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The optical transition energies of neutral and charged excitons in a quantum tube are

calculated as a function of the Aharonov-Bohm magnetic flux Φ. The oscillation amplitude

of the ground state energy of the electron-hole relative motion is shown to be larger in a

quantum tube than a quantum ring with strong confinement in the axis direction. We find a

double maxima structure in the optical transition energy for a quantum tube with radius

R=0.5 in units of the effective Bohr radius because of the difference in the Φ dependencies

between the single electron energy and the relative motion energy of a charged exciton state.

Keywords: Aharonov-Bohm effect, quantum tube, photoluminescence, charged exciton



2

1. Introduction

The Aharonov-Bohm (AB) effect of an electron-hole composite system has recently

been actively investigated after a theoretical analysis of AB oscillation of the energy of a

neutral exciton (X0) on a quantum ring [1,2]. The AB effect of electrons is described by

single-particle property of a charged particle coupled to vector potential. The ground state

energy of the electron changes periodically with the magnetic flux penetrating the ring

divided by the magnetic flux quantum φ0=ch/e. In the excitonic AB effect, the relative-

motion of an electron and a hole which couple to vector potential gives the oscillation of the

energy. The center-of-mass motion of a neutral exciton shows no sensitivity to vector

potential. The amplitude of AB oscillation depends critically on the size of the exciton, which

is determined by the electron-hole Coulomb correlation.

There have been several attempts to observe the excitonic AB effect of an electron-hole

composite. The oscillations of the photoluminescence (PL) peak energy from a charged

exciton (X-) [3,4] and from a type-II exciton [5] with magnetic fields were observed in

samples with ring geometries. However, the observed oscillations were explained by single

particle energy of an electron or a hole.

This difficulty in the observation of the excitonic AB effect originating from the

relative-motion of an electron and a hole is inherent to a ring-geometry. A quantum ring is

one-dimensional (1D) system with a periodic boundary condition. It is known that the

binding energy of an electron-hole pair in 1D diverges if a bare Coulomb potential is

assumed [6,7]. Therefore, a cutoff parameter is often introduced in the Coulomb interaction

term to avoid the divergence. While the potential confinement strength is finite in actual

samples, the strong electron-hole Coulomb correlation in quasi-1D system nevertheless leads

to a small effective Bohr radius and thus small amplitude of AB oscillation of the ground

state energy, which makes it difficult to observe AB oscillation due to the relative motion.

A prescription for enhancing the excitonic AB effect is to remove the potential

confinement parallel to the axis of a ring, that is, to use a quantum tube. This additional

freedom of motion reduces the electron-hole Coulomb correlation, which enhances the

coupling of the relative motion of an electron and a hole to vector potential. Moreover, in a
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quantum tube it is not necessary to introduce any artificial cutoff parameter for the Coulomb

potential theoretically because we deal with 2-dimensional (2D) system. In this paper, we

investigate the excitonic AB effect in a quantum tube with isotropic, nondegenerate, and

parabolic conduction and valence bands in the effective-mass approximation. The AB effect

in carbon nanotubes were investigated in the effective-mass approximation by solving Weyl's

equation [8-11].

The purpose of the present paper is to show that a quantum tube is more favorable to

observe the excitonic AB effect than a quantum ring with the same radius. We investigate

both the cases of X0 and X- [4, 12-16]. The oscillation of the optical transition energies is

investigated as a function of magnetic flux quantum. This paper is motivated by a recent

report on successful growth of quantum tube structures [17].

2. Method of calculation

2.1 Neutral exciton

A quantum tube with radius R in magnetic field parallel to the axis of the tube (ez) is

modeled in the effective-mass approximation. The motion of electrons at coordinates rj
(e)

(j=1,2) and a hole at coordinate r(h) in the magnetic flux Φ is considered. The electrons and

the hole are confined in a static potential, interacting by the Coulomb interaction Ve-e(r) and

Ve-h(r). The Hamiltonian can be separated into the center-of-mass motion (Hc.m.) and the

relative motion with respect to a hole (Hrel) following Ref. [4,12]. A cylindrical coordinate

rj = rj, ϕj, zj  is used and we choose the zj-axis in the axis direction and ϕj axis in the

circumference direction. In the case of X0, the Hamiltonian is given by

H X0  = Hc.m.X
0
 + Hrel

X0 , (1)

Hc.m.X
0
 = - h    2

2 me+mh
∇c.m.
2 , (2)

and

Hrel
X0  = h    2

2µ*
∇rel

i  + Φ
Rφ0

eϕ
2
 + V e-h rrel , (3)
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where zrel = z(e)-z(h) , zc.m.X0  = me
me + mh

z (e)+ mh
me + mh

z (h),

ϕrel = ϕ (e)-ϕ(h) , ϕc.m.X0  = me
me + mh

ϕ(e)+ mh
me + mh

ϕ(h),  µ∗-1 = me
-1 + mh

-1, eϕ is a unit vector in the

circumference direction, me and mh are the effective-masses of an electron and a hole,

respectively. The electron-hole Coulomb interaction term is given by

V e-h r1  = - e2ε
1

 z12 + 4R2sin2 ϕ1/2
, (4)

where the static dielectric constant ε is assumed to be the same for the inside and the outside

of the tube. An infinitesimally thin quantum tube is assumed, i.e., rj is fixed to the radius of

the tube R. The wave function for the center-of-mass motion is given by

ΨK, Nc.m. 
(X0, c.m.) zc.m. , ϕc.m.  = Ac.m.

(X0) exp iKzc.m.  exp iNc.m.ϕc.m. (5)

where Ac.m.(X0) is a normalization coefficient, K is the wave number in the axis direction, and

Nc.m. is the angular momentum of the center-of-mass motion. ΨK, Nc.m. 
(X0, c.m.) zc.m. , ϕc.m.   is a plane

wave, and is not affected by the magnetic flux. The energy of the center-of-mass motion is

given by

EK, Nc.m. 

(X0, c.m.) = h    2
2(me+mh)

 K2+ Nc.m.
R

2
. (6)

We are interested in the optically active X0 near the Γ point and the energy of the center-of-

mass motion is set to zero, i.e., K=0 and Nc.m.=0. The wave function for the relative motion is

expanded using a lattice model in the axis direction and using a basis function

χN1(ϕ1) = exp(iN1ϕ1)/ 2π in the circumference direction as given by

Ψ(X0, rel) z1, ϕ1  = Az1,N1 χN1 ϕ1 Σ
N1

, (7)

where Az1,N1  are coefficients to be determined by a diagonalization procedure. The kinetic

energy term of the relative motion in an infinitesimally thin quantum tube is given by

EKE
(X0, rel) z1, N1  = Ez1

X0
 + h    2

2µ*
 N1 + Φ /φ0

R
2
, (8)

where Ez1
X0  is the kinetic energy of the motion in the axis direction and is independent of Φ.

EKE
(X0, rel) is invariant by a transformation of

Φ  → Φ ' = Φ  + pφ0 (9)
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and

N1 → N1' = N1 - p, (10)

where p is an integer. Moreover, the electron-hole interaction matrix element as given by

χN2| V e-h r1  | χN1  = - e2
ε  dϕ

2π cos(N2 - N1) ϕ
z1

2 + 4 R2sin2(ϕ/2)
- π

π

(11)

is a function of N2-N1 and is invariant by a transformation of N1 → N1' = N1 - p and

N2 → N2' = N2 - p. Then, the energy of a X0 state is a periodic function Φ with a period of φ0.

2.2 Charged exciton

The Hamiltonian of a X- state is given by

H(X-) =  h    2
2me

 
∇j
(e)

i  + Φ
Rφ0

eϕ
2

+ V e-h rj
(e)-rh  +  h    2

2mh
 ∇

(h)

i  - Φ
Rφ0

eϕ
2
+ V e-e r1

(e)-r2
(e)Σ

j=1

2
, (12)

where  eϕ  is a unit vector in the circumference direction. Similarly to the case of X0, the

wave function can be expanded as given by

Ψ(X-) z1
(e), ϕ1 

(e),z2
(e), ϕ2 

(e),z(h), ϕ 
(h)  = Az1

(e),N1
(e),z2

(e),N2
(e) ,z(h),N (h) χN1

(e)ϕ1 
(e) χN2

(e)ϕ2 
(e) χN (h)ϕ 

(h)Σ
N1,N2,Nh

.  (13)

where Az1
(e),N1

(e),z2
(e),N2

(e) ,z(h),N (h)  are coefficients to be determined by a diagonalization procedure.

A periodic boundary condition is imposed to the basis functions χNj
(e)ϕj 

(e)  and χN (h)ϕ 
(h) ,

which gives conditions that the quantum numbers N1
(e), N2

(e) and N (h)  are integer numbers.

The kinetic energy term is given by

EKE
(X-) z1

(e), ϕ1 
(e),z2

(e), ϕ2 
(e),z(h), ϕ 

(h)  = Ez1
(e)
X-,e  + Ez2

(e)
X-,e +Ez(h)

X-,h

+ h    2
2me

 N1
(e) + Φ /φ0

R

2

+ N2
(e) + Φ /φ0

R

2

 + h    2
2mh

 N (h) - Φ /φ0
R

2
 , (14)

where Ezj(e)
X-,e  and Ez(h)

X-,h  are the kinetic energy of the motion in the axis direction for electrons

and a hole, respectively, and are independent of Φ. The kinetic energy term is invariant by a

transformation of

Φ  → Φ ' = Φ  + pφ0 (15)

N1
(e) → N1

(e)' = N1
(e) - p, (16)

N2
(e) → N2

(e)' = N2
(e) - p (17)
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and

N (h) → N2
(h)' = N2

(h) + p, (18)

where p is an integer. The Coulomb interaction term is calculated by evaluating the matrix

element

χN3
(e)χN4

(e)| V e-e r1
(e)-r2

(e)  | χN1
(e)χN2

(e)  =  e2
ε

1
2π 2  

- π

π

 d
- π

π

ϕ1dϕ2 
exp -i (N4

(e) - N1
(e)) ϕ1  exp -i (N3

(e) - N2
(e)) ϕ2

z1-z2 2 + 4 R2sin2 ϕ1-ϕ2 /2

(19)

which is invariant by a transformation of (15), (16), (17), N4
(e) → N4

(e) ' = N4
(e) - p, and

N3
(e) → N3

(e) ' = N3
(e) - p. Similarly, the matrix element of V e-h rj

(e)-rh  is shown to be invariant.

Then, the energy of a X- state is a periodic function Φ with a period of φ0.

In order to reduce the number of the basis functions, separation of a center-of-mass

motion and relative-motions is introduced. The Hamiltonian is rewritten as

H = Hc.m. + Hrel, (20)

Hc.m. = h    2
2M

∇c.m.
 i  + Φ

Rφ0
eϕ

2
, (21)

and

Hrel = h    2
2µ*

 ∇j
i  + Φ

Rφ0
eϕ

2
+ V e-h rj + V e-e r1-r2  - h    2mh

∇1∇2 - 2σ1+2σ h    2
2µ*

Φ
Rφ0

2Σ
j=1

2

, (22)

where zj = zj 
(e)-z (h), zc.m. = me

M z1
(e) + z2

(e)  + mh
Mz(h) , φj = ϕj 

(e)-ϕ(h) , φc.m. = meM ϕ1
(e) + ϕ2

(e)  + mhMϕ(h),

M=2me+mh, σ=me/mh [4]. The wave function for the center-of-mass motion of X- is given by

Ψ(c.m.) zc.m.,φc.m.  = Bνc.m.
(c.m.)exp(iKzc.m.) χνc.m.(φc.m.), (23)

where K is the wave vector in the axis direction, νc.m. is the angular momentum quantum

number, Bνc.m.
(c.m.)  is a coefficient. The energy of the center-of-mass motion as given by

E(X-, c.m.) = h    2K2

2M  + h    2
2MR2

  νc.m. + Φ
φ0

 2 (24)

oscillates with a period of φ0. A periodic boundary condition is imposed to χνc.m.(φc.m.) giving

that νc.m. is integer.

The wave function for the relative motion of X- is expanded as
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Ψ(X-, rel) z1, φ1,z2, φ2  = Bz1,ν1,z2,ν2 χν1 φ1 χν2 φ2 Σ
ν1, ν2

, (25)

where Bz1,ν1,z2,ν2  are coefficients to be determined by a diagonalization process. Then the

total wave function is given by

Ψ(X-) zc.m.,φc.m.,z1, φ1,z2, φ2  = Ψ(c.m.) zc.m.,φc.m.  Ψ(X-, rel) z1, φ1,z2, φ2 Σ
νc.m.

. (26)

We require that this wave function should recover the form of Eq. (13) by substituting

φj = ϕj 
(e)-ϕ(h) , and φc.m. = meM ϕ1

(e) + ϕ2
(e)  + mhMϕ(h). This gives relations for ν1, ν2, and νc.m. as

given by

ν1 = N1
(e) - νc.m. σ

2σ + 1 (27)

and

ν2 = N2
(e) - νc.m. σ

2σ + 1 (28)

Here N1
(e), N2

(e) and νc.m. are integer numbers, but ν1 and ν2 are not necessarily integer

numbers depending on σ. The kinetic energy term of the relative motion is given by

EKE
(X-, rel) z1,z2,ν1,ν2  = Ez1

(X-)+Ez2
(X-)+ h    2

2µ*R2
 ν1+Φ /φ0

2+ ν2+Φ /φ0
2+  2σ

1 + σ ν1ν2 - 2σ
1 + 2σ Φ /φ0

2

= Ez1
(X-)+Ez2

(X-) + h    2
2µ*R2

 2σ
1 + 2σ 1 + 2σ

1 + σ  ν1 + Φ
φ0

2+ 1 + 2σ
1 + σ  ν2 + Φ

φ0

2  - σ
1 + σ ν1 - ν2 2 ,

(29)

where Ezj
(X-) is the kinetic energy of the motion in the axis direction. In the followings, we

consider two cases: the first is the case where νc.m. is constant in changing Φ, and the second

is the case where no constraint is imposed on νc.m. in changing Φ.

In the first case, EKE
(X-, rel) is invariant by a transformation of

Φ  → Φ ' = Φ  + 1 + 2σ
1 + σ  pφ0 (30)

ν1 → ν1' = ν1 - p (31)

and

ν2 → ν2' = ν2 - p. (32)

The attractive and repulsive Coulomb interaction terms are written as

V e-h rj  = - e2ε
1

 zj2 + 4R2sin2 ϕj/2
, (33)



8

and

V e-e r1 - r2  = e2ε
1

z1-z2 2 + 4R2sin2 ϕ1-ϕ22

, (34)

respectively. Similarly to the previous case, the Coulomb interaction matrix elements

depends on the difference νj-νi. Therefore, in this case, the energy of the relative motion of a
X- state is a periodic function of Φ with a period of 1 + 2σ

1 + σ  φ0. Eqs. (31) and (32) correspond

to a transformation of N1 → N1' = N1 - p, N2 → N2' = N2 - p, and νc.m. → νc.m.' = νc.m. from

Eqs. (27) and (28), and νc.m. is constant in changing Φ. This extra constraint on νc.m., which

is absent in the case of the previous consideration on Eq. (14) using the electrons and hole

coordinates, is the source of the period of AB oscillation of 1 + 2σ
1 + σ  φ0.

In the second case, EKE
(X-, rel) is invariant by a transformation of

Φ  → Φ ' = Φ  + pφ0 (35)
ν1 → ν1' = ν1 - 1+σ1+2σp (36)

and
ν2 → ν2' = ν2 - 1+σ1+2σp. (37)

Eqs. (36) and (37) correspond to a transformation of N1 → N1' = N1 - p, N2 → N2' = N2 - p,

and νc.m. → νc.m.' = νc.m.- p. As in the first case, because the Coulomb interaction matrix

elements are invariant by this transformation, the energy of the relative motion of a X- state is

a periodic function of Φ with a period of φ0 if the constraint on νc.m. is removed, in

agreement with the previous argument using the electrons and the hole coordinates.

In numerically calculating the ground state energy of X-, the wave functions Eqs. (23) and

(25) are used. The number of the basis is further reduced by separating the Hilbert space into

the singlet and the triplet X- subspaces [4,15].  In the followings, we present results for the

singlet X- state,

Ψ(X-, rel) z1,φ1,z2,φ2 = Bz1,ν1,z2,ν2 1
2
χν1 φ1 χν2 φ2 +χν1 φ2 χν2 φ1 1-δν1ν2 +χν1 φ1 χν2 φ2  δν1ν2Σ

ν1, ν2

(38)

which is the ground state in the magnetic field of our interests.
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2.3 Higher-order finite difference method on generalized grid points

In the followings, we use units of aB* = εh    2/µ*e2 for length and ERy*  = µ*e4/2ε2h    2 for

energy. The coordinate along the axis direction is discretized with a generalized grid point zjn,

where n is an integer in the range of -nmax ≤ n ≤ nmax. The grid points zjn is given by

zj
n = 1

2 bq-1+bqΣ
q=0

n
 for n>0, zj

n = - 1
2 bq-1+bqΣ

q=0

n
 for n<0, and zj

0 = 0. The derivatives with

respect to zj are expanded in real-space by the higher-order finite difference method [18-20]

as given by

dk

dzj
k|z=ξ ≈ cNFD, j 

k f zj
nΣ

j=0

NFD+1
, (39)

where ξ=z is a point at which the approximations are calculated, k is the order of derivative of

interests, and NFD is the order of the finite difference. A fast algorithm for calculating the

coefficients cNFD, j 
k  can be found elsewhere [18].

The attractive and repulsive Coulomb interaction terms are evaluated by numerically

integrate on the grid points

g zi - zi ', ϕj - ϕj '  = e2ε
1

zi - zi ' 2 + 4R2sin2 ϕj - ϕj '
2

, (40)

for ij≠i 'j ', and for ij=i 'j ', where logarithmic singularity is present, an explicit integration over

the cell is performed,

g 0, 0  = 2e2
ε
1
b0
ln t2+1+1 +ln t+ t2+1

t  - ln(t) , (41)

where t=2πη/b0, η and b0 are the grid spacings in the circumference and the axis directions at

the origin, respectively. Good numerical accuracy is obtained for t~1 and we choose η=π/30.

The integrals with respect to ϕ are performed numerically on a grid spacing of η. In order to

choose an optimal distribution of zjn, we first calculate the binding energy of a neutral exciton

on a 2D plane, where an analytical solution is available [21]. Because of the huge Hilbert

space required for calculating the energy of X- states, our objective here is to obtain good

accuracy of the energy with a minimal basis set. We chose bn=π/30 for 0≤n≤7, π/15 for

8≤n≤10, 2π/15 for 11≤n≤13, and 4π/15 for 14≤n≤15, and 8π/15 for 16≤n. The states up to the
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cut-off energy of Ez
cut-off  = 4 h    2

2µ*
 1
π
30

2
 = 365 are effectively taken into account. The relative

motion in the axis direction was truncated at a finite size L = 15.4. The order of the finite

difference NFD was fixed to 4 except for the grid points near the origin n= -1, 0, and 1, where

we found that NFD = 2 gives better numerical accuracy. With the above parameters, we

obtained the 2D exciton binding energy of 4.03, which is compared with the exact value of 4.

In what follows, the lowest energy of the X0 and X- states are calculated with the above

parameters except otherwise denoted. Because we are interested in the ground state K~0, L

may be interpreted as the length of the tube. We use σ=1/4 for typical III-V semiconductors

such as GaAs, InP, or InAs. The angular momentum Nj is truncated to include the basis in the

range of Nj
min ≤ Nj ≤ Nj

max, where Njmax-Njmin is set to be 20, 40, 60 for R=0.5, 1 and 1.5,

respectively, for a X0 state by keeping the circumference length divided by Njmax-Njmin

constant. Njmax and Njmin which give minimum eigenenergy are selected by performing

calculations with Njmax-Njmin /2 varied. The cut-off energy in the circumference motion at

Φ=0 is Eϕcut-off  = 11+σ h    2
2µ*R2

102 = 320. For a X- state, Njmax-Njmin is set to be 20 for any R due

to the limitation of our computational resources. The energy of the relative motion of X- state

was found to be overestimated by 0.0111 for a small system of L=0.94 and R=1 by

comparing the results between the cases of Njmax-Njmin=20 and 40. The error in the amplitude

of the oscillation was found to be smaller than 0.003. The lowest state energy and the wave

function are obtained by a conjugate gradient method (CGM) for minimizing the energy. The

standard CGM routine is modified to allow the arbitrary spaced grids. For example, the

matrix element of the Hamiltonian for X0 is calculated as given by

dϕ1
0

2π

dz1 Ψ(X0, rel) * z1,ϕ1  H(X0,rel) Ψ(X0, rel) z1,ϕ1
-L/2

L/2

= Σ
l=0

Nϕ

Az1
n,N1 

* χN1
* l η  H(X0, rel) Az1

n,N1 χN1 l η  η bnΣn =-nmax

nmax
, (42)

where Nϕ  is the number of the grid points in the circumference as given by Nϕ = 2πR/η. The

number of the basis states is 282,975 for calculating the X- states and the size of the

Hamiltonian matrix is 282,9752.
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3. Results

3.1 Neutral exciton

With decrease in R, the kinetic energy and the electron-hole Coulomb energy in the

circumference direction increase with 1/R2 and 1/R, respectively, leading to larger AB

oscillation amplitude. The Coulomb interaction in the axis direction on the other hand

increases with decrease in R. The R dependence of the lowest state energy of X0 is shown in

Fig. 1. For small R, Φ dependence of the lowest state energy of X0 is dominated by the

single-particle energies of an electron 1
1+σ  h    2

2µ*R2
 N (e) - Φ

φ0

2
 and a hole σ

1+σ  h    2
2µ*R2

 N (h)+Φ
φ0

2
,

where N(e) and N(h) are the angular momentum quantum numbers for an electron and a hole,

respectively. The lowest state energy of X0 shows a sinusoidal oscillation with a period of φ0.

The minima of the lowest state occur at integer flux quanta.

The amplitude of the oscillation of the lowest state energy of X0, ΔE(x0) = E(x0)(Φ=0.5φ0)

– E(x0)(Φ=0), is shown in Fig. 2 as a function of L for R=0.5. The amplitude of the oscillation

rapidly increases with increase in L because of the reduction of the Coulomb interaction and

saturates at about L~4. This shows that a quantum tube is more favorable for the observation

of the oscillation of the X0 energy with Φ than a quantum ring where the vertical motion is

restricted by strong confinement.

3.2 Charged exciton

The calculated ground state energies of the relative motion of X- for R=0.5, 1, and 1.5 are

shown in Fig. 3 for the case of center-of-mass angular momentum νc.m. fixed to zero and for

the case of νc.m. which gives the minimum energy. As shown in Sec. 2.2, the period of AB

oscillation of the energy of the relative motion of X- is 1 + 2σ
1 + σ  φ0 = 65  φ0 for the former case

by substituting σ=1/4, and φ0 for the latter case. In both the cases, νc.m. is 0 between Φ=0 and

0.5φ0. A level-crossing of the energy of the center-of-mass motion occurs at Φ=0.5φ0.

Between Φ=0.5φ0 and φ0, the calculated ground state energies of the relative motion is lower

for the case of νc.m.= -1 than for the case where νc.m. is fixed to 0.
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Upon the optical transition an electron and a hole recombine, leaving an electron in the

final state. The optical transition energy of X- as given by E(X–) = Erel + Ec.m.– Esp is shown

in Fig. 4, where Erel, Ec.m, and Esp are the energies of the electron-hole relative motion, the

center-of-mass motion, and the single electron in the final state, respectively. In Fig. 4, the

optical transition energies are shown for the case where no constraint is imposed on νc..m.. As

discussed previously, the angular momentum of the lowest state of the center-of-mass motion

and the single electron is 0 between Φ=0 and 0.5φ0, and -1 between Φ=0.5φ0 and φ0.

Ec.m.–Esp is minima at Φ=0.5φ0, while Erel is maxima. The plots of the optical transition

energy of X- change from downward to upward cusp with decrease in R. In the intermediate

case of R=0.5, a double maxima structure in the optical transition energy is seen in Fig. 4

because of the difference in the Φ dependencies between the single electron energy and the

relative motion energy of a X- state.

The amplitude of the oscillation of X- ground state energy of the relative motion ΔE(X-) =

E(X-)(Φ=0.5) – E(X-)(Φ=0) is shown in Fig. 5(a) as a function of R for L=15.4. The amplitude

of the oscillation closely follows the relation exp(-CR), where C is a constant. This is in

agreement with the result in the literature [2] that the amplitude of the oscillation is

proportional to exp(-2π2|V0|/E0), where V0 and E0 are the Coulomb interaction and the kinetic

energies, respectively. |V0| and E0 are proportional to 1/R and 1/R2, respectively, giving exp(-

2π2|V0|/E0) ~ exp(-CR). This  difference in the R dependencies between the amplitude of the

oscillation of the relative motion and the kinetic energy explains the change of the optical

transition energy of X- from minima to maxima at Φ=0.5φ0 with decrease in R as shown in

Fig. 4.

L dependence of ΔE(X-) is shown in Fig. 5(b) for R=0.5. The amplitude of the oscillation

increases with the increase in L. This shows that a quantum tube is more favorable for the

observation of the oscillation of the X- energy with Φ than a quantum ring. It is suggested to

choose a quantum tube longer than 5 for the observation of the excitonic AB effect.

The amplitude of the wave function in the axis direction at ϕ1=0 is shown in Fig. 6 for the

case of R = 0.5 and L=15.4. For a X0, Ψ(X0, rel) z1, ϕ1 =0  is plotted. For a X-, a probability

function P(z1) is obtained by integrating over z2 and φ2 as given by
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P(z1) = dz2
- L/2

L/2

dϕ2 
- π

π

Ψ(X-, rel) * z1, ϕ1=0,z2, ϕ2 Ψ
(X-, rel) z1, ϕ1=0,z2, ϕ2 (43)

and P(z1) is plotted in Fig. 6. Figure 6 shows that the wave function of X- is extended more

in the axis direction than the wave function of X0.

4. Discussions

The amplitude of the oscillation saturates at L=4~5 as shown in Figs. 2 and 5. This is

understood by the vanishing amplitude of the wave function as shown in Fig. 6 at z1 = 2 ~

2.5. The length L at which the amplitude of the oscillation saturates is larger for a X- than a

X0, reflecting the more extended wave function for X- in the axis direction. The larger

amplitude of the oscillation at L>6 for a X- than for a X0 is similarly understood by smaller

mixing of the angular momentum due to the larger extent of the wave function for X- than

that for X0.

In the limit of vanishing L, the system approaches to a 1D ring. In this case, because the

binding energy of the exciton diverges if a long range Coulomb interaction is assumed, the

amplitude of the oscillation approaches to zero as L → 0 as shown in Figs. 2 and 5 . In order

to avoid the divergence of the binding energy, Römer and Raikh used a short ranged

interaction [2] and Korkusinski et al. introduced a parameter to account for a finite thickness

[4], and they obtained a finite amplitude of the oscillation.

A qualitative difference of the AB oscillation of a X0 and a X- lies in the R dependence of

the sign of the oscillation of the optical transition energy. The optical transition energy of a

X0 is always maxima at half integer flux quanta, while that of a X- changes from minima to

maxima at half integer flux quanta with decrease in R. The other important difference

between a X0 and a X- is the amplitude of AB oscillation of the optical transition energy,

which is 0.0005 and 0.16 (ERy*) for a X0 and a X-, respectively, at R=1. Experimental

observation of AB oscillation of a X- is much more feasible than that of a X0.

In the previous section, the energy of the relative motion of X- is calculated for the two

cases, namely, for fixed νc.m. and for νc.m. varying with Φ. In usual experimental conditions,

the lowest energy of the X- energy is probed at each Φ after energy relaxation to the ground



14

state by inelastic scatterings accompanied with change in νc.m.. However, in a carefully

prepared experimental condition, it would be possible to fix νc.m. while changing Φ at a

sweep rate faster than the angular momentum relaxation rate of the center-of-mass motion. In
this case, the period of AB oscillation would be 1 + 2σ

1 + σ  φ0. The other important case often

encountered in experiments is the case where the hole is localized at a fixed position. In this

case, because me/mh = σ is 0 in the limit of mh→ ∞, the period of AB oscillation is φ0. Our

results can also be applied to this case by setting Ec.m. to 0.

A depolarization field was investigated in carbon nanotubes to weaken the optical

absorption peak when an optical electric field is perpendicular to the axis [9]. The carbon

nanotubes were assumed to be suspended in vacuum, while we assume that quantum tubes

are embedded in matrices with the same dielectric constant ε as that of the quantum tubes.

Therefore, the depolarization effect is not as important in our system.

Typical cylindrical nanostructures are fabricated such as by embedding InP layer in GaAs

matrix, InAs layer in InP matrix, or InxGa1-xAs in GaAs matrix [22]. In these cases, the well

layers are compressibly strained. The heavy- and light hole bands are mixed by the strain. In

the case of relatively large splitting of the hole bands, the effective mass of the upper hole

band in a cylindrically symmetric system along the circumference direction is given by

mh = m0/(γ1 - 3γ2) [22], where γ1 and γ2 are the Luttinger's parameters. For GaAs well layer,

me = 0.0665 m0, γ1 = 7.65, γ2 = 2.41, and ε = 12.52ε0 give σ=0.23, aB* = 12.2 nm, and ERy*

= 4.7 meV. For InAs well layer, me = 0.023 m0, γ1 = 19.67, γ2 = 8.37, and ε = 15.15ε0 give

σ=0.12, aB* = 39 nm, and ERy* = 1.2 meV. For InP well layer me = 0.079 m0, γ1 = 5.15, γ2 =

0.94, andε = 12.6ε0 give σ=0.28, aB* = 13.0 nm, and ERy* = 3.7 meV [23]. The magnetic

field B corresponding to φ0 is given by 13.2-0.5 T for R=10-50 nm. The AB oscillation

amplitude of the lowest optical transition energy of a X- state is of the order of 1 (ERy*) for

R=0.25. This is within the range of detection with currently available samples in the literature

[17]. Such measurements are under investigations.
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5 Conclusions

AB oscillations of the optical transition energies of X0 and X- in a quantum tube are

investigated as a function of R and L. The amplitudes of the oscillation of the relative motion

of the ground state energies are shown to increase with decrease in the restriction of the

motion parallel to the axes of a quantum tube, showing that a quantum tube is more favorable

than a quantum ring for observation of the excitonic AB effect. The energy of the relative

motion of a X- state is shown to be a periodic function of Φ with a period of φ0 for the case

where no constraint is imposed on the angular momentum of the center-of-mass motion νc.m.

and 1 + 2σ
1 + σ  φ0 for the case where νc.m. is constant in changing Φ. We find a double maxima

structure in the optical transition energy for R=0.5 because of the difference in the

Φ dependencies between the single electron energy and the relative motion energy of a X-

state.
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Figure captions

Figure 1 Ground state energies of X0 for R=1.5 (i), 1 (ii), and 0.5 (iii).

Figure 2 AB oscillation amplitude of X0 for R=0.5 as a function of L.

Figure 3 Ground state energies of the relative motion of X- for (a) R=1.5, (b) 1, (c) 0.5 for

the cases of (i) νc.m.=0 at 0≤Φ≤0.5φ0 and νc.m.=-1 at 0.5φ0≤Φ≤φ0, giving the minimum

energy, and (ii) νc.m. =0.

Figure 4 Magnetic flux dependence of Ec..m.R2 (open circles) (i), –EspR2 (open squares) (ii),

Erel for R=1 (solid squares) (iii), E(X-) = Ec..m.+ Erel – Esp for R=1 (solid circles) (iv), E(X-)

for R=0.5 (solid circles) (v), and E(X-) for R=0.25 (solid circles) (vi).

Figure 5 (a) Amplitude of the oscillation of X- ground state energy of the relative motion for

L = 15.4 as a function of R (solid circles). The solid line is the best fitted line. (b) AB

oscillation amplitude of X- for R=0.5 as a function of L.

Figure 6 Amplitude of the wave function of (a) X0 and (b) X- at ϕ1=0 as a function of z1 for

R=0.5.


