaxation rate. Thus
it is not very surprising that we found a new exponent dif-
ferent from that for variable range hopping.

Next, the dephasing relaxation constant of the delocalized
exciton state will be discussed. As mentioned before, de-
phasing relaxation is partly caused by acoustic phonon
scattering on the two-dimensional dispersion curve and part-
ly by elastic scattering by the potential fluctuation. The con-
tribution from the phonon scattering is given by

Fﬁh(Ku)gzﬁ—wE (K iQu!Hex-ph|Kn)Q|2[ﬂgﬁ(EK“+a" —Eg, —fwg)+(1 +NQ)5(EK"—Q" ~ Eg, +iwg)] . 4)
< 2
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The calculated results are shown by T'P" in Fig. 1. The
dispersion of the delocalized exciton state is assumed to be-
gin from 2.5 meV above the mobility edge. This choice is
rather arbitrary but does not seriously affect the qualitative
features of the energy dependence of I';. The dephasing re-
laxation rate due to elastic scattering by the potential fluc-
tuation is calculated as follows. The fluctuation of the exci-
ton energy is caused mainly by the fluctuation of the sub-
band energy, since the binding energy of excitons is affected
littte by one monolayer change of the well thickness.S~
Within the effective-mass approximation the fluctuation of
the exciton energy due to the fluctuation of the quantum-
well thickness 8L; is given as

SE =iimsL./ul?, ) (5)

where p is the reduced mass of the exciton. Assuming the
scattering potential due to the exciton energy fluctuation to
be a cylindrical one with radius ¢, the dephasing relaxation
rate is calculated as

2
el - 81TM§2(BE)Z /2 Jl(ZK"gcosB)
FitE oo f" a6 2K cos @ . ®

where M, 8E, and og ! are the exciton total mass, the po-
tential fluctuation, and the areal number density of the
scattering potential, respectively, and J| denotes the first-
order Bessel function. The calculated results are depicted as
It in Fig. 1. The employed material parameters are again
the same as in Ref. 9. The absolute values of T'f" and '’
are both of the order of meV in agreement with the experi-
mental results, whereas they tend to decrease in the
higher-energy region. This is because the magnitude of the
wave vector of the participating phonons increases with the
exciton energy in the case of Tf" and because of the K2
behavior of (6) in the case of T'f!, respectively. Experimen-
tally the value of I in this energy region has not yet been
studied in detail.

The dependence of the dephasing relaxation rate on the
quantum-well thickness will now be discussed. In the local-
ized regime both I'}° and I'} depend on L. through the ma-
trix element of the exciton-phonon interaction. In the delo-
calized regime T'§! in (6) is found to be inversely proportion-
al to the sixth power of L;, while Tf® in (4) depends on L,
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FIG. 3. Dependence of the homogeneous linewidth #T'y on the
quantum-well thickness. The fixed energies of exciton are indicated
in parentheses and ap denotes the Bohr radius of the three-
dimensional exciton.

through the exciton-phonon matrix element. Typical varia-
tions of T, at various exciton energies at 5 K are plotted in
Fig. 3. It is seen that the L, dependence of T's in the local-
ized regime is rather sensitive to the exciton energy. On the
other hand, TJ" in the delocalized regime is insensitive to
the exciton energy and is dependent on L, only weakly.
These features will be useful to identify the mechanism of
dephasing relaxation, and systematic experimental study on
the L, dependence is highly desired.

In the energy region of transition between the localized
and the delocalized regimes, it is difficult to describe the ex-
citon state precisely and the calculation of Ty is left for fu-
ture study.
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The tunneling dynamics of photogenerated carriers in GaAs-Alg,9Gag 71 As multiple-quantum-well struc-
tures are studied using picosecond spectroscopy with an electric field perpendicular to the well layers. Dras-
tic changes, such as an increase in the photocurrent, a decrease in the exciton luminescence, and a change
in the exciton lifetime, take place simultaneously for electric fields of ~ 5.0x 10> V/cm. These changes are
ascribed to the onset of exciton dissociation and electron tunneling through the Algq9Gag7iAs barrier
layers. The electron tunneling rate is determined to be 1/(430 ps) and is compared with calculations.

BMR306 1986 PACS numbers 73.40.Gk 71.35.+2z 73.40.Lq

Recently, the dynamics of carriers in semiconductor su-
perlattices has attracted growing interest. There are two
directions of motion of the carriers in semiconductor super-
lattices. One is motion in the plane of heterostructures and
the other is motion across the heterostructures. So far, the
former has been studied extensively in two-dimensional car-
rier systems by means of transport experiments. However,

¢} the fatfen have been relatively scarce and limited to
current-voltage characteristics since the first observation of
resonant tunneling of electrons.! This technique could be
used to clarify the energy levels in superiattices but not the
dynamical aspects. Therefore, new techniques have been
required.

In this work, picosecond spectroscopy has been used to
study the motion of photogenerated carriers in the direction
of the superlattice. We probed the exciton luminescence
in GaAs-Aly3»GagniAs  multipie-quantum-well  structures
(MQW?’s) in an electric field applied in the direction of the
superlattice. Exciton luminescence quenching and the
change in the exciton lifetime have already been observed
in a GaAs-AlLGa;. As MQW in an electric field.> It has
been pointed out that these phenomena are possibly corre-
lated with the field-induced separation of electrons from
holes in a well or the tunneling of electrons or holes across
the barrier potential. In the study, definitive evidence of
the tunneling was not produced. In addition, the electric
field in the MQW was not accurately determined, so that
the experimental data could not be compared with the calcu-
fation. This is because the electric field is screened, to some
extent, by the excess photogenerated carriers. We have
overcome this difficulty. We have determined the electric
field in the MQW by the peak shift of the heavy-exciton
luminescence. In addition, we found that the exciton life-
time is surely dominated by the tunneling of electrons
across the Aly,0Gag 7 As barrier above a certain critical elec-
tric field because the tunneling rate of electrons becomes
faster than the decay rate of the exciton population, due to
the other processes including radiative recombination.
Then, the tunneling rate can be estimated by transient mea-
surement of the exciton luminescence. The tunneling rate
thus obtained is compared with the calculated one on the
basis of the precise knowledge of ‘the electric field in the
MQW.

The sample is a p-i-n diode structure grown by
molecular-beam epitaxy.’ The main part consists of 100 al-
ternate perjods of undoped 120-AGaAs well layers and un-
doped 58-AAly3sGagnAs barrier layers. The MQW’s are
surrounded by the p-type and n-iype Algs4GagasAs cladding
layers 1 pm thick. The MQW and cladding layers are
sandwiched between the p*-type GaAs cap layer (0.5 pm
thick) and the n-type GaAs substrate. Electrical Ohmic con-
tacts are made on both the p*-GaAs cap layer and nGaAs
substrate. With the sample in a perpendicular electric field
at 4.2 K, we made measurements of the photoconductivity,
the photocurrent-voltage characteristics, the exciton
luminescence, the exciton-luminescence-voltage characteris-
tics, and the picosecond transient response of the exciton
luminescence.

-For all measurements except photoconductivity, a dye
laser synchronously pumped by a cw mode-locked
Nd&**:YAG laser (Quantronix 416) (where YAG is yttrium
aluminum garnet) is used as the excitation source. The dye
laser gives 1~2-ps light pulses with a repetition rate of 82
MHz. The laser dyes Rhodamine 6G and DCM are used
to generate 605-nm (2.05-eV) and 678-nm (1.83-eV)
light pulses, respectively. The band-gap energies of
Alys4GapagAs, Alg9GagnAs, and GaAs are 2.15 eV (X)),
1.88 eV ('), and 1.519 eV (T'), respectively.® Therefore,
neither 605- nor 678-nm light excites the AlgssGagasAs
cladding layers. The 605-nm light excites both the well
layers and the barrier layers, while the 678-nm light excites
only the well layers. No significant difference was found in
the results, including the time-resolved result, whether the
barrier layers were excited or not. Therefore, only the
results for the 605-nm light excitation are presented in this
paper. The laser beam is loosely focused on a p-i-n diode
sample immersed in liquid helium. To reduce the electrical
screening by photogenerated carriers, the excitation laser in-
tensity is reduced to being as weak as possible for the pi-
cosecond time-resolved study. The excitation density is
about 10 mW/cm?, The luminescence spectra are recorded
by using a 50-cm monochromator. The exciton lumines-
cence is temporally analyzed by using a synchroscan streak
camera with 140-um slit width. Then the time resolution is
42 ps.

The energy shift of the heavy exciton can be used to



determine the electric field in the MQW as described below.

We measured the photoconductivity spectra of the sample in .

the electric field by using the incandescent lamp. The result
is shown in the inset of Fig. 1. In the photoconductivity
spectra, the heavy excitons in the quantum wells produce a
peak. The heavy-exciton peak shifts toward lower energy
with the increase in the applied electric voltage. The shifts
do not vary with further reduction of the excitation light
level. The built-in voltage V}; was determined to be 1.8 V
from the curve of the current-voltage characteristics. The
sample has no buffer layers. Therefore, the field is simply
calculated. to be F= (¥ + Vy)/d, where V., is the exter-
nally applied voltage and d=1.78 um is the total thickness
of the MQW. Following the caiculation of Bastard for an
infinite well, the energy shift of the lowest transition
between the electron and hole sublevels, AE, is proportional
to the square of the electric field Fas follows:’

AE=—2135x10"3(m+ m, Ye* FALA/K? | 1)

where e is the charge of electron, the z axis is along the su-
perlattice direction, L, is the well layer thickness, and
me (=0.655my) and my, (=0.45m,) are effective masses
of the electron and the heavy hole, respectively. The
change of the exciton binding energy is neglected because it
is smaller than AE by an order of magnitude.! In fact, Eq.
(1) explains the energy shift of the excitons in a strikingly
complete manner, as is shown in Fig. 1. Conversely, the
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FIG. 1. Peak shift of the heavy excitons observed in photocon-
ductivity spectra as a function of the applied electric voltage V.
Experimental data are shown by solid circles. The built-in voltage
Vy is +1.8 V. Electric field in the MQW is calculated to be
(Ve + Vi)l d. The solid line is the calculated one on the basis of
Eq. (1). In the inset, photoconductivity spectra under the externally
applied voltage are shown. The lowest-energy peak corresponds to
heavy excitons.

electric field in the MQW can be determined from the peak
shift of excitons.

Under the picosecond laser excitation, the exciton-
luminescence energy shifts toward lower energy with an in-
crease in the externally applied voltage as is shown in the
inset of Fig. 2. Then, however, the peak shift is not so
large as expected. We auribute this disagreement to the
screening of the electric field by the high density of photo-
generated carriers® because we observe that the peak shift is
reduced with an increase in the exciton intensity. There-
fore, we do not estimate the electric field from the applied
voltage. Instead, we determine the electric field from the
peak shift on the basis of Eq. (1). In Fig. 2, both the
exciton-luminescence intensity and the photocurrent across
the superlattices are plotted as a function of electric field
thus estimated. A sudden change is observed at a field of
F,~5.0x10° V/cm. At this value, the exciton-lumin-
escence intensity decreases and the photocurrent increases.
These facts indicate that the excitons dissociate at this field
and that electrons or holes tunnel through the potential bar-
riers and contribute to the photocurrent. At the field of
F,~5.0x10° V/cm, the field gain for the electrons or holes
amounts to 9 meV when they move by a superlattice period
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FIG. 2. Luminescence itensity of heavy excitons (Q) and photo-
current (®) as a function of the electric field in the MQW. Solid
and dashed lines are guides for the eyes. The inset shows heavy-
exciton luminescence spectra under externally applied voltage. The
peak shifts of heavy excitons indicate that applied voltages 0, —3,
—6, and —9 V correspond to electric fields 5.0x10%, 9.8%10%,
2.5% 104, and 2.8%10% V/cm, respectively.
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(=178 A). The field gain is almost equal to the exciton
binding energy in 120-A quantum wells (10 meV) derived
from the magneto-optical measurements.’ The field gain
compensates for the binding energy. Therefore, it is quite
reasonable for excitons to dissociate at a field of F,
~5.0x10* V/ecm. Curves of photocurrent and lumines-
cence intensity show a plateau between - 1.0x10* and
~2.0x10* V/cm. With the further increase in the electric
field up to ~—2.8x10* V/cm, the photocurrent increases
and the exciton luminescence decreases.

The transient response of the exciton luminescence is
shown in Fig. 3. At the field of /;~5.0x10* V/cm, the
temporal profile of the exciton luminescence changes drasti-
cally. Below F,, the exciton luminescence exponentially de-
cays with a time constant of 1.52 ns. Above F, the
exciton-luminescence decay seems to consist of two com-
ponents. The fast decay has a time constant of 430 ps. The
slow one has a long time constant which has not been deter-
mined in this experiment. We determine that the change of
the temporal profile comes from the tunneling of the elec-
trons or holes because the luminescence decrease and the
photocurrent increase take place at the common electric
field of F,~ 5.0x10° V/cm. Then, the fast decay of exciton
luminescence is dominated by the tunneling of electrons or
holes across the potential barriers. Therefore the tunneling
rate can be estimated to be 1/(430 ps)=2.3x10° s~!. Ata
field of ~2.8%10* V/cm. the slow-decay component of the
exciton luminescence vanishes completely and the exciton
luminescence exponentially decays with a time constant of
430 ps.

It is not easy to estimate the dissociation rate of excitons
in the MQW. To estimate it, we must calculate the rates of
at least two processes, the dissociation of excitons, and the
tunneling of electrons or holes across the barrier potential.
If the excitons are not in the quantum wells and are in the
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FIG. 3. Temporal profile of the heavy-exciton luminescence in-
tensity in the perpendicular electric field. The estimated electric
fields in the MQW are 5.0x 103, 5.6x 103, 9.8x10%, and 2.8x10*
V/cm for the applied voltages of 0, — 1, —3, and —9 V, respective-
ly. Dashed lines show exponential decay with respective time con-
stant 7. Dash-dotied lines show long-lived component. The back-
ground observed before O ps comes from the stray of 6-ns-lived
luminescence which is peculiar to the synchroscan streak camera.

electric field F, the dissociation rate of excitons, wy, is given
by the following formula which also describes the ionization
rate of hydrogen atoms.'®

wy=(16RYkeFag)exp( —4R/3eFag) , )

where R(=42 meV) is the Rydberg energy and
ap(=136 A) is the exciton Bohr radius. The dissociation
rate reaches 2.8x 10" s~! at an electric field of F,~ 5.0
x10° V/cm. The rate is much faster than the observed
rate.

Compared with the above-mentioned dissociation rate,
the tunneling rate of electrons or holes across the barrier
potential is expected to be slow because the Alg20GagnAs
barrier potential is much higher than the Coulomb barrier.
The experimental results corresponds exactly with this ex-
pectation. In the Wentzel-Kramers-Brillouin approximation,
the tunneling rate of electrons or heavy holes across the
barrier potential w, is estimated to be!!

Wy = (wfilzm,"(m.)L,z)exp[ - (2/5)\/2"!;(}“,) ( U-— E)da] »
(3)

if the Coulomb interaction between the electrons and heavy
holes is neglected. Here, E is the band discontinuity, U is
the confinement energy of the lowest sublevel, and
dy (=58 A) is the barrier thickness. The factor
2mny LY i is the classical period of the electron (heavy-
hole) motion in the quantum well,!! because the z com-
ponent of the velocity of electrons (heavy holes) in the
lowest sublevel is £k/m 'y = 7#/ m(uL.. Equation (3) is
the expression in the case of zero applied electric field.
However, this equation approximately he'ds under the con-
dition eFd << U— E, even when the electric fieid is applied.

The rate calculated on the basis of Eq. (3) is not altered
much when the confinement energy U is neglected because
Uis smaller than the band discontinuity E by an order of
magnitude. Therefore U is neglected for simplicity. If the
band-gap discontinuity split of 85:15 is correct,’? the
conduction-band discontinuity E. is 307 meV and the
valence-band discontinuity E, is 54 meV. Then, the tunnel-
ing rate of electrons is 3.9%10° s~! and that of holes is
2.7x 108 s~1. On the other hand, the tunneling rate of elec-
trons is 1.8x 10! s=1 and that of holes is 4.3x10° 51, if
the band-gap discontinuity split of 57:43 (E,=206 meV,
E,=155 meV) is correct.”® In both the cases, tunneling of
electrons dominates the field dissociation rate of excitons
across the barrier potential. The calculated tunneling rates
are faster than the experimental value. However, disagree-
ment is within an order of magnitude, although the calcula-
tion is the simplest one.

The simple calculation well explains the experimental
characteristics that the tunneling rate is not affected by the
electric field between 5.0x10° and 2.8x10* V/em. In fact,
unlike the earlier experiments,®? the condition eFd << U
— E holds in our experiment. Nevertheless, excitons are
stripped of electrons and electrons tunnel across barrier po-
tentials critically at the field F,~5.0%10° V/cm, because
the field gain can compensate for the binding energy of ex-
citons. It is not easy to consider the tunneling of electrons
through both the Coulomb barrier and the barrier potential.
In fact, there is no available theoretical study of this prob-
lem. The slow-decay component observed between
~5.6%x10° and ~2.8x10° V/cm may be due to nongem-
inate excitons made of stripped electrons and holes. With



the increase in the electric {ield. the slow-decav component
decreases and the photocurrent increases. We may attribute
this change to the onset of successive tunneling of electrons
through many barriers. However, these processes remain 0
be clarified by future study.

In summary, the tunneling dynamics of photogenerat-
ed carriers in GaAS-AlpsGagnAs multiple-quantum-well
structures have been studied in an electric field perpendicu-
lar to the well lavers. Drastic changes, such as an increase
in the photocurrent, a decrease in the exciton luminescence,
and a change of the exciton lifetime take place simultane-
ously at the critical electric field of ~5.0%10° V/cm. The
changes are ascribed to the dissociation of excitons and the
tunneling of electrons through the Alg;5GagnAs potential
barriers. These processes take place when the field gain can
compensate for the exciton binding energy. The tunneling
rate of the electrons is determined to be 1/(430 ps), slower
than the simple estimation.

Note added. A recent work by Polland er al. [Phys. Rev.
Lett. 55, 2610 (1985)] covers similar ground treated in the
present work. Comntrary to the present results, they have
observed that the lifetime of excitons is prolonged with an
increase in the electric field. The contradiction probably
comes from a difference in the quantum-well structures,
especially with respect to the thickness of barriers.
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