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Abstract

When the system is composed of several subsystems with each own criterion to op-

timize, one cannot assume that there is a person who can control all the variables

of the system. One has to accept one of the solutions at which each subsystem is

optimizing its own criterion under constraints that must be observed by the sub-

systems, i.e., an efficient solution of the multicriteria optimization problem. The

solution thus obtained depends on the way of compromise, and can be far apart from

the ideal solution that one could attain with full controllability of all the variables.

Therefore it counts in designing systems to evaluate how the compromise solution

can deteriorate the efficiency of the whole system in the presence of such uncontrol-

lability. This issue is formulated as an optimization problem over the efficient set

of a multicriteria optimization problem.

Most of the algorithms for optimization problem over the efficient set anticipate

a small number of criteria of the multicriteria optimization problem and convert the

problem to a global optimization problem in variables of the number of criteria or

so. However, there are interesting and important problems that do not enjoy the

low dimensionality of the number of criteria. A typical example is the minimum

maximal flow problem, which is the leading motive of this thesis. This problem

is to find a maximal flow that attains the minimum flow value. A feasible flow is

said to be maximal if there is no feasible flows that is greater than the flow with

respect to the partial order of sectors. When one regards each arc as a subsystem

which intends to maximize the flow on the arc, the minimum maximal flow problem

will furnish an answer about how inefficiently the network can be used. Thus the

minimum maximal flow value is of useful for network analysis and network design.

The set of efficient points is usually described by the gap function. It is, however,

not defined on the whole set, which often offers computational difficulty. Then we
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propose an extension of the gap function so that the function value can be evaluated

at any point that is possibly encountered during the computation. We introduce

ε-optimal solution to endow the problem with regularity. Then we develop two al-

gorithms for this problem: the cut-and-split method and the outer approximation

method. Concerning the convergence of the algorithms, we show by the integrality

property of the network flow problems that the outer approximation method termi-

nates after finitely many iterations with the optimal value of the problem. We also

show that the cut-and-split method generates a sequence of incumbent solutions

that converges to an optimal solution. Exploiting the flow conservation equations

of the problem, we also propose an improvement on the algorithms by reducing the

number of variables. Finally we propose a heuristics to locate an initial incumbent,

we carry out the computational experiment, and report their empirical efficiency.

We observe that the outer approximation method surpasses both an application of

vertex enumeration method and the algorithm by Shigeno-Takahashi-Yamamoto [48]

in computational time, especially as the number of variables grows. We also observe

that our heuristics using the modified local search procedure provides a pretty good

initial incumbent.
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5.7 An explanation; there is no possiblilities that xk
ε ∈ X. . . . . . . . . . . 127

5.8 maximum flow vs. minimum maximal flow for p20 2 . . . . . . . . . . . 140

5.9 maximum flow vs. minimum maximal flow for p20 5 . . . . . . . . . . . 141

6.1 An example of maximal u-flow . . . . . . . . . . . . . . . . . . . . . . . 147

6.2 The case where q is larger than n . . . . . . . . . . . . . . . . . . . . . 150

viii



List of Tables

3.1 Payoff table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Result of the improved CS method (m = 14, n = 20) . . . . . . . . . . 130

5.2 Result of the improved OA method (m = 14, n = 20, 21, 22) . . . . . . 133

5.3 Result of the improved OA method (m = 14, n = 23, 24, 25) . . . . . . 134

5.4 Result of the improved OA method (m = 14, n = 26, 27, 28) . . . . . . 135

5.5 Result of the improved OA method (m = 14, n = 29, 30, 31) . . . . . . 136

5.6 Result of the improved OA method (m = 14, n = 32) . . . . . . . . . 137

5.7 Result of the method in Section 4.2 (m = 14, n = 20, 21, 22) . . . . . 139

ix





Notations

Throughout this thesis, we use the following notations.

notation definition and explanation

N set of natural numbers

Z set of integers

R set of real numbers

Rn set of n-dimensional real column vectors

Rn
+, Rn

++ Rn
+ = {x ∈ Rn | x = 0 }, Rn

++ = {x ∈ Rn | x > 0 }
Rn set of n-dimensional real row vectors

Rn+, Rn++ Rn+ = {x ∈ Rn | x = 0 }, Rn++ = {x ∈ Rn | x > 0 }
I identity matrix of an appropriate size

O zero matrix of an appropriate size

e row vector of ones of an appropriate dimension

ej the jth unit row vector of an appropriate dimension

1 column vector of ones of an appropriate dimension

a>, A> transpose vector of a, transpose matrix of A

cl S closure of set S

int S interior of set S

∂ S relative boundary of set S

PV set of vertices of a polyhedron P

〈x, y〉 inner product of vectors x and y

‖x‖ norm of vector x, i.e., ‖x‖ =
√
〈x, x〉

xi





Chapter 1

Introduction

In this chapter, we discuss our motivation for considering the minimum maximal flow

problem, abbreviated to (mmF ), whose precise definition will be given in Section 4.1.

We explain what information is obtained from the minimum flow value over the set

of maximal flows, how it differs from the conventional maximum flow value, and in

what situation such information is useful. We survey the background of the problem

to clarify the position of our study. The purpose, results and the organization of

the thesis are also stated.

1.1 Motivation

In the field of network flow theory such as maximum flow problem and minimum cost

flow problem, we usually take it for granted that we can control arc flows, namely

we can freely increase and decrease each arc flow as long as the feasibility is met.

However, when we attempt to solve a maximum flow problem on condition that we

are not be allowed to decrease arc flows, we often fail to obtain the maximum flow

and are obliged to put up with a maximal flow. The minimum flow value attained

by a maximal flow, i.e., the optimal value of (mmF ), indicates how inefficiently the

network can be utilized in the presence of some uncontrollability. Therefore the

network should be so designed that the optimal value of (mmF ) can be as large as

possible to avoid a catastrophic situation on network conjection.
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2 1 Introduction

1.2 Background

Global optimization as well as combinatorial optimization is a natural direction to

proceed for the research of mathematical programming that has successfully devel-

oped algorithms for linear and convex optimization. Then over the past several

decades, lots of studies have been made on global optimization problems such as

concave minimization problem, reverse convex problem, and D.C. problem. The

difficulty shared by these problems is multiextremality, i.e., there are several locally

optimal solutions with different objective function values. This difficulty is mainly

due to the nonconvexity of the feasible region, the objective and constraint func-

tions. A typical nonconvex feasible region is given as a union of multiple convex

sets. If we are given all the convex sets explicitly, the problem simply reduces to

multiple convex optimization problems. However, there are problems where the

nonconvex feasible region is given as the set of efficient points of some multicriteria

optimization problem. Such problem is called the optimization problem over the

efficient set, whose precise definition will be given in Section 3.1, and we denoted it

by (PE).

Since Philip first considered (PE) and proposed an algorithm based on local

search and cutting plane technique in [40], a number of papers followed his work.

The overview about the efficient set and several algorithms for (PE) can be found in

Yamamoto [66]. For the details about (PE), the reader should refer to White [63],

Sawaragi-Nakayama-Tanino [44] and Steuer [49]. The mathematical structure of

the efficient set is studied in Naccache [38], Benson [10] and Hu-Sun [28]. The

method enumerating the efficient vertices can be found in Ecker-Kouada [17, 18].

For solution methods for (PE), see Benson [7–9], Bolintineanu [13], Ecker-Song [19],

Fülöp [22], Dauer-Fosnaugh [16], Thach-Konno-Yokota [56], Sayin [46], Phong-

Tuyen [41], Thoai [59], Muu-Luc [36] and An-Tao-Thoai [5]. The D.C. optimization

algorithm for solving (PE) can be seen in An-Tao-Muu [3, 4]. Some algorithms on

D.C. optimization can be found in Tuy [61,62] and Horst-Tuy [27].

It is known that (mmF ) is a special, relatively difficult, case of (PE). Shi-

Yamamoto [47] first studied (mmF ) and proposed an algorithm. After this, several

algorithms for (mmF ) combining local search and global optimization technique

have been proposed in e.g., Gotoh-Thoai-Yamamoto [24] and Shigeno-Takahashi-



1 Introduction 3

Yamamoto [48]. An approach based on D.C. optimization is found in Muu-Shi [37].

The difficulty of the problem is due to the nonconvexity of the set of maximal flows,

implying a lot of locally optimal solutions with different objective function values.

Indeed, (mmF ) embraces the minimum maximal matching problem, which is NP-

hard (See e.g., Garey-Johnson [23]), and hence sophisticated algorithms are required.

We have neither theoretical evidence for the efficiency of existing algorithms, nor

comparative study of them from the computational viewpoint.

1.3 Purpose and Results of the Thesis

The purpose of the thesis is to propose two algorithms for solving (mmF ): the cut-

and-split method (CS method for short) and the outer approximation method (OA

method for short), show their convergence property and demonstrate computational

efficiency.

The results of the thesis are the following.

• We extend the gap function characterizing the set of maximal flows.

• Combining the local search procedure, we propose the CS method and the OA

method for solving (mmF ).

• The convergence of the CS method for (mmF ) is discussed.

• Introducing the idea of ε-optimal solution, we study the optimality condition

of the OA method for (mmF ).

• We show that the OA method for (mmF ) terminates after finitely many iter-

ations with the optimal value of the problem.

• We improve both of the CS method and the OA method by reducing the

number of variables.

• Some implementation issues are studied.

• We report the result of computational experiments to verify the efficiency of

the algorithms.



4 1 Introduction

1.4 Organization of the Thesis

We discuss the global optimization in the next chapter, in which we define a D.C.

problem, and explain the cut-and-split method and the outer approximation method

for D.C. problems. Chapter 3 is devoted to the summary of optimization problem

over the efficient set (PE). Some known results on an efficient set and (PE) are

presented. In Chapter 4 we define a minimum maximal flow problem (mmF ), and

then explain some algorithms for (mmF ) preceding our study. To make this thesis

self-contained, we will outline some of the proofs, which are found in the early

studies, in Chapter 2, Chapter 3 and Chapter 4. In Chapter 5, the main chapter

of this thesis, we propose the CS method and the OA method for solving (mmF ),

and discuss their convergence properties. Exploiting the structure of the set of

feasible flows, we improve the algorithms in Section 5.5. We report some results

of computational experiments in Section 5.6. Conclusion and further works are

described in the last chapter.



Chapter 2

Global Optimization

A general continuous optimization problem is formulated as

(P )

∣∣∣∣∣∣
min
x

f(x)

s.t. x ∈ D,

where f : D → [−∞, +∞], called an objective function, is a continuous function on

a nonempty closed set D, called a feasible set, of Rn. A feasible solution x∗ ∈ D

is said to be a globally optimal solution or simply an optimal solution if it satisfies

f(x∗) > −∞ and f(x∗) 5 f(x) for all x ∈ D. Here we define a δ-neighborhood of

x, denoted by Nδ(x), as

Nδ(x) = {x′ ∈ Rn | ‖x′ − x‖ < δ }, (2.1)

for x ∈ Rn and for δ > 0. A feasible solution x∗ ∈ D is said to be a locally

optimal solution if f(x∗) > −∞ and there is δ > 0 such that f(x∗) 5 f(x) for

all x ∈ D ∩ Nδ(x
∗). The objective function value attained by a (locally) optimal

solution is called the (locally) optimal value. Note that since

min{f(x) | x ∈ D} = −max{−f(x) | x ∈ D},

a minimization problem can be reformulated as a maximization problem, and a (lo-

cally) optimal solution and the (locally) optimal value are defined for a maximization

problem in the similar way.

The above problem (P ) is equivalent to

5



6 2 Global Optimization

(P )

∣∣∣∣∣∣
min
(x,z)

z

s.t. (x, z) ∈ S,

where x

S = { (x, z) ∈ Rn × R | x ∈ D, f(x) 5 z }.

Then, without loss of generality we assume, throughout this chapter, that the ob-

jective function of (P ) is a linear function, i.e.,

f(x) = px, (2.2)

for some cost vector p ∈ Rn.

We say that problem (P ) is convex if D is convex, and nonconvex otherwise.

When D is convex, all locally optimal solutions of (P ) have the same objective

function value, and hence they are all globally optimal solutions. In this case, local

search algorithm provides a globally optimal solution. An optimization problem is

said to be multiextremal if there are locally optimal solutions with different objective

function values. The difficulty of a global optimization problem is mainly due to

the multiextremality. When D is nonconvex, (P ) may be multiextremal, and hence

some locally optimal solutions may fail to be globally optimal (See Figure 2.1). Some

examples of a multiextremal problem such as production transportation planning

problem and pooling-and-blending problem can be found in Tuy [62].

feasible region D

p · · · cost vector

locally optimal solution

globally optimal solution

Figure 2.1: A multiextremal problem

In the next section after we define a D.C. problem, we show that (P ) is a D.C.

problem whenever D is closed. Also we define a canonical form D.C. problem

(CDC) and a linear reverse convex problem (LRCP ), which are special cases of
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D.C. problems. Then a cut-and-split method and an outer approximation method

are briefly explained in Section 2.2 and Section 2.3. For the details about these

methods, and some other methods for D.C. problems, the reader should refer to

Tuy [61, 62] and Horst-Tuy [27]. In the last section of the chapter, we describe the

on-line vertex enumeration procedure called the double description method. The

procedure will be used in the outer approximation method.

2.1 D.C. Problem

A set S is said to be a D.C. set (difference of two convex sets) if there are two

convex sets S1 and S2 such that S = S1 \ S2. Similarly, a function f is said to be a

D.C. function (difference of two convex functions) if there are two convex functions

f1 and f2 such that f = f1 − f2. An optimization problem described in terms of

D.C. sets and/or D.C. functions is called a D.C. problem, which is studied in e.g.,

Tuy [61, 62] and Horst-Tuy [27]. D.C. problem covers many of nonlinear problems

such as location planning problem, engineering design problem, multilevel problem,

and optimization problem over the efficient set.

2.1.1 Relation between a D.C. problem and a general con-

tinuous optimization problem

Given a nonempty closed set D j Rn, let

distD(x) = inf{ ‖x− y‖2 | y ∈ D }.

Clearly, distD(x) = 0 for x ∈ D. On the other hand, closedness of D implies that

distD(x) > 0 for all x 6∈ D. Then we have

D = {x ∈ Rn | distD(x) 5 0 } = {x ∈ Rn | f1(x)− f2(x) 5 0 },

where f1(x) = ‖x‖2 and f2(x) = ‖x‖2 − distD(x). The function f2 is a point-wise

supremum of infinitely many linear functions, since f2(x) = sup{ 2〈x, y〉 − ‖y‖2 |
y ∈ D }. Hence f2 as well as f1 are convex, which means that distD is a D.C.

function. Therefore problem (P ) can be rewritten as the D.C. problem
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(P )

∣∣∣∣∣∣
min
x

px

s.t. distD(x) 5 0,

whenever D is closed. Note that distD(x) 5 0 is called a D.C. inequality.

2.1.2 Canonical form D.C. problem (CDC) and linear re-

verse convex problem (LRCP )

Definition 2.1 (Canonical form D.C. problem) A canonical form D.C. problem, ab-

breviated to (CDC), is

(CDC)

∣∣∣∣∣∣∣∣∣

min
x

px

s.t. x ∈ D

h(x) = 0,

where D j Rn is a nonempty closed convex set, p ∈ Rn is a cost vector and h :

Rn → R ∪ {+∞} is a convex function.

Note that the constraint h(x) = 0 is called a reverse convex constraint. Here we

assume that int {x ∈ Rn | h(x) 5 0 } = {x ∈ Rn | h(x) < 0 }, and define the

convex set

H = {x ∈ Rn | h(x) 5 0 }. (2.3)

Then we can rewrite (CDC) as

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D \ int H.

It is readily seen that a general D.C. problem defined as

∣∣∣∣∣∣∣∣∣

min
x

f1(x)− f2(x)

s.t. x ∈ D

g1(x)− g2(x) 5 0,

where f1, f2, g1 and g2 are all convex functions on a closed convex set D j Rn, is

equivalent to
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∣∣∣∣∣∣∣∣∣

min
(x,z,s,t)

z

s.t. x ∈ D, g1(x) 5 s, f1(x)− z 5 t

g2(x) = s, f2(x) = t.

The problem is equivalent to

∣∣∣∣∣∣∣∣∣

min
(x,z,s,t)

z

s.t. (x, z, s, t) ∈ S

h(x, s, t) = 0,

where S = { (x, z, s, t) ∈ Rn+3 | x ∈ D, g1(x) 5 s, f1(x)− z 5 t } and h(x, s, t) =

max{ g2(x)− s, f2(x)− t }. Since S is a convex set and h is a convex function, the

problem is (CDC). Then we can convert almost all D.C. problems to (CDC).

Definition 2.2 (Linear reverse convex problem) A linear reverse convex problem,

abbreviated to (LRCP ), is

(LRCP )

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D \ intH,

where H is the same set as in (CDC) and

D = {x ∈ Rn | Ax = b, x = 0 }, (2.4)

with A ∈ Rm×n and b ∈ Rm.

Figure 2.2 shows two-dimensional examples of the problems (CDC) and (LRCP ),

respectively. We see in the figures that the locally optimal solution x̄ fails to be

global.

The inequality h(x) = 0 is said to be essential if

min{px | x ∈ D } < min{px | x ∈ D \ int H }. (2.5)

If the inequality h(x) = 0 is not essential then we can remove it in (CDC). However,

it is very difficult to check if the inequality h(x) = 0 is essential. When we find a

feasible solution x∗ ∈ D \ int H such that px∗ = min{px | x ∈ D }, we recognize

that h(x) = 0 is not essential. From the above observation, we do not assume that

h(x) = 0 is essential.
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H

x̄

D

p

x̄

Figure 2.2: Problems (CDC) and (LRCP )

2.2 Cut-and-Split Method for (LRCP )

In this section, we explain the cut-and-split (CS for short) method for (LRCP ):

(LRCP )

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D \ int H,

where D and H are given by (2.4) and (2.3).

Assumption 2.3 (Assumption for of the CS method) We assume throughout this

section that

D j Rn
+ and 0 ∈ DV ∩ intH, (2.6)

where DV denotes the set of vertices of D.

In the first step of the CS method for (LRCP ), we find an initial feasible solution

x̄ ∈ D \ int H, which serves as an initial incumbent, and set up the family S of

polyhedral cones, initially S := {Rn
+}. In each iteration, we calculate a lower bound

for the subproblem with respect to each cone K ∈ S. We then split the cone whose

lower bound is minimum until the optimality condition is met. To calculate the

lower bound we define a concavity cut for K \H in the next subsection.

2.2.1 Concavity cut

A vector r is said to be a ray of the polyhedral cone K if it satisfies that r 6= 0 and

αr ∈ K for all α > 0. A ray r of K is said to be extreme if it is not a nonnegative
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combination of two distinct rays of K. Given a polyhedral cone K j Rn with a

vertex at 0 and exactly n extreme rays, let ui denote the intersection point of ∂ H

and the ith extreme ray of K for i = 1, . . . , n. The concavity cut lK(x) = 0 for

K \H is defined by the linear function lK : Rn → R such that

lK(x) = eU−1x− 1, (2.7)

where U =
[
u1 u1 · · · un

]
. Clearly lK(0) = −1 and lK(ui) = 0 for i = 1, . . . , n.

Figure 2.3 shows an example of the concavity cut. As seen in the figure, adding

the concavity cut lK(x) = 0 to K as a linear constraint does not cut any points in

K \ int H, since H is convex. Note that the assumption 0 ∈ int H ensures that we

can define the concavity cut for any cones.

cone K

H

hyperplane {x | lK(x) = 0}

u1

u2

K\H

00

∂ H ∂ H

cone K

H

Figure 2.3: Concavity cut lK(x) = 0 for K \H

For each cone K ∈ S, we solve the linear programming problem

(LP (K))

∣∣∣∣∣∣∣∣∣

min
x

px

s.t. x ∈ D ∩K

lK(x) = 0,

to obtain a solution xK with the optimal value βK = pxK , which is a lower bound

for the subproblem

(SP (K))

∣∣∣∣∣∣
min
x

px

s.t. x ∈ (D \ int H) ∩K.
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Note that since lK is a linear function, the feasible set {x ∈ Rn | x ∈ D∩K, lK(x) =
0 } of (LP (K)) is a polyhedron. Let x̄ ∈ D \ int H be an incumbent solution. If

h(xK) = 0, meaning xK ∈ D \ int H, and βK < px̄ for some K, then we update x̄

to xK . When there remain cones after discarding the cones K with pxK = px̄ if

any, then we choose one of them and perform the ω-subdivision on the cone, which

will be defined in the next subsection, and go to the next iteration.

2.2.2 Subdivision on cone

Let Z j Rn be a simplex with a vertex set {v1, · · · , vn} and let

ω =
∑
j∈J

θjv
j, with

∑
j∈J

θj = 1 and θj > 0 for all j ∈ J, (2.8)

where J j {1, . . . , n} is the index set of at least two elements, i.e., |J | = 2. Let

Zj denote the simplex with a vertex set {v1, · · · , vn} \ {vj} ∪ {ω} for each j ∈ J .

The simplex Z is then split into |J | simplices Zj. This splitting is called the ω-

subdivision on Z. Furthermore when ω = (1 − α)v + αv′ for α ∈ (0, 1) and for

v, v′ ∈ {v1, · · · , vn} such that

‖v − v′‖ = max{ ‖vi − vj‖ | i 6= j, i = 1, . . . , n, j = 1, . . . , n },

the subdivision is called the bisection on Z of ratio α. If α = 1/2, we say that the

bisection is exact. We next define a ω-subdivision on a polyhedral cone. Given

a polyhedral cone K j Rn generated by n extreme rays, we construct a simplex

Z = K∩L for a fixed hyperplane L intersecting all these rays. For some point ω ∈ Z,

we perform the ω-subdivision on Z to obtain |J | simplices Zj. Let {v(j,1), · · · , v(j,n)}
be a vertex set of Zj for each j ∈ J . The polyhedral cone K is then split into |J |
polyhedral cones Kj, each of which is generated by n extreme rays with directions

v(j,1), · · · , v(j,n). This splitting is called the ω-subdivision on K. An example of

ω-subdivision on a polyhedral cone is shown in Figure 2.4, in which the cone K is

splitted into three cones K1, K2 and K3.

2.2.3 Algorithm and its convergence

The CS method for (LRCP ) is described as follows.
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K

K1

K2

K3

ω ω

v1 v3

v2

v1 v3

v2

Z

L

Figure 2.4: ω-subdivision on a polyhedral cone K

/** CS method for (LRCP ) **/

〈0〉 (initialization) Find an initial feasible solution x̄ ∈ D \ int H of (LRCP ). Set

K0 := Rn
+, S := {K0}, R := S, and k := 0.

〈k〉 (iteration k) For each K ∈ S, solve (LP (K)) to obtain a solution xK with the

value βK := pxK .

〈k1〉 (update) If {K ∈ S | h(xK) = 0 } 6= ∅ then solve βK∗ := min{ βK | K ∈
S, h(xK) = 0 } to obtain the cone K∗. If βK∗ < px̄ then set x̄ := xK∗

.

〈k2〉 (termination) Let R′ := {K ∈ R | βK < px̄ }. If R′ = ∅ then stop (x̄

solves (LRCP )).

〈k3〉 (subdivision) Solve min{ βK | K ∈ R′ } to obtain the cone K∗∗. Perform

the ωk-subdivision on K∗∗ for some ωk ∈ K∗∗, and let S∗∗ be the partition

of K∗∗. Set S := S∗∗, R := S∗∗ ∪ (R′ \ {K∗∗}), k := k + 1 and go to 〈k〉.

The convergence of the CS method critically depends on the subdivision rule on

K∗∗. A subdivision rule on a cone is said to be exhaustive if any nested sequence of

cones generated by the algorithm will shrink to a single ray. It is known that if we

set ωk := xK∗∗
and the subdivision rule at Step 〈k3〉 is exhaustive, there is at least

one accumulation point ω∗ of {ωk} contained in ∂ H, and hence ω∗ is feasible. Since

pωk is a lower bound of (LRCP ) for all k, ω∗ is an optimal solution of (LRCP ). It

is also known that if we perform only the bisection of fixed ratio α, the subdivision

rule is exhaustive (See e.g., Tuy [62]).
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2.3 Outer Approximation Method for (CDC)

In this section we explain an outer approximation (OA for short) method for (CDC):

(CDC)

∣∣∣∣∣∣
min
x

px

s.t. x ∈ D \ int H,

where D j Rn is a convex set, H is given by (2.3).

2.3.1 Regularity and optimality condition

Assumption 2.4 (Assumption of the OA method) We assume that D is bounded for

simplicity and satisfies that

0 ∈ D ∩ intH and min{px | x ∈ D } = 0, (2.9)

and

D \ intH = cl (D \H). (2.10)

We say that (CDC) is regular if (2.10) holds. Figure 2.5 shows an example of (CDC)

that is not regular, where x∗ ∈ D \ int H, while x∗ 6∈ cl (D \H).

p · · · cost vector

D
H

x∗

x̄

Figure 2.5: The case where (CDC) is not regular

The regularity assumption of (2.10) yields the optimality condition Theorem 2.5,

which was given by Horst-Tuy [27]. To make this thesis self-contained, we will give

an outline of the proof. In the followings we denote

D(η) = {x ∈ D | px 5 η }, (2.11)

for η ∈ R.
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Theorem 2.5 (Optimality condition of (CDC)) Let x̄ ∈ D \ intH be a feasible

solution of (CDC). If (CDC) is regular and

D(px̄) j H (2.12)

then x̄ is an optimal solution.

Proof: Suppose that x̄ ∈ D \ int H is not an optimal solution of (CDC), i.e., there

exists y ∈ D \ int H such that py < px̄. Clearly, y ∈ D(px̄) and h(y) = 0. If

h(y) > 0 then y is not contained in H, and hence y ∈ D(px̄)\H. By the regularity

assumption, if h(y) = 0, i.e., y ∈ ∂ H then we can take y′ ∈ Nδ(y) ∩ D such

that py′ < px̄ and h(y′) > 0 for a sufficiently small δ > 0, and hence we see that

y′ ∈ D(px̄) \H. 2

The above optimality condition is not valid unless (CDC) is regular. For instance,

an optimal solution in Figure 2.5 is not x̄ but x∗ while the inclusion D(px̄) j H is

met.

2.3.2 Algorithm and its convergence

Let x∗ be an optimal solution of (CDC) and x̄k ∈ D \ int H be the incumbent at

iteration k. In the OA method, we construct polytopes P 0, P 1, · · · , P k, · · · such

that P 0 k P 1 k · · · k P k k · · · k D(px∗). If px̄k = 0, we have done by (2.9).

In the case where px̄k > 0, we check the optimality condition D(px̄k) j H by

evaluating h(v) at each vertex v of P k. Namely, if h(v) 5 0 for each vertex v of P k,

meaning P k j H, then x̄k solves (CDC). Otherwise we construct P k+1 by adding

some linear inequality to P k.

We describe the OA method for (CDC) as follows.

/** OA method for (CDC) **/

〈0〉 (initialization) Find an initial feasible solution x̄0 ∈ D \ int H of (CDC) and

construct an initial polytope P 0 such that P 0 k D(px̄0). Compute the vertex

set P 0
V of P 0 and set k := 0.

〈k〉 (iteration k) Solve vk ∈ argmax{h(v) | v ∈ P k
V }.
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〈k1〉 (termination) If either px̄k = 0 or h(vk) 5 0, meaning P k j H, then

stop (x̄k solves (CDC)). Otherwise, obtain the point xk ∈ [0, vk) ∩ ∂ H.

〈k2〉 (cutting the polytope) If xk 6∈ D then set x̄k+1 := x̄k and P k+1 :=

P k ∩ {x ∈ Rn | l(x) 5 0 } for some affine function l : Rn → R such that

l(vk) > 0 and l(x) 5 0 for all x ∈ D(px̄k). If xk ∈ D then set x̄k+1 := xk

and P k+1 := P k ∩ {x ∈ Rn | px 5 px̄k+1 }.
〈k3〉 Compute the vertex set P k+1

V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 2.6 We will explain subroutines for computing the vertex set P k+1
V from

the knowledge of P k
V in Section 2.4.

Here we consider the case where D is given by D = {x ∈ Rn | f(x) 5 0 }, where

f : Rn → R ∪ {+∞} is a convex function, and assume that

min{px | x ∈ D \ int H } > 0. (2.13)

For the function f and a point x̄ ∈ Rn, the subdifferential of f at x̄, denoted by

∂ f(x̄), is defined as

∂ f(x̄) = { q ∈ Rn | f(x) = q(x− x̄) + f(x̄) for all x ∈ D }. (2.14)

The following theorem was shown in Tuy [62].

Theorem 2.7 (Basic outer approximation theorem) Let {P k}k=0,1,... be a sequence of

polytopes satisfying:

(i) D j · · · j P 1 j P 0,

(ii) there is a point vk ∈ P k \D for each k,

(iii) P k+1 := P k∩{x | qk(x−xk)+αk 5 0 }, where αk ∈ [0, f(xk)] and qk ∈ ∂ f(xk)

for xk ∈ [0, vk] \ intD such that αk − f(xk) → 0 as k → +∞.

Then any accumulation point v of the sequence {vk} belongs to ∂ D.

Let vk be an optimal solution of max{h(v) | v ∈ P k
V } and xk ∈ [0, vk] ∩ ∂ H at

iteration k. If the algorithm iterates infinitely many times then any accumulation

point v∗ of the subsequence of {vk}, i.e, v∗ = limν→∞ vkν for some subsequence

{vkν} of {vk}, belongs to ∂ D(px∗) for x∗ = limν→∞ xkν by Theorem 2.7, and hence

v∗ = x∗ and h(v∗) = 0. This implies D(px∗) j H.
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2.4 On-line Vertex Enumeration Procedure, Dou-

ble Description Method

In the OA method, adding a linear inequality to P k yields P k+1 and the vertex set

P k
V of P k is at hand. Enumerating all vertices of P k+1 is the key implementation

issue. Subroutines for computing the vertex set P k+1
V from the knowledge of P k

V are

provided in e.g., Horst-Vries-Thoai [25], Chen-Hansen-Jaumard [14], Subsection 7.4

of Padberg [39] and Chapter 18 of Chvátal [15]. Due to the possible degeneracy of

P k, a sophisticated implementation should be needed e.g., Fukuda-Prodon [21]. We

explain in this section the double description method studied by Fukuda-Prodon [21].

The method is simple and of great use for enumerating all extreme rays of a poly-

hedral cone. Note that the method works for the polyhedral cone which is not

full-dimensional.

Given matrices A ∈ Rm×n and R ∈ Rn×`, we define two sets

P (A) = {x ∈ Rn | Ax = 0 }, and (2.15)

P (R) = {x ∈ Rn | x = Rµ, µ = 0 }. (2.16)

Letting ai be the ith row of A and rj be the jth column of R, we write the above

sets as

P (A) = {x ∈ Rn | aix = 0 for i = 1, . . . , m }, and

P (R) = {x ∈ Rn | x =
∑`

j=1 µjr
j, µj = 0 for j = 1, . . . , ` }.

As seen readily by the definition, P (A) and P (R) are the polyhedral cone of two

different descriptions, namely, P (A) is the polyhedral cone determined by m linear

inequalities a1x = 0, · · · , amx = 0, and P (R) is the polyhedral cone determined by

the nonnegative linear combination of ` rays r1, · · · , r`. The pair (A,R) is said to

be a double description pair or a D.D. pair if P (A) = P (R). Note that it is not easy

to check if P (A) = P (R) for given matrices A ∈ Rm×n and R ∈ Rn×`.

Suppose that we have a D.D. pair (A,R) at hand and we make the matrix

A′ =


 A

a


 , (2.17)
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by adding some row vector a ∈ Rn to A. The aim of this subsection is to explain

how to obtain the matrix R′ such that (A′, R′) is a D.D. pair.

Before pursuing the subject, we mention the homogenization. Let

P = {x ∈ Rn | Ax 5 b, x = 0 },

where A ∈ Rm×n and b ∈ Rm, be a polytope and suppose that we have obtained

the vertex set PV = {v1, · · · , v` } at hand. Introducing a variable x0 and letting

P ′ =






x0

x


 ∈ Rn+1

∣∣∣∣∣
[
b −A

]

x0

x


 = 0,


x0

x


 = 0



 ,

we have

P =



 x ∈ Rn

∣∣∣∣∣


1

x


 ∈ P ′



 .

Also we define

rj =


 1

vj


 ,

for j = 1, . . . , `. It is readily seen that r1, · · · , r` ∈ Rn+1 are the extreme rays of the

polyhedral cone P ′. Let R denote the (n + 1) × ` matrix whose jth column is rj.

Meanwhile, if r1, · · · , r` are the extreme rays of P ′ then v1, · · · , v` are the vertex

set of P , where vj = (1/rj
0)(r

j
1, · · · , rj

n)> for rj = (rj
0, · · · , rj

n)> and j = 1, . . . , `.

Constructing P ′ from P is called homogenization (See Figure 2.6). Therefore we can

P

P ′

0

vj

{(x0, x) ∈ Rn+1 | x0 = 1}

Figure 2.6: Homogenization

compute the vertex set P k+1
V from the knowledge of P k

V by using the homogenization

and the double description method.

We go back to the aim of the subsection. Given a D.D. pair (A,R) and the

matrix A′ of (2.17), we need to obtain the matrix R′ such that (A′, R′) is a D.D.
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pair. In the sequel we assume that P (A) is pointed, i.e., 0 is the vertex of P (A),

which is equivalent to that rankA = n. For the new row vector a ∈ Rn, let

J+ = { j ∈ {1, . . . , `} | arj > 0 },
J0 = { j ∈ {1, . . . , `} | arj = 0 }, and

J− = { j ∈ {1, . . . , `} | arj < 0 }. (2.18)

We then have the following lemma.

Lemma 2.8 (Main lemma for double description method) Let

R′ =
[
R1 R2

]
, R1 =

[
rj

]
j∈J+∪J0

and R2 =
[
rjj′

]
(j,j′)∈J+×J−

,

where

rjj′ = (arj)rj′ + (−arj′)rj, (2.19)

for each (j, j′) ∈ J+ × J−. Then (A′, R′) is a D.D. pair.

Proof: We prove that P (R′) = P (A′).

(j) Suppose r is a column of R′. If r = rj for some j ∈ J+ ∪ J0, then r is a

column of R and ar = 0. Since (A,R) is a D.D. pair, we see that r ∈ P (R) = P (A),

and hence r ∈ P (A′). If r = rjj′ for some (j, j′) ∈ J+ × J− then by (2.19) we have

Ar = (arj)Arj′+(−arj′)Arj = 0 and ar = (arj)arj′+(−arj′)arj = 0, and hence

r ∈ P (A′). Since all columns of R′ are contained in P (A′), we have P (R′) j P (A′).

(k) Suppose that x is contained in P (A′), i.e, Ax = 0, ax = 0 and x = 0. Since

(A,R) is a D.D. pair we have x ∈ P (A) = P (R), and hence there are nonnega-

tive coefficients µ1, · · · , µ` such that x =
∑`

j=1 µjr
j =

∑
j∈J+

µjr
j +

∑
j∈J0

µjr
j +

∑
j∈J− µjr

j. If µj = 0 for all j ∈ J− then we have x ∈ P (R′). If there is an index

k ∈ J− such that µk > 0 then we delete µkr
k by the following operation. Letting

J+(x) = {h ∈ J+ | µh > 0 }, (2.20)

we have

x =
∑

j∈J+(x)

µjr
j +

∑
j∈J0

µjr
j +

∑
j∈J−

µjr
j. (2.21)

Note that J+(x) 6= ∅ since 0 5 ax =
∑

h∈J+(x) µh(arh) +
∑

j∈J−\{k} µj(arj) +

µk(ark), and
∑

j∈J−\{k} µj(arj) 5 0 and µk(ark) < 0. It is readily seen that

µh(arh)

µk(−ark)
> 0, (2.22)
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for all h ∈ J+(x). Furthermore we see that

∑

h∈J+(x)

µh(arh)

µk(−ark)
= 1, (2.23)

since 0 5 ax 5
∑

h∈J+(x) µh(arh) + µk(ark). Then there are nonnegative coeffi-

cients {θh}h∈J+(x) such that

0 5 θh 5 µh(arh)

µk(−ark)
and

∑

h∈J+(x)

θh = 1. (2.24)

Here for each h ∈ J+(x) defining

rhk = (arh)rk + (−ark)rh, (2.25)

we see that θhr
k = θh

(
−(−ark)

arh
rh +

1

arh
rhk

)
, and hence

rk =
∑

h∈J+(x)

θhr
k =

∑

h∈J+(x)

(
−(−ark)

arh
rh +

1

arh
rhk

)
. (2.26)

Then we have

x =
∑

j∈J+(x)

µjr
j +

∑

j∈J0∪J−\{k}
µjr

j + µkr
k (2.27)

=
∑

h∈J+(x)

(
µh − θh

µk(−ark)

arh

)
rh +

∑

j∈J0∪J−\{k}
µjr

j +
∑

h∈J+(x)

θhµk

arh
rhk.

Repeating the above operation until there is no index k ∈ J− such that µk > 0, we

see that x ∈ P (R′). 2

The matrix R′ obtained by Lemma 2.8 contains many unnecessary columns.

Namely there are columns of R′ that are not extreme. As seen in Figure 2.7,

we generate unnecessary rays r6,4, r1,4, r2,4 and so on, while extreme rays to be

obtained are only r2,3 and r6,5. We should avoid generating such rays by checking

the adjacency. Here we say that two distinct rays of P are adjacent if the minimal

face of P containing both of two rays contains no other rays. Note that since P

is polyhedral cone, new ray rjj′ becomes an extreme ray only when rj and rj′ are

adjacent.

Here we describe the procedure of obtaining R′ such that (A′, R′) is a D.D. pair.

/** procedure of obtaining R′ **/
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0

P

P ′

{x ∈ Rn | ax = 0 }

r1

r6 r5

r4

r3

r2

r2,3

r6,5

Figure 2.7: Unnecessary rays

〈0〉 (initialization) Let J+, J0, J− be defined by (2.18) and set R′ :=
[
rj

]
j∈J+∪J0

.

〈1〉 (computing rjj′) For each (j, j′) ∈ J+ × J−, if rj and rj′ are adjacent then

compute rjj′ of (2.19) and set R′ :=
[
R′ rjj′

]
.

Further we denote the active set of x by I(x), which is defined as

I(x) = { i ∈ {1, . . . , m} | aix = 0 }. (2.28)

For an index set S j {1, . . . , m}, let AS denote the matrix whose column is ai

(i ∈ S). To check the adjacency, we have the following lemmas whose proofs can

be found in Fukuda-Prodon [21].

Lemma 2.9 Let r be a ray of P , F̄ = {x ∈ Rn | AI(r)x = 0 }, F = F̄ ∩ P and

k = n− rank (AI(r)). Then

(a) rank (AI(r)∪{i}) = n− k + 1 for all i 6∈ I(r).

(b) F contains k linearly independent rays.

(c) When k = 2, r is a nonnegative linear combination of two distinct rays r1 and

r2 such that rank (AI(ri)) > n− k for i = 1, 2.
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Lemma 2.10 Let r be a ray of P . Then

(a) r is an extreme ray of P if and only if rank (AI(r)) = n− 1.

(b) r is a nonnegative combination of extreme rays of P .

When two rays r and r′ satisfy r = αr′ for some positive α, we denote by

r ' r′. The above lemmas imply the following theorem which is useful of checking

the adjacency.

Theorem 2.11 Let r and r′ be two distinct rays of P . Then the following state-

ments are equivalent.

(a) Rays r and r′ are adjacent extreme rays.

(b) Rays r and r′ are extreme rays and rank (AI(r)∩I(r′)) = n− 2.

(c) Either r′′ ' r or r′′ ' r′ holds for any ray r′′ such that I(r) ∩ I(r′) j I(r′′).

In our study, for each (j, j′) ∈ J+ × J−, we check the adjacency between rj and

rj′ by evaluating rank (AI(rj)∩I(rj′ )). When this rank equals n− 2, meaning rj and

rj′ are adjacent, we then compute rjj′ of (2.19) in the procedure for obtaining R′.

For further implementation techniques about double description method, the reader

should refer to Fukuda-Prodon [21].



Chapter 3

Optimization over the Efficient Set

Over the past several decades, the optimization over the efficient set has seen a

substantial development. The aim of this chapter is to provide a state-of-the-art

survey of the development. Given p linear criteria c1x, · · · , cpx and the set of

feasible solutions X of Rn, the linear multicriteria problem is to find a point x

of X such that no point x′ of X satisfies (c1x′, · · · , cpx′) = (c1x, · · · , cpx) and

(c1x′, · · · , cpx′) 6= (c1x, · · · , cpx). Such a point is called an efficient point. The

optimization over the efficient set is the maximization of a given function φ over the

set of efficient points. Precise definitions of the efficient point and others will be

given in the next section.

The difficulty of this problem is mainly due to the nonconvexity of this set.

The existing algorithms for solving this problem could be classified into several

groups such as adjacent vertex search algorithm, nonadjacent vertex search algo-

rithm, branch-and-bound based algorithm, bisection algorithm, Lagrangian relax-

ation based approach, dual approach and D.C. approach. In this chapter we review a

typical algorithm from each group and compare them from the computational point

of view. We survey the existing algorithms for (PE) as well as some variations. We

will not discuss the merits and demerits of the algorithms because we have not yet

had enough computational experience to evaluate them. Theoretically interesting

algorithms do not always work efficiently, on the contrary, naive methods can sur-

pass sophisticated algorithms in computation time. We should be careful not to nip

the promising algorithms in the bud.

First we define the optimization problem over the efficient set. After reviewing

23
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the well-known facts concerning the problem in Section 3.2, the adjacent vertex

search algorithm and the nonadjacent vertex search algorithm will be explained in

Section 3.3 and Section 3.4. Section 3.5 is devoted to the branch-and-bound method

based on the conical partition, and Section 3.6 to the bisection algorithm. In Sec-

tion 3.7 we introduce the face search algorithm, which is based on the enumeration

of faces that constitute the efficient set. The Lagrangian relaxation based approach

and the dual approach will be explained in Section 3.8 and Section 3.9. Applying

the D.C. algorithm is explained in Section 3.10. Some other methods are discussed

in Section 3.11. Finally, extending the problem to a nonlinear problem is discussed

in Section 3.12.

3.1 Optimization Problem over the Efficient Set

Given a polyhedral set

X = {x ∈ Rn | Ax = b, x = 0 }, (3.1)

with A ∈ Rm×n and b ∈ Rm, and a criterion matrix C ∈ Rp×n with p = 2, the

multicriteria problem, abbreviated to (MC), is

(MC)

∣∣∣∣∣∣
Vector Max Cx

s.t. x ∈ X.

To avoid the technicality we assume throughout the chapter that X is nonempty

and bounded.

A point x ∈ X is said to be an efficient point for (MC) if there is no point

x′ ∈ X such that Cx′ = Cx and Cx′ 6= Cx. We denote the set of efficient points

for (MC) by XE, i.e.,

XE = {x ∈ X | @x′ ∈ X : Cx′ = Cx, Cx′ 6= Cx }. (3.2)

A point x ∈ X is said to be a weakly efficient point for (MC) if there is no point

x′ ∈ X such that Cx′ > Cx. We denote the set of weakly efficient points for (MC)

by XW , i.e.,

XW = {x ∈ X | @x′ ∈ X : Cx′ > Cx }. (3.3)

The problems we consider in this chapter are the followings.
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Definition 3.1 (Optimization problem over the efficient set) The optimization prob-

lem over the efficient set, denoted by (PE), is

(PE)

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ XE,

where φ : Rn → R is a continuous function to be maximized.

Definition 3.2 (Optimization problem over the weakly efficient set) The optimization

problem over the weakly efficient set, denoted by (PW ), is

(PW )

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ XW .

For these problems we write φ(PE) and φ(PW ) to denote their optimal values, re-

spectively.

Figure 3.1 shows a two-dimensional example of the problem (PE), where ci is

the ith row of C for i = 1, 2 and φ(x) = dx for a given direction d ∈ Rn. The

efficient set XE is depicted by bold lines. As seen in Figure 3.1 XE is nonconvex,

and the locally optimal solution x2 fails to be a globally optimal solution.

X

XE

c1

c2

0

d

x1

x2

Figure 3.1: Problem (PE)

The nonconvexity of the efficient set XE often causes a multiextremality of

(PE). The main difficulty of the problem arises from the multiextremality. A three-

dimensional example of (PE) is shown in Figure 3.2. As seen in this figure, it is

very difficult to solve (PE) even if the dimension of X is relatively low. Also we see
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in Figure 3.1 and Figure 3.2 that XE is the connected union of several faces of X,

which will be proved in the next section.

X

XE

d

Figure 3.2: A three-dimensional example of (PE)

3.2 Basic Results of Efficient Set XE

3.2.1 Gap function

We define the gap function, denoted by g : Rn → R ∪ {−∞}, as

g(x) = max{eCx′ | x′ ∈ X, Cx′ = Cx } − eCx. (3.4)

Note that g(x) = −∞ if there is no point x′ ∈ X such that Cx′ = Cx. An example

of the gap function value at x̄ is shown in Figure 3.3, in which x∗ is an optimal

solution of max{eCx′ | x′ ∈ X, Cx′ = Cx }, and hence g(x̄) = eCx∗ − eCx̄. As

seen in the figure, clearly g(x) = 0 for all x ∈ X.

X

XE

c1

c2

0
x̄

x∗

eC

{x′ ∈ X | Cx′ = Cx̄ }

Figure 3.3: Gap function value at x̄



3 Optimization over the Efficient Set 27

By the definition of the efficient point, if x ∈ XE then x′ ∈ X and Cx′ = Cx

imply Cx′ = Cx. Hence it is readily seen that XE = {x ∈ X | g(x) = 0 }. Also it

is well known that g is a concave and piece-wise linear function (See Figure 3.4).

X

XE

g(x)

c1

c2

eC

Rn

Figure 3.4: Gap function g and set XE

Using the gap function g of (3.4), we can rewrite (PE) as

(PE)

∣∣∣∣∣∣∣∣∣

max
x

φ(x)

s.t. x ∈ X

g(x) = 0.

Since g(x) = 0 for all x ∈ X, the last equality constraint g(x) = 0 can be replaced

by g(x) 5 0, which yields

(PE)

∣∣∣∣∣∣∣∣∣

max
x

φ(x)

s.t. x ∈ X

g(x) 5 0.

Since g is a concave function, the inequality constraint g(x) 5 0 is the reverse convex

constraint defined in Subsection 2.1.2, and hence (PE) is (LRCP ) when D = X,

p = −d and h = g. Moreover, it is known that the above alternative form of (PE)

can be cast into the problem
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(PE(t))

∣∣∣∣∣∣
max
x

φ(x)− tg(x)

s.t. x ∈ X,

where t > 0 is an exact penalty parameter. Note that a tight exact penalty param-

eter for φ(x) = −dx is given in e.g., An-Tao-Muu [3] and Dauer-Fosnaugh [16].

3.2.2 Gap function with direction λ

We introduce several well-known results, whose proof can be found in e.g., Ben-

son [10], Sawaragi-Nakayama-Tanino [44], Steuer [49], and White [63]. We will

outline some of the proofs to make this thesis self-contained.

Lemma 3.3 The point x̄ ∈ X is an efficient point for (MC) if and only if there

exists λ ∈ Rp++ such that x̄ is an optimal solution of the single criterion problem

(SC(λ))

∣∣∣∣∣∣
max
x

λCx

s.t. x ∈ X.

Proof: (⇐) Assume that x̄ ∈ X is not an efficient point for (MC). There exists

y ∈ X such that Cy = Cx and Cy 6= Cx. Then, x̄ is not an optimal solution of

(SC(λ)) for any λ ∈ Rp++.

(⇒) Suppose x̄ ∈ X is an efficient point for (MC). Let Lx̄ = diag{l1, . . . , ln},
where

li =





1 if x̄i = 0

0 otherwise
for i = 1, . . . n.

If there exists a vector u ∈ Rn satisfying the system

Cu = 0, Cu 6= 0, Lx̄u = 0, Au = 0, (3.5)

setting x = x̄ + θu for a sufficiently small θ > 0, we see x ∈ X satisfies Cx = Cx̄

and Cx 6= Cx̄. This contradicts that x̄ is an efficient point for (MC). Then, there

is no vector u ∈ Rn satisfies the system (3.5). Applying the Tucker’s alternative

theorem (See Mangasarian [34]), there are vectors λ ∈ Rp, µ ∈ Rn and ν ∈ Rm such

that

λC + µLx̄ + νA = 0, λ > 0, µ = 0.
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For any x ∈ Rn, we see that

λC(x̄− x) + µLx̄(x̄− x) + νA(x̄− x) = 0.

Therefore for any x ∈ X, we have µLx̄(x̄− x) 5 0 and νA(x̄− x) = 0, and hence

λCx̄ = λCx. 2

For λ ∈ Rp++, we defined the gap function with direction λ, denoted by gλ :

Rn → R, as

gλ(x) = max{λCx′ | x′ ∈ X } − λCx. (3.6)

As can be seen readily, x ∈ X is in XE if and only if there is λ ∈ Rp++ such that

gλ(x) = 0, and a point x′ which solves max{λCx′ | x′ ∈ X } is in XE. Hence we

have XE = {x ∈ X | ∃λ ∈ Rp++ : gλ(x) = 0 }. The theory of parametric linear

program shows that gλ is a piece-wise linear concave function. Furthermore the

following property is also readily seen.

Lemma 3.4 If Cx = Cx′ then gλ(x) = gλ(x′).

The following theorem implied by Lemma 3.3 is also important.

Theorem 3.5

XE = {x ∈ X | ∃λ ∈ Rp++ : λCx = λCx′ for all x′ ∈ X } (3.7)

=



 x ∈ X

∣∣∣∣∣∣
∃(λ, µ, ν) ∈ Rp++ × Rm × Rn+ :

λC − µA + ν = 0, νx = 0



 (3.8)

=



 x ∈ X

∣∣∣∣∣∣
∃(λ, µ) ∈ Rp++ × Rm :

λC − µA 5 0, λCx− µb = 0



 . (3.9)

Furthermore, there is an M > 0 such that Rp++ above can be replaced by the (p−1)-

dimensional simplex defined by λ of (3.6)

Λ = {λ ∈ Rp | λ = e, λ1 = M }. (3.10)

Proof: The assertion (3.7) is straightforward by Lemma 3.3. The equivalence

among (3.7), (3.8) and (3.9) follows from the duality theorem of linear program.

We will prove only that Λ defined by (3.10) can replace Rp++ in (3.7), (3.8) and
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(3.9). By (3.7), XE is the union of finitely many faces, say F1, · · · , FL, of X such

that F` is the optimal face of (SC(λ`)) for some λ` ∈ Rp++. For ` = 1, . . . , L,

let α` = 1/ min{λ`
i | i = 1, . . . , p }, and M = max{α`(λ

`1) | ` = 1, . . . , L }.
Then λ̄

`
= (M/λ`1)λ` ∈ Λ and F` remains the optimal face of (SC(λ̄

`
)) for each

` = 1, . . . , L. 2

Theorem 3.5 will provide several equivalent formulations of Problem (PE). By

(3.7) (PE) is equivalent to

∣∣∣∣∣∣∣∣∣

max
(x,λ)

φ(x)

s.t. (x, λ) ∈ X × Λ

λCx = λCx′ for all x′ ∈ X.

Using the gap function with direction λ of (3.6), we rewrite the above problem as

∣∣∣∣∣∣∣∣∣

max
(x,λ)

φ(x)

s.t. (x, λ) ∈ X × Λ

gλ(x) 5 0.

By (3.8) and (3.9) we have

∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,λ,µ,ν)

φ(x)

s.t. (x, λ, µ, ν) ∈ X × Λ× Rm × Rn+

λC − µA + ν = 0

νx = 0,

and
∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,λ,µ)

φ(x)

s.t. (x, λ, µ) ∈ X × Λ× Rm

λC − µA 5 0

λCx− µ0 = 0.

Note that even if φ is linear, these problems contain a nonlinear equality constraint.

Note also that to obtain a point in XE ∩XV we have only to choose λ ∈ Λ and solve
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(SC(λ)).

3.2.3 Connectedness of XE and a local search procedure

The condition (3.8) remains identical as long as the set of binding constraints at x

does not change. Therefore, if points x and x′ lie in the relative interior of the same

face of X, we see that x ∈ XE if and only if x′ ∈ XE.

Theorem 3.6 The set XE is the connected union of several faces of X. Any two

vertices in XE are connected by a path of efficient edges, where an efficient edge is

an edge of X contained in XE.

Proof: See Theorem 9.19 and Theorem 9.23 in Steuer [49], Theorem 3.31 in

Sawaragi-Nakayama-Tanino [44], and Naccache [38]. 2

Let x = (xB, xN) = (B−1b,0) be a basic feasible solution of X and let A =[
B N

]
and C =

[
CB CN

]
be the partitions of A and C corresponding to the

basic and nonbasic parts of x, respectively. Theorem 3.5 implies the following

lemma.

Lemma 3.7 Let x = (xB, xN) = (B−1b,0) be a basic feasible solution of X.

Then we have the followings.

(i) The point x is in XE if and only if λ(CN − CBB−1N) − νBB−1N 5 0 for

some λ ∈ Λ and νB ∈ Rm+ such that νBxB = 0.

(ii) If x is a nondegenerate basic solution, the above condition is reduced to λ(CN−
CBB−1N) 5 0 for some λ ∈ Λ.

(iii) Let cj and aj be the columns of CN and N , respectively, corresponding to a

nonbasic variable xj. If λ(CN − CBB−1N) 5 0 and λ(cj − CBB−1aj) = 0

for some λ ∈ Λ, then the edge obtained by increasing xj is an efficient edge.

Note that for an efficient basic solution x = (B−1b,0) and a nonbasic variable xj

the condition of Lemma 3.7 (iii) holds if and only if the optimal value of
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(Qj)

∣∣∣∣∣∣∣∣∣

max
λ

λ(cj − CBB−1aj)

s.t. λ(CN − CBB−1N) 5 0

λ ∈ Λ,

is equal to zero.

Lemma 3.7 provides the local search procedure described below. For two adjacent

vertices v, v′ of X let [v, v′] denote the edge connecting v and v′. For v ∈ XE ∩XV

let

NE(v) = {v′ ∈ XE ∩XV | [v, v′] j XE }, (3.11)

i.e., the set of efficient vertices linked to v by an efficient edge. When φ is quasi-

convex we have the lemma.

Lemma 3.8 Suppose x ∈ XE ∩XV . If {x′ ∈ NE(x) | φ(x′) > φ(x) } = ∅, then x

is a locally optimal solution of (PE).

We describe the procedure starting from v ∈ XE ∩XV as follows.

/** local search procedure for (PE) starting from v ∈ XE ∩XV **/

〈0〉 (initialization) Set v0 := v and k := 0.

〈k〉 (iteration k) Let B and N be a basic matrix and a nonbasic matrix associated

with vk = (vB, vN) = (B−1b,0). Let R be the index set of nonbasic variables.

〈k1〉 (termination) If R = ∅ then stop (vk is a locally optimal solution). Oth-

erwise, choose j ∈ R and set R := R \ {j}.
〈k2〉 (obtaining v′) If the optimal value of (Qj) is equal to zero then obtain

v′ ∈ NE(vk) by pivotting. Otherwise go to 〈k1〉.
〈k3〉 (update) If φ(v′) > φ(vk) then set vk+1 := v′, k := k + 1, and go to 〈k〉.

Otherwise go to 〈k1〉.

3.2.4 Efficient outcome

The set

Y = CX = {y ∈ Rp | y = Cx for some x ∈ X }
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is called the outcome set. The sets

Y 5 = Y + Rp
− = {y ∈ Rp | y 5 Cx for some x ∈ X } and

Y < = Y + Rp
−− = {y ∈ Rp | y < Cx for some x ∈ X }

are called the lower outcome set and strictly lower outcome set, respectively.

A point y ∈ Y is said to be an efficient outcome if there is no point y′ ∈ Y such

that y′ = y and y′ 6= y, in other words, Y ∩ (y +Rp
+) = {y}. We denote the set of

efficient outcomes by YE, i.e.,

YE = {y ∈ Y | @y′ ∈ Y : y′ = y, y′ 6= y }.

A point y ∈ Y is said to be a weakly efficient outcome if there is no point y′ ∈ Y

such that y′ > y, in other words, Y ∩ (y +Rp
++) = ∅. We denote the set of weakly

efficient outcomes by YW , i.e.,

YW = {y ∈ Y | @y′ ∈ Y : y′ > y }.

The following lemma is a restatement of these definitions.

Lemma 3.9

(i) XE = {x ∈ X | Cx ∈ YE }.
(ii) XW = {x ∈ X | Cx ∈ YW }.

3.3 Adjacent Vertex Search Algorithm

In this section we explain an adjacent vertex search algorithm. The algorithms

proposed in Philip [40], Ecker-Song [19] and Fülöp [22] for a linear function φ,

and in Bolintineanu [13] for a quasi-convex function φ are mainly based on the

two techniques: applying the local search procedure, which is stated in the previous

section, and cutting off the portion of X where φ takes a smaller value than objective

function value of an incumbent. We assume for the time being the quasi-convex

function φ and will follow the line of Bolintineanu [13].
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3.3.1 Algorithm

The algorithm generates a sequence of efficient vertices x0, x1, · · · and polytopes

X0, X1, · · · such that φ(x0) < φ(x1) < · · · and X = X0 k X1 k · · · . Here

determined by a hyperplane H = {x ∈ Rn | ax = α }, we denote the two halfspaces

by H+ = {x ∈ Rn | ax = α } and H− = {x ∈ Rn | ax 5 α }, and their interiors by

H++ and H−−, respectively. The algorithm is described as follows.

/** adjacent vertex search algorithm for (PE) **/

〈0〉 (initialization) Find an initial feasible solution x0 ∈ XE∩XV . If NE(x0) = ∅
then stop (x0 is the optimal solution of (PE)). Set p := 0, k := 0 and X0 := X.

〈〈p〉〉 (local search) Apply the local search procedure for (PE) starting from xp

to obtain a locally optimal vertex xp+1 and the lower bound φ(xp+1). Set

p := p + 1.

〈k〉 (global technique) Let Lp := {x | φ(x) 5 φ(xp) }.

〈k1〉 (computing an upper bound) Solve max{φ(x) | x ∈ Xk } to obtain a

solution vk and the upper bound φ(vk).

〈k2〉 (termination) If φ(xp) = φ(vk)− ε for some tolerance ε > 0, then stop

(xp is an ε-approximate optimal solution). Otherwise, find a supporting

hyperplane Hk of Lp such that Lp j Hk
+ and vk ∈ Hk

−−.

〈k3〉 (update) If there is an efficient edge [v′, v′′] j XE such that [v′, v′′] ∩
Hk 6= ∅ and max{φ(v′), φ(v′′)} > φ(xp), then set xp+1 be one of v′ and

v′′ with a larger objective function value, p := p + 1 and go to 〈〈p〉〉.

〈k4〉 (cutting the current polytope) Otherwise, set Xk+1 := Xk ∩ Hk
+, k :=

k + 1, and go to 〈k〉.

We illustrate the adjacent vertex search algorithm in Figure 3.5. By local search

procedure we obtain x1 (See (a)). We construct the level set L1 and the hyperplane

H1 (See (b)). Since the hyperplane H1 intersects the efficient edge [v′, v′′], we apply

the local search procedure starting from v′′ to obtain x3. We construct the level set
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x0

x1

X

XE

x1

H1

v0

L1

H1
+

v′′

v′

(a) local search (b) level set L1 and hyperplane H1

x3

H3

v0 L3

x2

cutting off

x3v1

(c) cutting off the portion of X (d) termination

Figure 3.5: Adjacent vertex search algorithm

L3 and the hyperplane H3, and then cut the portion of X off (See (c)). In the last

place we terminate with an ε-approximate optimal solution x3 (See (d)).

The most costly and crucial step would be Step 〈k3〉 as well as Step 〈k1〉, in

which a quasi-convex maximization problem max{φ(x) | x ∈ Xk } is to be solved.

We will not go into detail of how to solve the quasi-convex maximization problem.

See e.g., Horst-Tuy [27].

Step 〈k3〉 is based on the following observation.

Lemma 3.10 Let F k = Xk ∩Hk and F k
E be the set of efficient points for

∣∣∣∣∣∣
Vector Max Cx

s.t. x ∈ F k.
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Then XE ∩ F k j F k
E.

Proof: If x ∈ XE ∩ F k, there is no point x′ ∈ X such that Cx′ = Cx and

Cx′ 6= Cx. Then clearly no points in F k meet this condition, which means x ∈ F k
E.

2

This lemma shows that if we enumerate all the efficient vertices of F k
E, we can

see if there is the edge desired in Step 〈k3〉. Namely, Step 〈k3〉 is carried out by

generating the efficient vertices of F k by a standard algorithm for linear multicriteria

optimization such as ADBASE by Steuer [50] till one of them turns out to be in

XE, and then for such a point, checking if it lies on an efficient edge of Xk with

endpoints v′ and v′′ such that max{φ(v′), φ(v′′)} > φ(xp).

3.3.2 Convergence of the algorithm

Lemma 3.11 Let uk denote the point at which Hk supports Lp. If the angle between

vk −uk and the normal vector of Hk pointing toward vk is less than some constant

δ, then Step 〈k〉 terminates after a finite number of iterations for each p.

Proof: The condition implies limk→∞ φ(vk) = φ(xp), hence the stopping criterion

φ(xp) = φ(vk)− ε will be satisfied within a finite number of iterations. 2

Lemma 3.12 XE j Xk for k = 0, 1, . . ..

Proof: Since XE j X0 = X, suppose XE j Xk as the inductive hypothesis. If

XE 6j Xk+1, there is x′ ∈ XE ∩XV such that x′ 6∈ Hk
+. By the construction of Hk

we see φ(x′) > φ(xp). Then by Theorem 3.6 there is an efficient edge [v′, v′′] with

[v′, v′′] ∩Hk 6= ∅ and max{φ(v′), φ(v′′)} > φ(xp). This is contrary to the fact that

Xk+1 was generated. 2

Lemma 3.13 When the algorithm terminates with xp and vk satisfying φ(xp) =
φ(vk)− ε, xp is an ε-approximate optimal solution of (PE).

Proof: By Lemma 3.12 we obtain φ(PE) = max{φ(x) | x ∈ XE } 5 max{φ(x) |
x ∈ Xk } = φ(vk) 5 φ(xp) + ε 5 φ(PE) + ε. 2
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Theorem 3.14 The algorithm provides an ε-approximate optimal solution of Prob-

lem (PE) after a finite number of iterations.

Proof: Step 〈k〉 terminates within finitely many iterations for each p as shown in

Lemma 3.11, and points xp’s are efficient vertices of X satisfying φ(x0) < φ(x1) <

· · · , and hence distinct. Therefore the finiteness of XE ∩XV and Lemma 3.13 imply

the theorem. 2

A preliminary computational experiment for small problems up to n = 7,m =

7, p = 4 with a convex quadratic or linear objective function is reported in Bolin-

tineanu [13], where it is observed that the vertices, including those on the cutting

planes, generated by the algorithm are fewer than the efficient vertices of X.

3.3.3 In the case where φ is linear

When φ(x) = dx for d ∈ Rn, the algorithm is substantially simplified. Suppose we

have obtained a locally optimal solution xp ∈ XE ∩ XV . Then the lower level set

is the half space Lp = {x | dx 5 dxp } and the supporting hyperplane of this set

is uniquely determined by Hp = {x | dx = dxp }. Then the efficient vertices of

F k = X ∩ Hk are enumerated to check if Hk intersects an efficient edge [v′, v′′] of

X such that max{dv′, dv′′} > dxp. When no such edge exists, we conclude from

the connectedness of XE that

XE j {x | dx 5 dxp }

and hence xp is an optimal solution of (PE). Thus, k is never incremented through

the algorithm.

In the enumeration of efficient vertices of F k = X ∩ Hk Fülöp [22] proposed a

cutting plane algorithm based on convexity and disjunctive cuts. Assume we have

a vertex x̄ ∈ F k which is not efficient, i.e., gλ(x̄) > 0, where gλ is the gap function

of (3.6). The portion of F k with gλ(x) > 0, which is a convex set, should be cut off

and eliminated for further enumeration. Fülöp proposed to introduce a convexity

cut tx = 1, where t ∈ Rn, and reduce the set F k to F k ∩ {x | tx = 1 }. Suppose

the nondegeneracy at x̄, and for each non-basic variable xj let zj be the direction of
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edge of F k adjacent to x̄ obtained by increasing xj. Note that zj is easily obtained

from the dictionary corresponding to x̄. Let

sj = sup{ s ∈ R | C(x̄ + szj) 5 Cx, x ∈ F k }, (3.12)

then we have the convexity cut as follows. Note that the constraint C(x̄+szj) 5 Cx

together with x ∈ F k means that C(x̄ + szj) be in the lower outcome set of CF k.

Lemma 3.15 Suppose sj > 0 for every non-basic variable xj of x̄. Let t ∈ Rn be

defined by

tj =





1/sj if xj is a non-basic variable and sj < ∞,

0 otherwise.

Then tx̄ < 1, and tx = 1 for all efficient points x in F k.

See Horst-Tuy [27] for further detail of convexity cut. Every time a nonefficient

vertex is found, F k is reduced by the convexity cut, which might lighten the com-

putational burden. No computational experiment is reported in Fülöp [22]. Ecker-

Song [19] proposed to solve max{ cix | x ∈ X ∩ Hk
+ } for i = 1, . . . , p to find the

next iterate xp+1 before resorting to the vertex enumeration of F k.

3.4 Non-adjacent Vertex Search Algorithm

The algorithms which trace the adjacent vertices need a step of enumerating all

efficient vertices of a polyhedral set with a lower dimension. This section explains

a nonadjacent vertex search algorithm proposed by Benson [8, 9], which dispenses

with the vertex enumeration.

We assume the linear objective function φ(x) = dx. Suppose we have k + 1

efficient points x0, x1, · · · , xk ∈ XE and let αk = max{dxj | j = 0, 1, . . . , k } and

(P k) be the problem, which plays a central role in the algorithm, of finding a point

(x, λ) ∈ Rn × Rp++ satisfying

(P k)

∣∣∣∣∣∣∣∣

λCx = λCxj for j = 0, 1, . . . , k

(x, λ) ∈ X × Λ

dx > αk.
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Remark 3.16 If (x̄, λ̄) ∈ X × Λ satisfies the constraints

λCx = λCxj for j = 0, 1, . . . , k

of (P k), we see that x̄ is an efficient point of the convex hull of x0, · · · , xk and x̄

itself. In this sense Problem (P k) is an inner approximation of Problem (PE).

We start with the case where Problem (P k) has no solution.

Lemma 3.17 Suppose x0, x1, · · · , xk ∈ XE and Problem (P k) has no solution.

Then x∗ ∈ argmax{dxj | j = 0, 1, . . . , k } is an optimal solution of (PE).

Proof: Since (P k) has no solution, if x ∈ X together with some λ ∈ Λ satisfies

λCx = λCx′ for all x′ ∈ X (3.13)

then dx 5 αk, i.e., x ∈ XE implies dx 5 αk. This and x∗ ∈ XE yield the lemma.

2

3.4.1 Algorithm and its convergence

Leaving the method of solving (P k) till later on, we give the algorithm first.

/** nonadjacent vertex search algorithm for (PE) **/

〈0〉 (initialization) Find an efficient vertex x0, set k := 0 and go to 〈k〉.

〈k〉 (Iteration k)

〈k1〉 Find a solution (x, λ) ∈ Rn × Rp++ of (P k). If no solution exists, x∗ ∈
argmax{dxj | j = 0, . . . , k } is an optimal solution of (PE). Otherwise,

set (x̄k+1, λ̄
k+1

) be the solution found.

〈k2〉 Solve the linear program

(Testk)

∣∣∣∣∣∣∣∣∣

max
x

eCx

s.t. Cx = Cx̄k+1

x ∈ X

for a solution x̂. If eCx̂ = eCx̄k+1, go to 〈k3〉. Otherwise, go to 〈k5〉.



40 3 Optimization over the Efficient Set

〈k3〉 If x̄k+1 is a vertex of X, then set xk+1 := x̄k+1, k := k + 1 and go to 〈k〉.
Otherwise, go to 〈k4〉.

〈k4〉 Let F be a face of X whose relative interior contains x̄k+1, and solve the

linear program

(Facek)

∣∣∣∣∣∣
max
x

dx

s.t. x ∈ F

for an extreme point xk+1. Set k := k + 1 and go to 〈k〉.
〈k5〉 Solve (SC(λ̄

k+1
)) for a solution xk+1, set k := k + 1 and go to 〈k〉.

Note that whether x̄k+1 is a vertex of X can be seen by checking the linear inde-

pendence of columns of A corresponding to positive components of x̄k+1.

There may be various ways of determining the face F of Step 〈k4〉. One possible

way is

F = {x ∈ X | xj = 0 for j with x̄k+1
j = 0 }. (3.14)

Benson [8, 9] proposes to define it by

F = {x ∈ X | (e + u)Cx = v },

where u is an optimal dual variable vector corresponding to the constraint Cx =
Cx̄k+1 of (Testk) and v = max{ (e + u)Cx | x ∈ X }.

The following lemma shows that xj’s are efficient vertices of X.

Lemma 3.18 xj ∈ XE ∩XV for j = 0, 1, . . ..

Proof: Since it is clear that xj ∈ XV , we only show that xj ∈ XE. When xk+1 is

computed in either Step 〈k3〉 or Step 〈k5〉, it is an optimal solution of either (Testk)

or (SC(λ̄
k+1

)). Then clearly xk+1 ∈ XE. When xk+1 is generated in Step 〈k4〉,
it lies in the face whose relative interior contains the efficient point x̄k+1. Then by

Theorem 3.5 we see xk+1 ∈ XE. 2

Now we show that the algorithm always generates a sequence of distinct vertices

of XE.

Lemma 3.19 xk+1 6∈ {xj | j = 0, 1, . . . , k }.
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Proof: Three cases should be considered. In Step 〈k3〉 xk+1 is given by xk+1 = x̄k+1,

which satisfies dx̄k+1 > max{dxj | j = 0, . . . , k }, and hence xk+1 differs from any

point of x0, · · · , xk. By construction dxk+1 = dx̄k+1 in Step 〈k4〉 and the same

argument applies. Now suppose xk+1 is generated in Step 〈k5〉. Then x̄k+1 6∈ XE,

i.e., there is a point, say x̃ ∈ X with Cx̃ = Cx̄k+1 and Cx̃ 6= Cx̄k+1. Since

λ̄
k+1

> 0 we see λ̄
k+1

Cx̃ > λ̄
k+1

Cx̄k+1. Since xk+1 solves (SC(λ̄
k+1

)), we also see

λ̄
k+1

Cxk+1 = λ̄
k+1

Cx̃. Then for j = 0, . . . , k

λ̄
k+1

Cxk+1 = λ̄
k+1

Cx̃ > λ̄
k+1

Cx̄k+1 = λ̄
k+1

Cxj

holds.

This means that xk+1 6∈ {xj | j = 0, . . . , k }. 2

Note that in either case of Step 〈k3〉 and Step 〈k4〉 dxk+1 > max{dxj | j =

0, . . . , k }, i.e., monotone increasing of the objective function value, but in case

Step 〈k5〉 it may decrease. Combining the above lemmas we have the following

theorem.

Theorem 3.20 Suppose Problem (P k) is solved within a finite number of iterations.

Then the algorithm provides an optimal solution x∗ of Problem (PE) after a finite

number of iterations.

3.4.2 Solving Problem (P k)

Now we go back to Problem (P k) and explain the algorithm proposed by Benson [8].

For a solution of (P k) it suffices to solve

(P k)

∣∣∣∣∣∣∣∣∣

max
(x,λ)

dx

s.t. λCx = λCxj for j = 0, 1, . . . , k

(x, λ) ∈ X × Λ.

Let

Y =

{
y

∣∣∣∣ min{−cix | x ∈ X} 5 yi 5 max{−cix | x ∈ X} for i = 1, . . . , p

}
,

and Λ be a p-dimensional hypercube containing Λ, e.g.,

Λ = {λ ∈ Rp | e 5 λ 5 (M + p− 1)e }.
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Then (P k) is equivalent to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,λ,y)

dx

s.t. λy + λCxj 5 0 for j = 0, 1, . . . , k

y + Cx = 0

(x, λ) ∈ X × Λ

y ∈ Y .

The constraint λ1 = M could be added, but is not necessary. The bilinear term λy

makes the problem difficult to solve and hence should be relaxed. The algorithm in

Benson [8] is based on the successive partition of the hypercube Y ×Λ into smaller

hypercubes and the relaxation of the problem restricted to the smaller hypercubes

to a linear program. Let

Y
′ × Λ

′
=

p∏
i=1

[αi, αi]×
p∏

i=1

[β
i
, βi]

be a smaller hypercube contained in Y × Λ. Note that Y
′ × Λ

′
=

∏p
i=1([αi, αi] ×

[β
i
, βi]) by rearranging the coordinates and λy is the sum of bilinear terms λiyi

defined on [αi, αi] × [β
i
, βi]. Al-Khayyal-Falk [1] show that the convex envelope of

λiyi on the two-dimensional cube [αi, αi] × [β
i
, βi], the point-wise supremum of all

convex functions underestimating λiyi on [αi, αi]× [β
i
, βi], is given by the piece-wise

linear convex function max{ β
i
yi +αiλi−β

i
αi, βiyi +αiλi−βiαi }. Then the convex

envelope of λy is given by
∑p

i=1 max{ β
i
yi +αiλi−β

i
αi, βiyi +αiλi−βiαi } and the

constraint λy + λCxj 5 0 is relaxed to
p∑

i=1

max{ β
i
yi + αiλi − β

i
αi, βiyi + αiλi − βiαi }+ λCxj 5 0. (3.15)

This constraint is, by introducing variables wi’s, rewritten as

β
i
yi + αiλi − β

i
αi 5 wi for i = 1, . . . , p

βiyi + αiλi − βiαi 5 wi for i = 1, . . . , p
p∑

i=1

wi + λCxj 5 0.

Thus we yield a linear programming relaxation of (P k) restricted to a smaller hy-

percube Y
′ × Λ

′
contained in Y × Λ. In Benson [8] (3.15) is further relaxed to a

single linear inequality.
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It would be a routine to construct a branch-and-bound algorithm based on this

relaxation. If we employ the bisection procedure to divide a hypercube, i.e., to

divide it into two hypercubes with equal volumes such that the midpoint of one

of the longest edges is a vertex of both new hypercubes, we will see the following

theorem.

Theorem 3.21 If the branch-and-bound procedure does not terminate after a fi-

nite number of iterations, any accumulation point of the sequence (xν , yν , λν , wν)

generated by the procedure is an optimal solution of (P k).

Proof: See e.g., Section 4 of Chapter VII in Horst-Tuy [27] for the convergence

proof. 2

3.5 Branch-and-Bound Based Algorithm

This section is devoted to introducing the branch-and-bound algorithm for Problem

(PW ) with a concave function φ proposed by Horst-Thoai [26] and Thoai [59].

3.5.1 Master problem (MP ) and subproblem (MP (K))

First we observe the following characterization of the weakly efficient outcome set

YW .

Lemma 3.22 Let ∂ Y 5 denote the boundary of Y 5. Then YW = Y ∩ ∂ Y 5.

Proof: This lemma follows the equivalence Y ∩ int Y 5 = Y \YW . If y ∈ Y ∩ int Y 5,

y < y′ for some y′ ∈ Y 5, for which there is y′′ ∈ Y such that y′ 5 y′′. Therefore

y 6∈ YW . If y ∈ Y \ YW , there is y′ ∈ Y with y < y′, and hence its neighbor

{ z ∈ Rp | y− (y′− y) 5 z 5 y′ } is contained in Y 5. This implies y ∈ int Y 5. 2

Then Problem (PW ) is rewritten as

max{φ(x) | x ∈ X, Cx ∈ ∂ Y 5 }.

Introducing additional variables y ∈ Rp and t ∈ R, it is cast into the following

problem called Master Problem
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(MP )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,y,t)

t

s.t. t 5 φ(x)

x ∈ X

y = Cx

y ∈ ∂ Y 5,

for which the following theorem holds.

Theorem 3.23 If x∗ is an optimal solution of (PW ), then (x∗, y∗, t∗) with y∗ =

Cx∗, t∗ = φ(x∗) is an optimal solution of (MP ). If (x∗, y∗, t∗) is an optimal

solution of (MP ), then x∗ is an optimal solution of (PW ) with φ(x∗) = t∗.

Since we assume that the feasible region X is bounded, there is a point y0 ∈ Rp

whose ith component y0
i satisfies

y0
i 5 min{ yi | y ∈ Y } = min{ cix | x ∈ X }.

Then

YW j (y0 + Rp
+) ∩ ∂Y 5 j (y0 + Rp

+) ∩ Y 5.

The key idea of the algorithm is to decompose the truncated lower outcome set

(y0+Rp
+)∩Y 5 into cones K with vertex at y0 and consider the subproblem (MP (K))

with variable y restricted to ∂Y 5 ∩K

(MP (K))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,y,t)

t

s.t. t 5 φ(x)

x ∈ X

y = Cx

y ∈ ∂Y 5 ∩K.

3.5.2 Relaxation problem (MP (K))

For a convex function f : S → [−∞, +∞] on a set S j Rn,

dom f = {x ∈ S | f(x) < +∞}. (3.16)

is called a domain of f . When f is a concave function, the domain of f is dom f =

{x ∈ S | f(x) > −∞}.
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There are two things to have done: to replace the concave function φ by a function

easier to handle, and to construct a polyhedral set containing Y ∩ ∂Y 5 ∩K. They

propose a piece-wise linear concave function Φ to replace φ. Suppose we have a

finite number of points x1, · · · , xk in the domain of φ and a subgradient si ∈ Rn of

φ at xi. Then

Φ(x) = min{φ(xi) + si(x− xi) | i = 1, . . . , k }

is a piece-wise linear concave function which overestimates φ, i,e., Φ(x) = φ(x) at

any point x. Furthermore note that the constraint t 5 φ(x) with φ replaced by Φ

is equivalent to the k linear inequality constraints

t 5 φ(xi) + si(x− xi) for i = 1, . . . , k.

Let r1, · · · , rp ∈ Rp be p extreme rays generating the cone K − y0 and for each

i = 1, . . . , p let yi be the intersection point of the ray {y | y = y0 + αri, α = 0 }
and ∂Y 5. The intersection point yi is found by solving the linear program

max{α | y0 + αri 5 Cx, x ∈ X, α = 0 }.

Once we have these points y1, · · · , yp and the hyperplane, say H, passing through

them, we see the following lemma. See Figure 3.6.

K

Y

Y 5

y0

y1

y2

H

Figure 3.6: Problem (MP (K))
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Lemma 3.24 Let H+ be the half space defined by H that does not contain y0. Then

Y ∩ ∂Y 5 ∩K j Y ∩ Y 5 ∩K ∩H+ = Y ∩K ∩H+.

Therefore as a relaxation problem of (MP (K)) we obtain

(MP (K))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(x,y,t)

t

s.t. t 5 φ(xi) + si(x− xi) for i = 1, . . . , k

x ∈ X

y = Cx

y ∈ K ∩H+.

Let V be the p× p matrix consisting of columns y1− y0, · · · , yp− y0, then the last

two constraints are equivalent to

Cx = V µ + y0, eµ = 1, µ ∈ Rp
+.

Clearly the optimal value of (MP (K)) provides an upper bound of the optimal value

of (MP (K)).

3.5.3 Convergence of the algorithm

Once the relaxation problem is so constructed, it will be a routine to make a branch-

and-bound algorithm and we omit the description. To guarantee the convergence

(a) the piece-wise linear approximation Φ of φ should become better, and

(b) the conical partition should become finer

as the process proceeds. Every time an optimal solution (x(K), y(K), t(K)) of

Problem (MP (K)) is obtained, the set of points x1, · · · , xk is incremented by x(K),

which improves the approximation accuracy of Φ. Concerning the conical partition,

the desired property is referred to as exhaustiveness and defined as

Definition 3.25 The partition procedure is said to be exhaustive when
⋂

k Kk is a

ray for any nested sequence {Kk}k=1,... of cones generated by the procedure.

See Horst-Tuy [27] for a full detail of exhaustiveness.
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Theorem 3.26 Assume that the conical partition procedure is exhaustive. Then

every cluster point (x∗, y∗, t∗) of the sequence of points (xν , yν , tν) generated by the

branch-and-bound algorithm is a solution of Master Problem (MP ). Hence x∗ is a

solution of (PW ).

Preliminary computational results are reported in Thoai [59] for linear case. He ran

the algorithm on randomly generated test problems with p = 2 to 4, m = 10 to

50 and n = 35 to 250, and reported the average number of iterations, the maximal

number of cones stored at an iteration and the average CPU time.

3.6 Bisection Algorithm

This section is devoted to the explanation of the algorithm proposed by Phong-

Tuyen [41] for Problem (PE) with linear objective function φ(x) = dx. The main

idea is the bisection method for locating φ(PE). Namely, they start with an interval

[`0, u0] which is known to contain φ(PE), solve for α = (`k + uk)/2

(Pα)
∣∣∣ Find x ∈ XE such that dx = α

and then reduce the interval [`k, uk] to either [α, uk] when (Pα) has a solution or

[`k, α] when (Pα) has no solution. Thus after a finitely many iterations they obtain

an ε-approximate solution.

For λ ∈ Λ let σ(λ) denote the optimal value of Problem (SC(λ)), i.e.,

σ(λ) = max{λCx | x ∈ X }, (3.17)

and

τα(λ) = max{λCx | x ∈ X, dx = α }. (3.18)

Since X is the convex hull of its vertex set XV and an efficient vertex solves Problem

(SC(λ)) for λ ∈ Λ, we see

Lemma 3.27

(i) σ(λ) = max{λCv | v ∈ XE ∩XV } for λ ∈ Λ.

(ii) σ(·) is a piece-wise linear convex function on Λ.
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Proof: From (i) σ is the maximum of finitely many linear functions λCv each of

which corresponds to a vertex v of XE ∩XV . Thus it is piecewise linear convex. 2

In the same way we obtain

Lemma 3.28

(i) τα(λ) = max{λCv | v is an efficient vertex of X ∩ {x | dx = α } }.

(ii) τα(λ) 5 σ(λ) for any λ ∈ Rp.

(iii) τα(·) is a piece-wise linear convex function on Λ.

(iv) τα(λ) is a nonincreasing function in α ∈ R.

Let us denote the epigraph of σ by epi σ, i.e.,

epi σ = { (λ, µ) | (λ, µ) ∈ Λ× R, σ(λ) 5 µ }. (3.19)

Λ

epi σ

στα
σW

(λ̄, µ̄)

µ− λCv̄ = 0

Figure 3.7: Functions σ and τα

For the existence of a solution of (Pα) we have the following theorem.

Theorem 3.29

(i) XE ∩ {x | dx = α } 6= ∅ if and only if σ(λ) = τα(λ) for some λ ∈ Λ.
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(ii) σ(λ) = τα(λ) for some λ ∈ Λ if and only if there is a vertex (λ̄, µ̄) of epi σ

such that µ̄ = τα(λ̄).

Proof: We show only the first assertion because the second assertion is clear from

the piece-wise linearity of σ and the fact that τα 5 σ. Suppose x ∈ XE ∩ {x |
dx = α }, then σ(λ) = λCx for some λ ∈ Λ. Since dx = α, λCx 5 τα(λ) 5 σ(λ).

Therefore σ(λ) = τα(λ). Suppose σ(λ) = τα(λ) at λ ∈ Λ and let x be a point

that attains max{λCx | x ∈ X, dx = α } = τα(λ). Then, since σ(λ) = τα(λ), x

maximizes λCx over X, meaning x ∈ XE. 2

Now let W be a nonempty subset of XE ∩XV and let

σW (λ) = max{λCv | v ∈ W }. (3.20)

Then for any λ ∈ Λ

σW (λ) 5 σ(λ) (3.21)

and we have the following corollary from Theorem 3.29 and the piece-wise linearity

of σW (λ).

Corollary 3.30

(i) τα(λ) < σW (λ) for any λ ∈ Λ, then XE ∩ {x | dx = α } = ∅.

(ii) τα(λ) = σW (λ) for some λ ∈ Λ if and only if there is a vertex (λ̄, µ̄) of epiσW

such that µ̄ 5 τα(λ̄).

This corollary means that we can check whether τα(λ) = σW (λ) at some λ ∈ Λ by

evaluating τα(λ̄) at vertices (λ̄, µ̄) of epi σW . If τα(λ̄) < µ̄ for every vertex (λ̄, µ̄),

we conclude that τα < σ, and hence XE∩{x | dx = α } = ∅ by (i) of Theorem 3.29.

Otherwise, i.e., we have found a vertex (λ̄, µ̄) with τα(λ̄) = µ̄. Two possible cases

occur. If σ(λ̄) 5 µ̄, implying σ(λ̄) = µ̄ = τα(λ̄), we see that XE∩{x | dx = α } 6= ∅
by Theorem 3.29. If σ(λ̄) > µ̄, a vertex v̄ of X that attains max{ λ̄Cx | x ∈ X } is

not in W . Then W is incremented by this vertex v̄ to make a better underestimation

σW∪{v̄} of σ.

Lemma 3.31 The above procedure terminates after a finite number of incrementa-

tion of W and shows whether XE ∩ {x | dx = α } is empty or not.
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Proof: Clear from the finiteness of the vertices of X. 2

The main technique used in the procedure is generating the vertex set of epi σW∪{v̄}

from that of epi σW . Note first that epi σW is represented by finitely many linear

inequalities each of which corresponds to a vertex of W :

epi σW = { (λ, µ) | (λ, µ) ∈ Λ× R, µ− λCv = 0 for v ∈ W }.

Suppose that we have known the vertex set of epi σW , the second case above occurs

and we find a vertex v̄ of X by maximizing λ̄Cx over X. This vertex will add an

inequality µ−λCv̄ = 0, which cuts off the vertex (λ̄, µ̄) of epi σW . To generate the

vertex set of epi σW∪{v̄} we have only to generate the vertex set of (epiσW )∩{ (λ, µ) |
µ−λCv̄ = 0 }. There have been proposed a lot of algorithms for this purpose, e.g.,

Horst-Vries-Thoai [25], Chen-Hansen-Jaumard [14], and Thieu-Tam-Ban [57]. See

also Section4.2, Chapter II of Horst-Tuy [27].

For a given tolerance ε > 0 after finitely many bisections we obtain an interval

[`k, uk] such that (Puk
) has no solution while (P`k

) has a solution together with

λ̄ ∈ Λ at which σ coincides with τ`k
. Then solve max{ λ̄Cx | x ∈ X, dx = `k } to

obtain x∗. This is an ε-approximate solution of Problem (PE), i.e., x∗ ∈ XE and

dx∗ = dx− ε for any x ∈ XE.

It is reported in Phong-Tuyen [41] that an illustrative example of p = 2, n =

3,m = 4 required 11 iterations for ε = 0.1.

3.7 Face Search Algorithm

In this section we introduce the algorithm for Problem (PE) proposed by Sayin [46],

which is based on the enumeration method of efficient faces in Sayin [45].

For a point x ∈ X let I(x) be the index set of zero components of x, i.e.,

I(x) = { i ∈ {1, . . . , n} | xi = 0 }. For I j {1, . . . , n} let

F (I) = {x ∈ X | xi = 0 for i ∈ I },

which is a, possibly vacant, face of X. Then the efficient set XE is decomposed as

XE =
⋃

Ij{1,...,n}
(XE ∩ F (I)).
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Therefore Problem (PE) reduces to the family of following problems

(PE(I))

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ XE ∩ F (I),

each of which is corresponding to I j {1, . . . , n}. For a mutually disjoint decompo-

sition of XE see Corollary 3.3 in Benson [10]. Since XE ∩F (I) j X ∩F (I) = F (I),

(PE(I))

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ F (I),

is a relaxation problem of (PE(I)). Note that this is a linear program when φ is a

linear function.

Suppose we have at hand an incumbent, i.e., a point x∗ ∈ XE, and the list of

problems (PE(I)) to solve. At the beginning the list consists of the single problem

(PE(∅)), which is identical to (PE) since F (∅) = X. Choosing a problem (PE(I))

on the list and solving its relaxation (PE(I)), we have the following cases.

1. (PE(I)) is infeasible: Problem (PE(I)) is fathomed and deleted from the list.

2. (PE(I)) has an optimal solution x.

(a) φ(x) < φ(x∗): Problem (PE(I)) is fathomed and deleted from the list.

(b) φ(x) > φ(x∗):

i. x ∈ XE: The incumbent is updated as x∗ = x, and Problem (PE(I))

is fathomed and deleted from the list.

ii. x 6∈ XE: Problem (PE(I)) is fathomed and deleted from the list, and

for each index k ∈ {1, . . . , n} \ I Problem (PE(I ∪ {k})) is added to

the list.

The last case where x 6∈ XE may need an explanation. We see from Theorem 3.5

that no point in the relative interior of F (I) is efficient in this case. Since any point

in the relative boundary of F (I) belongs to F (I ∪ {k}) for some k ∈ {1, . . . , n} \ I,

Problem (PE(I)) is fathomed and can be deleted from the list.

In the case of x 6∈ XE, if xk = 0, it remains optimal to Problem (PE(I ∪ {k})),
which therefore needs not be solved. Even if this is not the case, Problem (PE(I ∪
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{k})) differs slightly from (PE(I)).

The key issue of implementation would be the list-management as it is always

the case in the branch-and-bound method. Especially, a subset I = {i1, . . . , i`}
of {1, . . . , n} would be generated from each of {i2, . . . , i`}, {i1, i3, . . . , i`}, · · · , and

{i1, . . . , i`−1}. The redundancy can be avoided by a simple technique. Even incor-

porating the technique, the list grows very rapidly and becomes too large to keep in

the memory. Due to the rapid growth of problem list, the computational experiment

reported in Sayin [46] is restricted in problem size.

3.8 Lagrangian Relaxation Based Approach

White [64] considered Problem (PE) with linear function φ(x) = dx and presented

several equivalent formulations. Dauer-Fosnaugh [16] considered the problem with

quasi-convex function φ and showed a way of converting it to a bicriteria problem,

which could be viewed as a Lagrangian relaxation of Problem (PE). An-Tao-Muu [3]

showed that there is no duality gap for a sufficiently large Lagrangian multiplier.

We will explain the common idea in terms of the Lagrangian relaxation method.

The central role will be played by the gap function of (3.4), i.e.,

g(x) = max{ eCx′ | x′ ∈ X, Cx′ = Cx } − eCx.

We call a point x′ that attains the maximum above a projected point of x. It is

easily seen from the theory of parametric linear program that g is a piece-wise linear

concave function on X. As stated in Theorem 3.5 g(x) = 0 for x ∈ X, and x ∈ XE

if and only if g(x) = 0 for x ∈ X. See Theorem 4.1 of Benson [10]. Thus Problem

(PE) is reformulated as follows:

(PE)

∣∣∣∣∣∣∣∣∣

max
x

φ(x)

s.t. x ∈ X

g(x) 5 0.

Note that the last constraint g(x) 5 0 is a reverse convex constraint, which has been

attracting attention. See e.g., Horst-Tuy [27] and Tuy [62]. To solve Problem (PE)

we combine the objective function φ(x) with the constraint g(x) 5 0 multiplied by

a Lagrangian multiplier π = 0 to have the Lagrangian relaxation problem
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(Q(π))

∣∣∣∣∣∣
z(π) = max

x
φ(x)− πg(x)

s.t. x ∈ X.

In the sequel x(π) denotes an optimal solution of (Q(π)) and x′(π) denotes its

projected point. Note that (Q(π)) is a quasi-convex maximization and that the

optimality is always attained at a vertex of X. For we assume that X is a polytope,

we reformulate Problem (Q(π)) in terms of the vertices of X and obtain

z(π) = max{φ(v)− πg(v) | v ∈ XV }. (3.22)

Note that for each vertex v ∈ XV the function φ(v)−πg(v) is a linear function with

nonpositive slope in variable π. These linear functions as well as z(π) are shown in

Figure 3.8, in which z(π) is depicted by a bold piece-wise linear line. Notice that

horizontal lines, meaning g(v) = 0, correspond to vertices in XE.

π

z(π)

φ(v)− πg(v)

φ(PE)

Figure 3.8: Functions z(π) and φ(v)− πg(v)

Though the following lemmas are straightforward from this observation, brief

proofs will be given.

Lemma 3.32 If g(x(π)) = 0 for some π = 0, then x(π) is an optimal solution of

(PE).

Proof: For any x in XE, we readily see φ(x(π)) = φ(x(π)) − πg(x(π)) = φ(x) −
πg(x) = φ(x). 2

Concerning z(π) we have the following property.
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Lemma 3.33 Let 0 5 π 5 π′ and let x′(π) be a projected point of x(π). Then

φ(x′(π)) 5 φ(PE) 5 z(π′) 5 z(π).

Proof: Since the projected point lies in XE, the first inequality is trivial. By the

definition of z(π′), it holds that φ(x) − π′g(x) 5 z(π′) for any x ∈ X and also for

any x ∈ XE. Then we see φ(x) 5 z(π′) for any x ∈ XE, which implies the second

inequality. The last inequality is derived from

z(π′) = φ(x(π′))− π′g(x(π′))

5 φ(x(π′))− πg(x(π′))

5 φ(x(π))− πg(x(π)) = z(π).

2

This lemma means that z(π) gives an upper bound of φ(PE) and also x′(π),

the projected point of x(π), gives a lower bound. Above two lemmas suggest that

solution x(π) of (Q(π)) for a sufficiently large π > 0 solves Problem (PE). In fact,

because of the finiteness of XV we readily see the following theorem. See Figure 3.8.

Theorem 3.34 There is a π∗ > 0 such that for any π > π∗ x(π) is an optimal

solution of (PE).

An-Tao-Muu showed the same result for a convex function φ in Lemma 4 of [3].

Dauer-Fosnaugh [16] showed that z(π) converges to φ(PE) as π goes to infinity for

a more general setting.

Muu [35] reduces the variables of the gap function by using Lemma 3.4. Let

r be the rank of C and without loss of generality we assume that the first r rows

c1, · · · , cr are linearly independent. Let L be the range space of matrix C> and L⊥

be its orthogonal complement in Rn and suppose we have a basis br+1, · · · , bn of

L⊥. Then any x ∈ Rn is uniquely represented as x = C
>
α + Bβ for α ∈ Rr and

β ∈ Rn−r, where C is the matrix of rows c1, · · · , cr and B is the matrix of columns

br+1, · · · , bn. Then Problem (Q(π)) is rewritten as

∣∣∣∣∣∣∣

z(π) = max
(α,β)

φ(C
>
α + Bβ)− πg(C

>
α + Bβ)

s.t. C
>
α + Bβ ∈ X.
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We see, however, by Lemma 3.4 that

g(C
>
α + Bβ) = g(C

>
α), (3.23)

then Problem (Q(π)) is

∣∣∣∣∣∣∣∣∣

z(π) = max
(α,β)

φ(C
>
α + Bβ)− πg(C

>
α)

s.t. AC
>
α + ABβ = b

C
>
α + Bβ = 0.

The rank r of C is no more than p, which is usually much smaller than n. When

φ is a linear function, the above problem contains a small number of nonconvex

variables.

Dauer-Fosnaugh [16] also showed that when φ is a linear function dx and d is

a linear combination of rows ci’s of C, i.e., d = γC for some γ ∈ Rp, the π∗ in

Theorem 3.34 is given by ‖γ‖∞. Notice that this value is 1 if d = ±ci for some

i = 1, . . . , p. Muu [35] generalized this result to the nonlinear case where φ(x) is

given by ϕ(Cx) for some function ϕ.

The transformation of Problem (PE) by White [64] is based on Theorem 3.5.

Note that Problem (PE) is equivalent to

max



 φ(x)

∣∣∣∣∣∣
x ∈ X, λ ∈ Λ, µ ∈ Rm,

µA− λC = 0, λCx− µb = 0



 .

By multiplying the bilinear constraint λCx− µb = 0 by π we have its Lagrangian

relaxation

max



 φ(x) + π(λCx− µb)

∣∣∣∣∣∣
x ∈ X, λ ∈ Λ, µ ∈ Rm,

µA− λC = 0



 ,

which is to maximize a bilinear objective function under linear inequality constraints.

Several properties of this relaxation are discussed in White [64].

3.9 Dual Approach

Nonconvex duality is one of the most promising subject in the global optimization.

We will not go into details of the duality theory in this paper. The readers who are
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interested in it should refer Atteia-El-Qortobi [6] and Thach [53–55]. In this section

we will briefly explain the dual approach of Thach-Konno-Yokota [56].

3.9.1 Dual problem of (PE)

Let

C5 = {y ∈ Rn | Cy 5 0, ciy < 0 for some i = 1, . . . , p }.

Then the efficient set XE is written as the difference of two convex sets. See Fig-

ure 3.9.

X + C5

XE

c2

c1

d

C5

Figure 3.9: Set XE equals X \ (X + C5)

Lemma 3.35 XE = X \ (X + C5).

Proof: We see that

XE = {x ∈ X | @x′ : Cx′ = Cx, cix′ > cix for some i }
= X \ {x | ∃x′ : C(x− x′) 5 0, ci(x− x′) < 0 for some i }
= X \ {x + y | x ∈ X, Cy 5 0, ciy < 0 for some i }
= X \ (X + C5).

2
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Then Problem (PE) is written as

(PE)

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ X \ (X + C5).

Since X is now assumed to be a polytope, we show that the set X + C5 can be

replaced by the interior of a closed convex set. Let E be the p × p matrix all of

whose elements are unity, and for a positive parameter s define a p × p matrix Cs,

sets C
5
s and Xs by

Cs = (I + sE)C

C5
s = {y | Csy 5 0 }

Xs = X \ int (X + C5
s ),

where I is the p × p identity matrix. Note that Xs is also the difference of two

convex sets.

Lemma 3.36

Xs =



 x ∈ X

∣∣∣∣∣∣
∃λ ∈ Rp+ \ {0} :

λCsx = λCsx
′ for all x′ ∈ X



 .

Proof: Let x be a point in Xs. By the separation theorem, there is a v 6= 0

satisfying vx = vz for all z ∈ X + C
5
s . Hence vx = v(x + y) holds for all y such

that Csy 5 0. Applying Farkas’ alternative theorem, we have v = λCs for some

λ ∈ Rp+ \ {0}, and hence λCsx = λCsz holds for all z ∈ X + C
5
s . Noting that

0 ∈ C
5
s we see that λCsx = λCsx

′ for all x′ ∈ X, and hence x is contained in the

set on the right side.

Suppose x maximizes λCsx over X for some λ ∈ Rp+ \{0}. Then clearly it also

maximizes λCsx over X + C
5
s and does not lie in the interior of X + C

5
s . 2

By this lemma we see that Xs coincides with XE when s is sufficiently small.

Lemma 3.37 There is an ŝ > 0 such that Xs = XE if 0 < s < ŝ.

Proof: To show that Xs j XE, choose arbitrarily x ∈ Xs. Then by the above

lemma, there is a λ ∈ Rp+ \ {0} such that x maximizes λCsx over X. Here we
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assume that λ1 = 1 without loss of generality. Substituting the definition for Cs,

we see λCs = (λ + se)C. This and the equality

XE = {x ∈ X | ∃λ ∈ Rp++ : λCx = λCx′ for all x′ ∈ X }

of Theorem 3.5 imply that x ∈ XE.

By Theorem 3.5 XE is the union of finitely many faces F 1, · · · , FL of X such

that F ` is the optimal set of maximizing λ`Cx over X for some λ` ∈ Rp++ such that

λ`1 = 1. Let ŝ = min{λ`
i/(1− pλ`

i) | λ`
i < 1/p } and choose s such that 0 < s < ŝ.

Then s/(1 + sp) < λ`
i for all ` = 1, . . . , L and i = 1, . . . , p. Let θ`

i = λ`
i − s

1+sp
for

` = 1, . . . , L, i = 1, . . . , p. Then we readily see that θ`
i > 0 and

λ`C = θ`Cs.

This means that F ` j Xs by Lemma 3.36, and hence XE j Xs. 2

We assume hereafter that 0 < s < ŝ. Then Problem (PE) is equivalently rewrit-

ten as

(PE)

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ Xs = X \ int (X + C
5
s ).

For v ∈ Rn let

ξ(v) = sup{φ(x) | x ∈ X, vx = 1 },

where ξ(v) = −∞ when {x ∈ X | vx = 1 } = ∅.

Definition 3.38 For Z j Rn the set {v ∈ Rn | vx 5 1 for all x ∈ Z } is called

the polar set of Z and denoted by Z◦.

See e.g., Section 2.14 of Stoer-Witzgall [51], and Section E of Chapter 11 in Rockafellar-

Wets [43] for the properties of polar set. We here assume that 0 ∈ int X, int C
5
s 6= ∅

and φ is a concave function. Then by the nonconvex duality theory of Thach [53] we

obtain the following duality theorem between Problem (PE) and its dual problem

(Ds)

∣∣∣∣∣∣
max
v

ξ(v)

s.t. v ∈ (X + C
5
s )◦.
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Theorem 3.39 Let ξ(Ds) denote the optimal value of (Ds), then

φ(PE) = ξ(Ds).

Proof: See Thach [53] and Chapter 4 of Konno-Thach-Tuy [33]. 2

Since 0 ∈ int X, (X + C
5
s )◦ j (C

5
s )◦, which is identical to {γCs | γ ∈ Rp+ }.

Therefore v ∈ (X+C
5
s )◦ if and only if v = γCs for some γ ∈ Rp+ and sup{v(x+y) |

x ∈ X, y ∈ C
5
s } 5 1. The latter condition can be replaced by sup{vx | x ∈ X } 5

1 from the definition of C
5
s and v = γCs. Letting

Γ = {γ ∈ Rp+ | sup
x∈X

γCsx 5 1 },

we have

(X + C5
s )◦ = {γCs | γ ∈ Γ }.

Now let

Ξ(γ) = sup{φ(x) | x ∈ X, γCsx = 1 }.

The above argument yields an equivalent form of (Ds) in variable γ ∈ Rp.

Theorem 3.40 Problem (Ds) is equivalent to

∣∣∣∣∣∣
max
γ

Ξ(γ)

s.t. γ ∈ Γ.

We will see that this problem is a quasi-convex maximization over a convex polyhe-

dral set.

Lemma 3.41

(i) Γ is a convex polyhedral subset of Rp.

(ii) Ξ is a quasi-convex function.

Proof: The first assertion can be seen from the finitely constrained representation

Γ = {γ ∈ Rp+ | γCsx 5 1 for x ∈ XV }.
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To show the second assertion let γ1, γ2 be two point of the level set {γ | Ξ(γ) 5 α },
meaning sup{φ(x) | x ∈ X, γkCsx = 1 } 5 α for k = 1, 2, and suppose sup{φ(x) |
x ∈ X, (βγ1 + (1− β)γ2)Csx = 1 } > α for some β ∈ (0, 1). Then there is x̃ ∈ X

such that (βγ1 + (1 − β)γ2)Csx̃ = 1 and φ(x̃) > α. For x̃ either γ1Csx̃ = 1 or

γ2Csx̃ = 1 holds. Hence we obtain either sup{φ(x) | x ∈ X, γ1Csx = 1 } =
φ(x̃) > α or sup{φ(x) | x ∈ X, γ2Csx = 1 } = φ(x̃) > α, which is a contradiction.

2

3.9.2 Algorithm and its convergence

They exploited the outer approximation method to solve the dual problem in The-

orem 3.40 and proposed the following algorithm.

/** outer approximation method for solving the dual problem **/

〈0〉 (Initialization) Construct a polyhedral set Γ0 such that Γ j Γ0 and the vertex

set of Γ0 is easily enumerated. Set k := 0 and go to 〈k〉.

〈k〉 (Iteration k)

〈k1〉 Solve the relaxation problem

∣∣∣∣∣∣
max
γ

Ξ(γ)

s.t. γ ∈ Γk,

to obtain a solution γk.

〈k2〉 Solve the linear program

∣∣∣∣∣∣
max
x

γkCsx

s.t. x ∈ X,

to obtain a vertex solution xk and the optimal value σk = γkCsx
k.

〈k3〉 If σk 5 1, meaning that γk is in Γ and hence solves max{Ξ(γ) | γ ∈ Γ },
then solve max{φ(x) | x ∈ X, γkCsx = 1 } and obtain a solution x∗.

Stop with x∗ as an optimal solution of (PE).
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〈k4〉 If σk > 1, meaning γk 6∈ Γ, reduce Γk to Γk+1 = Γk ∩ {γ | γCsx
k 5 1 }.

Set k := k + 1 and go to 〈k〉.

See Figure 3.10.

X + C5 γCsx = 1

c2

c1

d

(X + C
5
s )◦

Figure 3.10: Set X + C
5
s and its polar

Theorem 3.42 The algorithm terminates after a finite number of iterations and

provides an optimal solution of (PE).

Proof: The theorem is readily seen from the fact that Γ is a polyhedral set defined

by a finite number of constraints each of which corresponds to a vertex of X and

that {xk}k=0,1,... generated by the algorithm is a sequence of distinct vertices of X.

2

The most costly step of the algorithm is Step 〈k1〉 of maximizing Ξ(γ) over

Γk. Thach-Konno-Yokota [56] proposed to enumerate the vertex set of Γk+1 from

that of Γk in this step. Numerical results are reported in [56] with two different

objective functions: absolute deviation φ(x) = −∑n
i=1 wi|xi−x̄i| and linear function

φ(x) = −∑n
i=1 wixi. They used the enumeration method by Thieu-Tam-Ban [57] in

Step 〈k1〉. They fixed m = 20 and varied p = 2 to 5, n = 20 to 100, and concluded

that the number of vertices generated through the computation does not grow very
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rapidly as long as p is kept small, and also most of the computation time was spent

in solving linear programs.

Based on the same duality concept Yamada-Tanino-Inuiguchi [65] proposed an

algorithm to the problem (PW ) with the concave objective function φ and the closed

convex feasible region X satisfying Slater’s constraint qualification.

3.10 D.C. Algorithm for (PE)

D.C. algorithm (DCA for short) is a primal-dual approach for finding a locally

optimal solution of D.C. problem. Recently a general scheme of DCA, first presented

by Tao-Souad [52], has been considerably improved by An [2] for solving a broad

class of D.C. problem. In this section we briefly review DCA for finding a locally

optimal solution of (PE). For the details the reader should refer to An-Tao-Muu [3].

We describe the simplified form of DCA in the next subsection, and then explain

the application to (PE).

3.10.1 Simplified form of D.C. algorithm

A convex function f : S → [−∞, +∞] on a set S j Rn is said to be proper if

dom f 6= ∅ and f(x) > −∞ for all x ∈ S. Also f is said to be lower semi-continuous

(l.s.c for short) if lim infy→xf(y) = f(x) for all x ∈ S, which equivalent that epi f

is closed. For a proper function f : Rn → [−∞, +∞], the conjugate function of f ,

denoted by f ∗, is given by

f ∗(y) = sup{ 〈x, y〉 − f(x) | x ∈ Rn }. (3.24)

Since f ∗ is a point-wise supremum of infinitely many linear functions, f ∗ is clearly

l.s.c and convex. It is also known that f ∗∗ 5 f , and

f ∗∗ = f if and only if f is l.s.c and convex.

See e.g., Tuy [61] for fundamental results on conjugate function. A proper l.s.c

convex function f is said to be locally polyhedral convex if it satisfies that for every

(x, µ) ∈ epi f there is a polyhedral convex neighbourhood of (x, µ) relative to epi f .
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The ε-subdifferential of f at x̄, denoted by ∂ε f(x̄), is defined as

∂ε f(x̄) = { t ∈ Rn | f(x) = 〈t, x− x̄〉+ f(x̄)− ε for all x ∈ X }. (3.25)

When ε = 0, we simply write ∂ f(x̄), which is the same definition of the subdiffer-

ential of (2.14).

DCA provides a locally optimal solution of the following D.C. problem

(Pdc)

∣∣∣∣∣∣
inf p(x)− q(x)

s.t. x ∈ Rn,

where p and q are l.s.c proper convex functions on Rn. The dual problem of (Pdc),

first studied by Toland [60], is formulated as

(Ddc)

∣∣∣∣∣∣
inf q∗(y)− p∗(y)

s.t. y ∈ Rn.

A point x∗ is said to be the critical point of p−q if it satisfies ∂ p(x∗)∩∂ q(x∗) 6= ∅.
The following theorem, whose proof can be seen in An [2], implies the global

optimality condition for (Pdc).

Theorem 3.43 The point x∗ is an optimal solution of (Pdc) if and only if ∂εp(x∗) j
∂εq(x

∗) for all ε > 0.

Since this condition is difficult to use for deriving solution methods, DCA scheme is

based on the local optimality condition implied by the following theorem.

Theorem 3.44 If q is locally polyhedral convex and x∗ ∈ dom q then ∂ q(x∗) j
∂ p(x∗) is a necessary and sufficient condition for x∗ to be a locally optimal solution.

Proof: See An-Tao-Muu [3]. 2

DCA generates infinitely sequences {xk}k=0,1,... and {yk}k=0,1,... satisfying the

following conditions:

(i) yk+1 ∈ ∂ q(xk) and xk+1 ∈ ∂ p∗(yk) for each k = 0, 2, . . ..

(ii) (p− q)(xk) and (q∗ − p∗)(yk) are decreasing.
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(iii) Every limit point x∗ of {xk}k=0,1,... and y∗ of {yk}k=0,1,... is a critical point of

p− q and q∗ − p∗, respectively.

The above points x∗ and y∗ are usually locally optimal solutions of (Pdc) and (Ddc),

respectively, and satisfy (p− q)(x∗) = (q∗ − p∗)(y∗). If we have

∂ q(xk) = argsup{ 〈xk, y〉 − q∗(y) | y ∈ Rn } (3.26)

= arginf{ q∗(y)− (p∗(yk−1) + 〈xk, y − yk−1〉) | y ∈ Rn },

and

∂ p∗(yk) = argsup{ 〈x, yk〉 − p(x) | x ∈ Rn } (3.27)

= arginf{ p(x)− (q(xk−1) + 〈x− xk−1, yk〉) | x ∈ Rn },

then we can obtain yk+1 ∈ ∂q(xk) and xk+1 ∈ p∗(yk) by solving the above convex

problems. Here we describe the simplified form of DCA.

/*** Simplified form of DCA ***/

〈0〉 (initialization) Choose x0 ∈ dom q and calculate y0 ∈ ∂ q(x0). Set k := 0.

〈k〉 (iteration k)

〈k1〉 If ∂ q(xk) ∩ ∂ p(xk) 6= ∅ then stop.

〈k2〉 Obtain

yk+1 ∈ ∂ q(xk) = argsup{ 〈xk, y〉 − q∗(y) | y ∈ Rn } and

xk+1 ∈ ∂ p∗(yk) = argsup{ 〈x, yk〉 − p(x) | x ∈ Rn }.
〈k3〉 Set k := k + 1 and go to 〈k〉.

Assumptions for the above conditions (3.26) and (3.27), and for the convergence

of DCA are studied in e.g., An-Tao-Muu [3].

3.10.2 Application of DCA to (PE)

As stated in Section 3.8, (PE) is equivalent to

(Q(π))

∣∣∣∣∣∣
max
x

φ(x)− πg(x)

s.t. x ∈ X,
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for a sufficiently large π > 0. By the duality theorem of linear programming the

function

g(x) = max{ eCx′ | Cx′ = Cx, Ax′ = b, x′ = 0 } − eCx,

is equal to

g(x) = min{−λCx + µb | −λC + µA = eC, λ = 0 } − eCx.

Letting (λ(x), µ(x)) be an optimal solution of

min{−λCx + µb | −λC + µA = eC, λ = 0 }, (3.28)

we have −eC − λ(x)C ∈ ∂ g(x).

For a set S j Rn, the indicator function of S, denoted by δS : Rn → {0, +∞},
is given by

δS(x) =





0 if x ∈ S

+∞ otherwise.
(3.29)

Using the indicator function of X, we can rewrite (Q(π)) as

(Q(π))

∣∣∣∣∣∣
max
x

φ(x)− πg(x)− δX(x)

s.t. x ∈ Rn.

For the following three cases, we explain how to apply DCA.

Case where φ is concave

Letting p(x) = −φ(x) + δX(x) and qπ(x) = −πg(x) implies that p and qπ are l.s.c

convex functions, and hence we can convert (Q(π)) to the problem

∣∣∣∣∣∣
min
x

p(x)− qπ(x)

s.t. x ∈ Rn,

which is of the form of (Pdc). DCA in this case are described as follows.

/*** DCA in the case where φ is concave ***/

〈0〉 (initialization) Choose x0 ∈ X j dom qπ, and set y0 := π(eC + λ(x0)C) ∈
∂ qπ(x0) and k := 0.
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〈k〉 (iteration k)

〈k1〉 If ∂ qπ(xk) ∩ ∂ p(xk) 6= ∅ then stop.

〈k2〉 Obtain

yk+1 := π(eC + λ(xk)C) ∈ ∂ qπ(xk) and

xk+1 ∈ argmax{φ(x) + 〈yk, x〉 | x ∈ X }.

〈k3〉 Set k := k + 1 and go to 〈k〉.

Case where φ is convex

Letting p(x) = δX(x) and qπ(x) = φ(x) − πg(x) implies that p and qπ are l.s.c

convex functions. Suppose that we can obtain ν(x) ∈ ∂ φ(x) for any x ∈ Rn. DCA

in this case are described as follows.

/*** DCA in the case where φ is convex ***/

〈0〉 (initialization) Choose x0 ∈ X j dom qπ, and set y0 := π(eC + λ(x0)C +

ν(x0)) ∈ ∂ qπ(x0) and k := 0.

〈k〉 (iteration k)

〈k1〉 If ∂ qπ(xk) ∩ ∂ p(xk) 6= ∅ then stop.

〈k2〉 Obtain

yk+1 := π(eC + λ(xk)C + ν(xk)) ∈ ∂ qπ(xk) and

xk+1 ∈ argmax{ 〈yk, x〉 | x ∈ X }.

〈k3〉 Set k := k + 1 and go to 〈k〉.

Case where φ is quadratic

In the case where φ(x) = 1
2
〈xM, x〉 + 〈r, x〉 with a symmetric matrix M ∈ Rn×n

and a row vector r ∈ Rn, we calculate ρ > 0 such that (ρI −M) is positive definite

and define p(x) = 1
2
〈x(ρI −M), x〉+ δX(x) and qπ(x) = 1

2
ρ‖x‖2 + 〈r, x〉 − πg(x).

DCA in this case are described as follows.

/*** DCA in the case where φ is quadratic ***/
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〈0〉 (initialization) Choose x0 ∈ X j dom qπ, and set y0 := (ρx0 + r)> + π(eC +

λ(x0)C) ∈ ∂ qπ(x0) and k := 0.

〈k〉 (iteration k)

〈k1〉 If ∂ qπ(xk) ∩ ∂ p(xk) 6= ∅ then stop.

〈k2〉 Obtain

yk+1 := (ρxk + r)> + π(eC + λ(xk)C) ∈ ∂ qπ(xk) and

xk+1 ∈ argmin{ 1
2
〈x(ρI −M), x〉 − 〈yk, x〉 | x ∈ X }.

〈k3〉 Set k := k + 1 and go to 〈k〉.

3.11 Other Methods

Benson-Sayin [12] consider four special cases of linear (PE), and propose simple

linear programming procedures. Benson-Lee [11] consider (MC) with two criteria

and propose an algorithm for maximizing an upper semicontinuous function φ. In

this case the outcome set Y is of dimension at most two, and YE is of dimension at

most one, i.e., YE consists of edges and vertices.

Thoai [58] considers the case where φ(x) = ϕ(Cx) and propose an outer approx-

imation algorithm. He assumes that ϕ is a quasi-convex function and nondecreasing

in the sense that y′ = y implies ϕ(y′) = ϕ(y). It is seen that

max{ϕ(Cx) | x ∈ XE } = max{ϕ(Cx) | x ∈ X }.

His algorithm makes a sequence of polyhedral sets Y k shrinking to the lower outcome

set Y 5, solves the relaxation problem max{ϕ(y) | y ∈ Y k
E } to find a solution yk,

where Y k
E is the set of efficient points of Y k. If yk ∈ Y 5, any point x ∈ X with

Cx = yk is an optimal solution of (PE). Otherwise, it generates a cutting plane

defined by the linear equation `k(y) = 0 to cut yk off the set Y k and reduces Y k

to Y k+1 ∩ {y | y ∈ Rp, `k(y) 5 0 }. Since ϕ is quasi-convex, a vertex of Y k

attains max{ϕ(y) | y ∈ Y k
E }. Thus for solving the relaxation problem he proposes

to compute all the vertices of Y k+1 from the vertex set of Y k. The key of the

algorithm is the step of checking whether yk lies in Y 5 and generating the cutting
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plane. Note that X = {x ∈ Rn
+ | Ax = b }, then yk ∈ Y 5 if and only if the system

yk 5 Cx, Ax = b, x = 0

has a solution x. By the linear programming duality theorem this is equivalent to

max{−λyk + µb | −λC + µA 5 0, λ = 0 } = 0.

When this problem has a positive optimal value, yk 6∈ Y 5 and further `k(y) =

−λky+µkb = 0 is the desired cutting plane, where (λk, µk) is an optimal solution of

this problem. In Theorem 4.1 of Thoai [58] the procedure is shown to be finite. Thoai

also considers the nonlinear case, namely φ(x) = ϕ(c1(x), · · · , cp(x)), ci(x)’s are

concave functions, and also X is a closed convex set defined by nonlinear inequalities.

A preliminary experiment for the quadratically constrained problems with quadratic

ci’s shows that the most expensive step of the algorithm is the enumeration of

vertices, whose number grows rapidly as the number p of criteria increases.

One of the often occurred objective functions φ is φ(x) = −cix, i.e., (PE) is to

minimize the ith objective function cix of Cx. To estimate the optimal value of

this problem, the process of using the payoff table was proposed by several authors.

See e.g., Section 9.13 of Steuer [49]. Consider the linear program

max{ cjx | x ∈ X }

and let xj be its optimal solution for j = 1, . . . , p. Then the payoff table is the

matrix whose (i, j)-element is cixj. The popular way of estimating min{ cix | x ∈

Table 3.1: Payoff table

1 2 · · · p

1 c1x1 c1x2 · · · c1xp

· · ·
p cpx1 cpx2 · · · cpxp

XE } is to scan the table and determine the minimum of each column. Notice

that this column-wise minimum value gives neither an upper bound nor an lower

bound of min{ cix | x ∈ XE } because xj might not be efficient. In order to ensure
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that xj is efficient, lexicographical maximization could be employed, i.e., to find

x1 first maximize c1x over X and obtain the optimal value z1, maximize c2x over

X ∩ {x | c1x = z1 }, and maximize c3x over X ∩ {x | c1x = z1, c2x = z2 } and

so on. Then each column-wise minimum of the payoff table thus obtained gives an

upper bound of min{ cix | x ∈ XE }. In Isermann-Steuer [32], and Reeves-Reid [42]

is reported how a good approximation is obtained from the payoff table based on

the computational experience of randomly generated problems.

3.12 Nonlinear Optimization Problem over the Ef-

ficient Set

In this section, we explore the possibility of extending functions in the optimization

problem over the efficient set to nonlinear functions.

Given a closed set X of Rn and a criterion function f : X → Rp with p = 2, the

nonlinear multicriteria problem, denoted by (MCN), is

(MCN)

∣∣∣∣∣∣
Vector Max f(x)

s.t. x ∈ X.

Let XN
E denote the set of efficient points for (MCN), i.e.,

XN
E = {x ∈ X | @y ∈ X : f(y) = f(x), f(y) 6= f(x) }. (3.30)

Definition 3.45 (nonlinear optimization problem over the efficient set) The nonlinear

optimization problem over the efficient set, denoted by (PN
E ), is

(PN
E )

∣∣∣∣∣∣
max
x

φ(x)

s.t. x ∈ XN
E ,

where φ : Rn → R is a continuous function to be maximized.

The assumptions on X and f diversify fundamental properties of XN
E . We

observe the variation of XN
E by showing some examples.
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Example 3.46 Let X be a nonempty polytope and

f(x) =




f1(x)

f2(x)

f3(x)


 ,

where f1, f2 and f3 are all concave functions. We show an example in Figure 3.11,

in which the contour lines of these functions are depicted by dashed curved lines.

As seen in the figure, there may be no vertex of X that attains the optimal value of

(PN
E ).

X

f2

f1

XN
E

f3

high

low

Figure 3.11: Set XN
E when f1, f2 and f3 are all concave
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Example 3.47 We redefine f2 of the above example as a quasi-concave function.

As seen in Figure 3.12, XN
E is no longer connected in this case.

X

f2

f1

XN
E

f3

{x | f2(x) is constant }

Figure 3.12: Set XN
E when f2 is quasi-concave
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Example 3.48 We show an example with convex functions f1, f2 and f3 in Fig-

ure 3.13. As seen in the figure, XN
E is not connected.

X

XN
E

f2

f1

low

high

Figure 3.13: Set of XN
E when f1, f2 and f3 are all convex
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Example 3.49 We next observe an example of XN
E when X is not convex. Let

X = {x ∈ R2 | 0 5 x 5 1, x1 + x2 5 1 or x2 = x1 } and

f(x) =




c1

c2

c3


x,

where c1 =
[
1 −1

]
, c2 =

[
−1 1

]
and c3 =

[
1 1

]
. As seen in Figure 3.14, XN

E is

not closed set at (x1, x2) = (1/2, 1/2).

X

XN
E

c1

c2

c3

0

x1

x2

1/2

1/2

Figure 3.14: Set XN
E when X is not a convex set
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Example 3.50 We show an example in the case where XN
E is not closed set while

X is a polytope. Let X = {x ∈ R2 | 0 5 x 5 1 }, and

f(x) =





 cos 1

2
x2 sin 1

2
x2

− sin 1
2
x2 cos 1

2
x2





 1 −1 1

−1 1 1






>

x.

We see in Figure 3.15 that XN
E is not closed set since { (x1, 1/2) | x1 ∈ [0, 1) } is not

contained in XN
E .

XN
E

1/2

x1

x2

c3

c3

c3

x2

c1

c2

{ (x, 1/2) | x ∈ [0, 1) }

Figure 3.15: Set XN
E is not closed while X is a polytope

When a criterion function f is nonlinear, the feasible set XN
E may be uncon-

nected, neither a closed nor an open set even when X is a polytope. Thus it is

hopelessly difficult to solve nonlinear optimization problems over the efficient set.

To put it the other way around, connectedness and closedness of XE are very impor-

tant properties should be exploited. However, solving (PE) is still hard task even if

we make the most of these properties.



Chapter 4

Minimum Maximal Flow Problem

and Preceding Algorithms

Most of the algorithms for (PE) reviewed in Chapter 3 anticipate a small number

p of criteria of Problem (MC) and convert Problem (PE) to a global optimization

problem in p or so variables. However, there are interesting and important problems

that do not enjoy the low dimensionality of p. An example is a minimum maximal

flow problem, abbreviated to (mmF ). The number of criteria with respect to (mmF )

equals the number of variables, meaning p = n. In this sense, we can say that

(mmF ) is relatively difficult case of (PE). After Shi-Yamamoto [47] first studied

(mmF ) and proposed an algorithm, several algorithms for (mmF ) combining local

search and global optimization technique have been proposed in e.g., Gotoh-Thoai-

Yamamoto [24] and Shigeno-Takahashi-Yamamoto [48]. An approach based on D.C.

algorithm is found in Muu-Shi [37].

In this chapter we define (mmF ) and review the following two algorithms preced-

ing our study: outer approximation algorithm of parameter set, which is presented

by Shigeno-Takahashi-Yamamoto [48], and D.C. algorithm by Muu-Shi [37].

4.1 Minimum Maximal Flow Problem

We are given a directed network N = (V, E, c), where V is the set of m + 2 nodes

containing the single source node s and the single sink node t, E is the set of n

arcs, and c is the n-dimensional column vector whose hth element ch is the capacity

75
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of arc h ∈ E. Without loss of generality, we assume throughout this paper that

a given network is simple, i.e., there are no parallel arcs. An example is shown in

Figure 4.1, in which the number beside each arc is a capacity.

s t

v1

v2

4

43

3

v3
3

3

3

Figure 4.1: A given network N = (V, E, c)

Let ∂ + : E → V and ∂ − : E → V be incidence functions. When h = (u, v), i.e.,

arc h leaves node u and enters node v, we write ∂ +h = u and ∂ −h = v. A vector

x ∈ Rn is said to be a feasible flow if it satisfies the capacity constraints:

0 5 xh 5 ch for each arc h ∈ E,

and conservation equations:

∑

∂ +h=v

xh =
∑

∂ −h=v

xh for each node v ∈ V \ {s, t}.

Note that conservation equations can be simply written as

Ax = 0,

where the m × n matrix A =
[
avh

]
is the well-known node-arc incidence matrix,

whose (v, h) ∈ V \ {s, t} × E element avh is

avh =





+1 if arc h leaves node v, i.e., ∂ +h = v

−1 if arc h enters node v, i.e., ∂ −h = v

0 otherwise.

Further, let X denote the set of feasible flows, i.e.,

X = {x ∈ Rn | Ax = 0, 0 5 x 5 c }. (4.1)

Throughout the chapter we assume the following.
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Assumption 4.1 Every capacity takes a positive integer value, i.e., ch ∈ Z and

ch > 0 for each h ∈ E.

For a feasible flow x ∈ X, the flow value of x, denoted by fv(x), is given by

fv(x) =
∑

∂ +h=s

xh −
∑

∂ −h=s

xh.

Using the n-dimensional row vector d whose hth element dh is

dh =





+1 if arc h leaves the source node s, i.e., ∂ +h = s

−1 if arc h enters the source node s, i.e., ∂ −h = s

0 otherwise,

we can simply write fv(x) = dx. Assumption 4.1 implies that if v is a vertex of X

then each element of v is integer, so is the flow value fv(v) of v.

The well-known conventional maximum flow problem is formulated as follows.

Definition 4.2 (Maximum flow problem) The maximum flow problem is an opti-

mization problem of maximizing the flow value among feasible flows:

∣∣∣∣∣∣
max
x

fv(x) = dx

s.t. x ∈ X.

A feasible flow x ∈ X is said to be a maximal flow if there is no feasible flow

y ∈ X such that y = x and y 6= x. We use XM to denote the set of maximal flows,

i.e.,

XM = {x ∈ X | @y ∈ X : y = x, y 6= x }. (4.2)

Definition 4.3 (Minimum maximal flow problem) A minimum maximal flow prob-

lem, abbreviated to (mmF ), is an optimization problem of minimizing the flow value

among maximal flows:

(mmF )

∣∣∣∣∣∣
min
x

fv(x) = dx

s.t. x ∈ XM .
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2

v2

s t

v1

2

1

1

ch

ch

flow value

maximum flow

minimum maximal flow

0

1

2

3

1 2 3 4

Figure 4.2: Maximum flow vs. minimum maximal flow

Figure 4.2, the network in which is given by Iri [29,30], highlights the difference

between maximum flow and minimum maximal flow. The maximum flow value

monotonically grows as the arc capacity ch increases, while the minimum maximal

flow value does not.

The difficulty of the problem is due to the nonconvexity of the set of maximal

flows, implying a lot of locally optimal solutions with different objective function

values. Indeed, (mmF ) embraces the minimum maximal matching problem, which

is NP-hard (See e.g., Garey-Johnson [23]).

The concept of uncontrollable flow raised by Iri [29–31] is closely related to but

slightly different from the maximal flow (See Appendix A).

4.1.1 (mmF ) is a special case of (PE)

Consider

(MC ′)

∣∣∣∣∣∣
Vector Max Ix

s.t. x ∈ X,
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where X is given by (4.1). It is readily seen that XM of (4.2) is the efficient set for

(MC ′), and hence (mmF ) reduces to (PE) for φ(x) = −fv(x). In (mmF ), the gap

function of (3.4) is

g(x) = max{ ey | y ∈ X, y = x } − ex, (4.3)

and also the gap function with direction λ of (3.6) is

gλ(x) = max{λy | y ∈ X } − λx. (4.4)

Note that (MC ′) has the objective functions as many as the variables, i.e., p = n,

the algorithms that exploit the low dimensionality of p would not work efficiently.

4.2 Outer Approximation Algorithm of Parame-

ter Set

In this section we sum up the algorithm for (mmF ) proposed by Shigeno-Takahashi-

Yamamoto [48] briefly. The method combines the local search procedure described

in Section 3.2 with the global technique originated by Phong-Tuyen [41]. As stated

in Section 3.2, (mmF ) is equivalent to

∣∣∣∣∣∣∣∣∣

min
(x,λ)

dx

s.t. (x, λ) ∈ X × Λ

λx = λx′ for all x′ ∈ X,

where

X = {x ∈ Rn | Ax = 0, 0 5 x 5 c }, and

Λ = {λ ∈ Rn | λ = e, λ1 = M }.

Shigeno-Takahashi-Yamamoto [48] proved that n2 suffices for the above M . The

outline of the algorithm is described as follows.

/** outline of the algorithm **/

〈0〉 (initialization) Find a feasible vertex w0 ∈ XM ∩ XV . Set ` := 0 and go to

〈〈`〉〉.
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〈〈`〉〉 (local search) Apply the local search procedure starting from w` to obtain an

locally optimal vertex x̄`+1 ∈ XM∩XV with the value dx̄`+1. Set α := dx̄`+1−1,

` := ` + 1 and go to 〈k〉.

〈k〉 (global technique) If {x ∈ XM | dx 5 α } = ∅ then stop (x̄` solves (mmF )).

Otherwise find a feasible vertex w` ∈ XM ∩XV from this set, and go to 〈〈`〉〉.

Note that the optimal value of (mmF ) as well as the objective function value

at vertex of X are integers, and hence x̄` ∈ XM ∩ XV solves (mmF ) if the set

{x ∈ XM | dx 5 dx̄` − 1 } is empty. The key issues are

• how to check if {x ∈ XM | dx 5 α } = ∅, and

• how to find a feasible vertex w` ∈ XM ∩XV from {x ∈ XM | dx 5 α } when

the set is not empty.

For a vector λ ∈ Rn++ and α ∈ R we define two functions σ and τα, which play

an crucial role in the global technique, as

σ(λ) = max{λx | x ∈ X }, and (4.5)

τα(λ) = max{λx | x ∈ X, dx 5 α }. (4.6)

The following lemma is readily seen (See also Lemma 3.27 and Lemma 3.28).

Lemma 4.4 (Properties of σ and τα)

(i) σ and τα are piece-wise linear positively homogeneous convex functions on

Rn++.

(ii) For all λ ∈ Rn++ we have

σ(λ) = max{λv | v ∈ XM ∩XV }, and

τα(λ) = max{λv | v is an efficient vertex of {x ∈ X | dx 5 α }}.

(iii) τα(λ) 5 σ(λ) for any λ ∈ Rn++.

(iv) τα(λ) is a nondecreasing function in α ∈ R.
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We use epi σ to denote the epigraph of σ on Λ, which is defined in the same way

of (3.19), i.e.,

epi σ = { (λ, µ) ∈ Λ× R | µ = σ(λ) }. (4.7)

Lemma 4.4 (ii) implies that

epi σ = { (λ, µ) ∈ Λ× R | µ− λv = 0 for all v ∈ XM ∩XV }. (4.8)

Then we have the following theorem whose proof can be found in e.g., Shigeno-

Takahashi-Yamamoto [48] (See also Theorem 3.29).

Theorem 4.5 Then the following statements are equivalent.

(a) {x ∈ XM | dx 5 α } 6= ∅.

(b) There is λ ∈ Λ such that σ(λ) = τα(λ).

(c) There is a vertex (λ, µ) of epi σ such that µ = τα(λ).

By Lemma 4.4 and Theorem 4.5, if σ(λ) > τα(λ) for all λ ∈ Λ then we see that

{x ∈ XM | dx 5 α } = ∅. When we find λ̄ ∈ Λ such that σ(λ̄) = τα(λ̄), the

face {x ∈ X | λ̄x = σ(λ̄) } of X contains a point w ∈ XM ∩ XV with dw 5 α,

and hence we will obtain this point by solving max{ λ̄x | x ∈ X, dx 5 α } with

additional computation if necessary.

Furthermore, by evaluating τα(λ) for every vertex (λ, µ) of epi σ, we can either

find λ̄ ∈ Λ such that σ(λ̄) = τα(λ̄) or identify that {x ∈ XM | dx 5 α } = ∅. In

fact we do not need to enumerate every vertex (λ, µ) of epi σ by applying an outer

approximation method of epiσ. For a nonempty subset W of XM ∩XV and λ ∈ Λ

let

σW (λ) = max{λw | w ∈ W }, (4.9)

and

epi σW = { (λ, µ) ∈ Λ× R | µ− λw = 0 for all w ∈ W }. (4.10)

Note that for a sequence {Wk}K
k=0 of the subset of XM ∩ XV such that ∅ 6= W0 $

W1 $ · · · $ WK = XM ∩XV , we have σW0(λ) 5 σW1(λ) 5 · · · 5 σWK
(λ) = σ(λ) for

all λ ∈ Λ, and hence we have also that epi σW0 k epi σW1 k · · · k epi σWK
= epi σ.

Suppose that we have known the vertex set of epi σWk
. If epi σWk

$ epi τα, that
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is identified by evaluating τα(λ) for every (λ, µ) of the vertex of epi σWk
, then we

conclude that σ(λ) > τα(λ) for all λ ∈ Λ since epi σ j epi σWk
$ epi τα. Otherwise

we choose w ∈ (XM ∩ XV ) \ Wk, set Wk+1 to Wk ∪ {w}, and then compute the

vertex set of epi σWk+1
from the knowledge of the vertex set of epi σWk

. We repeat

the above computing until either we find λ̄ ∈ Λ such that σ(λ̄) = τα(λ̄) or we

identify that epi σWk
$ epi τα.

Here we describe the algorithm as follows.

/** outer approximation algorithm of parameter set for (mmF ) **/

〈0〉 (initialization) Find a feasible vertex w0 ∈ XM ∩ XV . Set W0 := {w0} and

compute the vertex set V0 of epi σW0 . Set ` := 0, k := 0 and go to 〈〈`〉〉.

〈〈`〉〉 (local search) Apply the local search procedure starting from w` to obtain an

locally optimal vertex x̄`+1 ∈ XM∩XV with the value dx̄`+1. Set α := dx̄`+1−1,

` := ` + 1 and go to 〈k〉.

〈k〉 (global technique) If τα(λ) < µ for all (λ, µ) ∈ Vk then stop (x̄` solves (mmF )).

Otherwise, choose (λk, µk) ∈ Vk such that τα(λk) = µk.

〈k2〉 If σ(λk) = τ(λk) then solve max{λkx | x ∈ X, dx 5 α } to obtain a

point w` ∈ XM ∩XV ∩ {x | dx 5 α }, and go to 〈〈`〉〉.
〈k3〉 Otherwise, solve max{λkx | x ∈ X } to obtain a solution vk+1 ∈ XM∩XV .

Set Wk+1 := Wk ∪ {vk+1} and compute the vertex set Vk+1 of epi σWk+1
.

Set k := k + 1 and go to 〈k〉.

Theorem 4.6 The outer approximation algorithm of parameter set for (mmF )

works correctly and terminates after finitely many iteration.

Proof: See Shigeno-Takahashi-Yamamoto [48] for the proof. 2

We illustrate the algorithm in Figure 4.3. For σ and τα of (a) and a feasible

solution w0, we first construct epi σW0 by adding the constraint µ−λw0 = 0 to the

set { (λ, µ) | (λ, µ) ∈ Λ × R+ } (See (b)). Since τα(λ0) = µ0 and σ(λ0) 6= µ0, we

obtain a solution w1 ∈ argmax{λkx | x ∈ X }, set W1 := W ∪ {w1} and construct
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epi σW1 (See (c)). In the similar way, we construct epi σW2 (See (d)). Since we find

(λ2, µ2) such that σ(λ2) = τα(λ2), we update α to α′ (See (e)). At last we stop

the algorithm because we see that τα(λ) < µ for every vertex (λ, µ) of epi σW3 (See

(f)).

Λ

epi σ

στα

Λ

epi σ

στα

epi σW0

µ− λw0 = 0
(λ0, µ0)

(a) σ and τα (b) epi σW0

Λ

epi σ

στα

µ− λw1 = 0

(λ1, µ1)
Λ

epi σ

στα

µ− λw2 = 0

(λ2, µ2)

(c) epi σW1 (d) epi σW2 , σ(λ2) = τα(λ2)

4.3 D.C. Algorithm for (mmF )

Combining D.C. Algorithm (DCA) stated in Section 3.10, Muu-Shi [37] proposed

the branch-and-bound based algorithm for (mmF ). In this section we briefly review

the algorithm.
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Λ

epi σ

σ
τα′

(λ3, µ3)

Λ

epi σ

σ
τα′

µ− λw3 = 0

(e) update α to α′ (f) epi σW3 , termination

Figure 4.3: Outer approximation algorithm of parameter set for (mmF )

As stated in Section 3.8 and Subsection 4.1.1, (mmF ) is equivalent to

(Q(π))

∣∣∣∣∣∣
min
x

dx− π(−g(x))

s.t. x ∈ X,

for a sufficiently large π > 0. Muu-Shi [37] showed that (mmF ) and (Q(π)) are

equivalent for any π > π∗ := max{dx | x ∈ X } − min{dx | x ∈ X }. Here we

describe the algorithm.

/*** branch-and-bound algorithm with DCA for (mmF ) ***/

〈0〉 (initialization) Let S0 be the simplex containing X. Find a feasible solution

x̄ ∈ XM and set UB := dx̄. Set LB := min{dx | x ∈ X }, R := S := {S0}
and k := 0.

〈k〉 (iteration k)

〈k1〉 (upper bound) For each simplex S ∈ S, find a locally optimal solution

xS for (mmF ) on X ∩ S with UB(S) := dxS. If UB(S) < UB then set

UB := UB(S) and x̄ := xS.

〈k2〉 (lower bound) For each simplex S ∈ S, calculate a lower bound LB(S)

for S. Set LB := min{LB(S) | S ∈ R}.
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〈k3〉 (termination) Let R := {S ∈ R | LB(S) < UB }. If either UB−LB < ε

or R = ∅ then stop (x̄ is an ε-optimal solution of (mmF )).

〈k4〉 (subdivision) Choose S∗ ∈ R and divide S∗ into subsimplices. Let S be

the partition by this division. Set R := R \ {S∗}, k := k + 1 and go to

〈k〉.

Remark 4.7 We apply DCA to the problem

(Q(S))

∣∣∣∣∣∣
min
x

dx− π(−g(x))

s.t. x ∈ X ∩ S,

to find a locally optimal solution xS

Remark 4.8 Let SV be the vertex set of a simplex S. To calculate a lower bound

LB(S) we find an affine function lS(x) such that lS(v) = π(−g(v)) for all v ∈ SV ,

and solve

(L(S))

∣∣∣∣∣∣
min
x

dx− lS(x)

s.t. x ∈ X ∩ S.





Chapter 5

New Algorithms for the Minimum

Maximal Flow Problem

In this chapter we propose two algorithms for solving (mmF ), that are based on the

CS method and the OA method stated in Chapter 2. Most of the existing algorithms,

including the algorithms stated in the previous chapter, for (mmF ) are mainly based

on the techniques for (PE). These methods anticipate a small number p of criteria

of Problem (MC) and convert the problem to a global optimization problem in

variables of the number of criteria or so. The number of criteria in (mmF ) is,

however, equal to the number of arcs, i.e., p = n. Hence these methods usually

do not work efficiently for (mmF ). On the other hand our algorithm proposed in

this chapter does not depend on the number of criteria. Then, compared with the

existing algorithms, our algorithm is advantageous for (mmF ).

We put assumptions on a given network in the next section, in which we also

mention an implementation issue about generating problems. In Section 5.2 after

extending the domain of the gap function characterizing the set of maximal flows,

we state a local search procedure using the extended gap function. In Section 5.3

we propose the CS method for (mmF ), which is studied in Yamamoto-Zenke [67,

68]. The convergence of the CS method is discussed. In Section 5.4 we propose

the OA method for (mmF ), which is studied in Yamamoto-Zenke [67, 69]. The

OA method, based on the idea of ε-optimal solution and local search technique,

terminates after finitely many iterations with the optimal value of the problem.

Some implementation issues about these algorithms are also studied. Furthermore

87
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we improve the algorithms by reducing the number of variables in Section 5.5. In

Section 5.6 we report the results of the computational experiment. We propose a

heuristics to locate an initial incumbent and report some numerical results of the

improved CS method and improved OA method. We further compare the improved

OA method with the method in Section 4.2. We observe that the improved OA

method works efficiently for many problems and surpasses both an application of

vertex enumeration method and the method in Section 4.2 in computational time,

especially as the number of variables grows. We also observed that our heuristics

using the modified local search procedure provides a pretty good initial incumbent.

5.1 Assumptions on a Given Network

For simplicity we assume throughout the chapter that a given networkN = (V, E, c)

satisfies the following three assumptions.

Assumption 5.1

(i) Each capacity is a positive integer, i.e., ch ∈ Z and ch > 0 for each h ∈ E.

(ii) There is no t-s-path.

(iii) For all arc h = (u, v), there are a s-u-path and a v-t-path.

Assumption 5.1 (i) and (ii) are not so restrictive. In Subsection 5.5.6 and Sub-

section 5.5.7, respectively, we will discuss the modification of our algorithms for the

case where Assumption 5.1 (i) and (ii) do not hold. Assumption 5.1 (iii) might

appear to confine the scope of application, however, performing the following oper-

ation to the given network, we can construct a new network N ′ = (V ′, E ′, c′) that

satisfies this assumption without a substantial change of the problem. Let (mmF )

and (mmF ′) be the minimum maximal flow problems defined for N and N ′, respec-

tively. Problems (mmF ′) and (mmF ) have the same optimal value, and an optimal

solution of (mmF ) can be easily obtained from an optimal solution of (mmF ′).

/** operation to obtain a network N ′ satisfying Assumption 5.1 (iii) **/
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〈1〉 (construction of T1) Construct the graph G1 := (V1, E1), where V1 := V \ {t}
and E1 := E \{h ∈ E | ∂ −h = t }. Obtain the directed tree T1 by applying the

depth search algorithm with root s on the graph G1.

〈2〉 (construction of T2) Let Ē := { (v, u) | (u, v) ∈ E }. Construct the graph

G2 := (V2, E2), where V2 := V \ {s} and E2 := Ē \ {h ∈ Ē | ∂ −h = s }. Obtain

the directed tree T2 by applying the depth search algorithm with root t on the

graph G2.

〈3〉 (construction of G′) Set V ′ := { v ∈ V | v is contained in both T1 and T2 } ∪
{s, t}, E ′ := {h ∈ E | ∂ +h ∈ V ′ and ∂ −h ∈ V ′ }, and c′ :=

[
ch

]
h∈E′

. (the

network N ′ = (V ′, E ′, c′) is obtained).

When we are given a directed network N = (V, E, c) in Figure 5.1 (a), we

construct trees T1 of (b) and T2 of (c), and we then obtain the network N ′ =

(V ′, E ′, c′) of (d). As readily seen from the way of the construction, N ′ satisfies

Assumption 5.1 (iii). In Figure 5.1 (e), we have five connected components, say

C1, · · · , C5, deleted by the operation. Let Cj = (Vj, Ej, c
j) for each j = 1, . . . , 5,

and let E(G′) = {h ∈ E | h links G′ and one of C1, · · · , C5 }. Then the solution

x of (mmF ) is splitted as x = (x′, x1, · · · , x5, xE(G′)), where x′ =
[
xh

]
h∈E′

, xj =
[
xh

]
h∈Ej

for j = 1, . . . , 5 and xE(G′) =
[
xh

]
h∈E(G′)

. Obviously, xE(G′) = 0 whenever

x is a feasible flow. Hence xj for each j = 1, . . . , 5 has no affect on the optimal value

of (mmF ). Therefore once we obtain an optimal solution x′ of (mmF ′), we can easily

obtain an optimal solution of (mmF ). Namely, for each j = 1, . . . , 5 we construct

the network Nj = (Vj∪{s, t}, Ej∪{(s, uj), (vj, t)}, (cj,∞,∞)) for arbitrarily chosen

nodes uj, vj ∈ Vj and solve the maximum flow problem on Nj to obtain the solution

xj (See (f)). In this way an optimal solution x = (x′, x1, · · · , x5,0) of (mmF ) is

obtained.
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s t

(a) Given network N = (V, E, c)

s t

(b) Tree T1

s t

(c) Tree T2
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s t

(d) Obtained network N ′ = (V ′, E ′, c′)

s t

C1

C2
C3

C4

C5

(e) Connected components

s tC2 = (V2, E2, c
2)

u2

v2

∞
∞

(f) Network N2 = (V2 ∪ {s, t}, E2 ∪ {(s, u2), (v2, t)}, (c2,∞,∞))

Figure 5.1: Operation for Assumption 5.1 (iii)
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Assumption 5.1 implies the following lemma.

Lemma 5.2

(i) Each element of a vertex of X is integer, so is the optimal value of (mmF ).

(ii) min{dx | x ∈ X } = 0.

(iii) There is a vector x such that Ax = 0 and 0 < x < c, and hence we have:

(a) 0 6∈ XM .

(b) The dimension of X is n−m.

Proof: (i) Assumption 5.1 (i) ensures the integrality of vertices of X as well as

the optimal value of (mmF ).

(ii) The assertion is straightforward by Assumption 5.1 (ii).

(iii) By Assumption 5.1 (iii), for each arc h = (u, v) ∈ E, there are a s-u-path Psu

and a v-t-path Pvt. For each arc h = (u, v) ∈ E, we define xuv =
[
xuv

i

]
, xsu =

[
xsu

i

]

and xvt =
[
xvt

i

]
, where

xuv
i =





ε if arc i = h

0 otherwise,

xsu
i =





ε if arc i is contained in Psu

0 otherwise, and

xvt
i =





ε if arc i is contained in Pvt

0 otherwise,

for ε = min{ cj | j = 1, . . . , n }/(2m), and we then define xh = xuv + xsu + xvt and

x =
∑

h∈E xh. It is easily seen that Ax = 0 and 0 < x < c.

(a) Since there is a vector x such that Ax = 0 and 0 < x < c, we see that there

is x ∈ X such that x = 0 and x 6= 0. This implies that 0 6∈ XM .

(b) Assumption 5.1 (iii) ensures that the given network is connected, and hence the
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incidence matrix has full rank, i.e., rank A = m. Then the dimension of the affine

space L = {x ∈ Rn | Ax = 0 } is n −m. Since X j L, we have dim X 5 n −m.

Let x be the n-dimensional vector such that Ax = 0 and 0 < x < c. There

is δ > 0 such that 0 < y < c for all y ∈ Nδ(x). Since Nδ(x) ∩ L j X and

dim (Nδ(x) ∩ L) = n−m, we have dim X = n−m. 2

5.1.1 Implementation issue about generating problems

In this subsection we discuss an implementation issue about generating problems.

Given integers m and n, we need to make a graph G = (V, E) that satisfies Assump-

tion 5.1 (ii)-(iii), with |V | = m + 2, |E| = n. For the credibility of computational

experiments we should generate a graph at random. Out of lots of ideas of gener-

ating graphs, we adopt the following method in our study.

/** procedure of generating a graph **/

〈0〉 (initialization) Input the number of nodes m and the number of arcs n. Set

V := {1, . . . , m} ∪ {s, t} and E := ∅.

〈k〉 (adding phase) Choose two nodes u, v ∈ V at random. If one of the following

cases:

(a) u = s and v = t

(b) (u, v) ∈ E

(c) the graph G = (V, E ∪ {(u, v)}) has a t-s-path

occurs, go to 〈k〉. Otherwise, set E := E ∪ {(u, v)}.

〈k1〉 (construction of T1 and T2) Set G1 := (V \ {t}, E2) and G2 := (V \
{s}, E2) be directed graphs, where E1 := {h ∈ E | ∂ −h 6= t } and

E2 := { (v, u) | h = (u, v) ∈ E, ∂ +h 6= s }. Apply the depth search

algorithm starting from s on G1 and starting form t on G2, to construct

trees T1 and T2, respectively.

〈k2〉 (checking Assumption 5.1 (iii)) If both of the trees are spanning, meaning

G holds Assumption 5.1 (iii), then go to 〈〈`〉〉, otherwise go to 〈k〉.
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〈〈`〉〉 (deleting phase) If |E| = n then stop (we obtain a graph G = (V, E)).

Otherwise, choose (u, v) ∈ E at random, and set E := E \ {(u, v)}. Run 〈k1〉
again to obtain T1 and T2. If both of the trees are spanning, meaning G holds

Assumption 5.1 (iii), then go to 〈〈`〉〉. Otherwise set E := E ∪{(u, v)} and go

to 〈〈`〉〉.

5.2 Extension of Gap Function, and Local Search

Procedure Using the Function

Since g(v) = −∞ if there is no point y ∈ X such that y = v, no information is

available about how far the point v is from the domain of g. Exploiting the totally

unimodularity of the incidence matrix, Yamamoto-Zenke [67,68] extend the domain

of the gap function g to Rn. In this section we explain the extension of the gap

function and describe a local search procedure using the extended gap function.

5.2.1 Extension of gap function

The gap function g(x) of (4.3) is given by the optimal value of the problem

(PG(x))

∣∣∣∣∣∣∣∣∣

max
y

ey − ex

s.t. Ay = 0, 0 5 y 5 c

y = x,

whose dual problem is

(DG(x))

∣∣∣∣∣∣∣∣∣

min
(π,α,β)

αc− βx− ex

s.t. πA + α− β = e

α, β = 0.

Note that (DG(x)) is always feasible, e.g., take π = β = 0 and α = e. Therefore,

(PG(x)) is infeasible if and only if (DG(x)) is unbounded. Adding the upper bound

constraints β 5 β̄ to (DG(x)) yields the following problem
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(DG(x))

∣∣∣∣∣∣∣∣∣

min
(π,α,β)

αc− βx− ex

s.t. πA + α− β = e

α = 0, 0 5 β 5 β̄,

where β̄ = 0 will be specified in the following theorem. The dual problem of (DG(x))

is

(PG(x))

∣∣∣∣∣∣∣∣∣

max
(y,t)

ey − ex− β̄t

s.t. Ay = 0, 0 5 y 5 c

y + t = x, t = 0.

Then we define the extended gap function ḡ : Rn → R as

ḡ(x) = max{ ey − β̄t | y ∈ X, y + t = x, t = 0 } − ex. (5.1)

Theorem 5.3 (i) The domain of ḡ is Rn.

(ii) If β̄ = ne then ḡ = g on the domain of g.

Proof: (i) For any x ∈ Rn, (DG(x)) has a feasible solution and the objective

function is bounded. By the duality theorem of linear programming there is an

optimal value of (PG(x)), and hence ḡ(x) > −∞ for any x ∈ Rn.

(ii) Let Ω and Ω̄ denote the feasible sets of (DG(x)) and (DG(x)), respectively,

i.e.,

Ω = { (π, α, β) ∈ Rm+2n | πA + α− β = e, α, β = 0 }, and (5.2)

Ω̄ = { (π, α, β) ∈ Rm+2n | πA + α− β = e, α = 0, 0 5 β 5 β̄ }. (5.3)

By the theory of linear programming, if β̄ is so large that every vertex v = (πv, αv, βv)

of Ω satisfies βv 5 β̄ then Ω̄ contains every vertex of Ω, and hence we have

ḡ(x) = g(x) for all x in the domain of g. Replacing π by π1 − π2 with π1, π2 = 0

and introducing a slack variable vector γ = 0, we rewrite Ω as

Ω =








(π1)>

(π2)>

α>

β>

γ>





A> −A> I −I −I







(π1)>

(π2)>

α>

β>

γ>




= 1,




(π1)>

(π2)>

α>

β>

γ>




= 0





.
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Let v be a vertex of Ω. Then it is a basic solution of the system defining Ω,

i.e., v = (wB, wN) = (B−11,0) for some nonsingular n × n submatrix B of[
A> −A> I −I −I

]
. Since the incidence matrix A is totally unimodular, i.e.,

each subdeterminant of A is −1, 0, or +1, so is
[
A> −A> I −I −I

]
. There-

fore the matrix B−1 is composed of −1, 0 and +1, and hence B−11 5 n1. This

completes the proof. 2

By Theorem 5.3, we hereafter fix β̄ = ne, and we replace the constraint g(x) 5 0

in (mmF ) with ḡ(x) 5 0 to obtain an equivalent formulation of (mmF ):

(mmF )

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X, ḡ(x) 5 0,

which is further equivalent to

(mmF )

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X \ int Ḡ,

where

Ḡ = {x ∈ Rn | ḡ(x) = 0 }. (5.4)

5.2.2 Local search using the extended gap function

For v ∈ XM ∩XV , we define the set of all efficient vertices linked to v by

NM(v) = {v′ ∈ XM ∩XV | [v, v′] is an edge of X } (5.5)

= {v′ ∈ XV | [v, v′] is an edge of X and ḡ(v′) 5 0 }.

Note that the above inequality ḡ(v′) 5 0 can be replaced with g(v′) 5 0, however,

ḡ(v′) 5 0 is more convenient because we can easily obtain the initial basis for

solving the linear programming problem ḡ(v′) while we often need to run phase I of

two-phase simplex method to obtain the initial basis for solving g(v′).

When we find a feasible solution w ∈ XM , we apply the local search procedure

starting with w (LS(w) for short) for further improvement. The procedure is de-

scribed as follows.



5 New Algorithms for the Minimum Maximal Flow Problem 97

/** LS(w) procedure **/

〈0〉 (initialization) If w 6∈ XV then solve min{dx | x ∈ F (w) }, where F (w) is the

face of X containing w in its relative interior, to obtain a vertex v0 ∈ XM ∩XV ,

otherwise set v0 := w. Set k := 0.

〈k〉 (iteration k) If {v ∈ NM(vk) | dv < dvk } = ∅ then stop (vk is an locally

optimal vertex of (mmF )). Otherwise choose vk+1 in the set, set k := k + 1

and go to 〈k〉.

Remark 5.4 Whenever w ∈ XM , the face F (w) of X containing w in its relative

interior is contained in XM by Theorem 3.6.

Figure 5.2 shows a three-dimensional example of the LS(w) procedure. In this

figure XE is the union of faces of X framed by bold lines. We see that w is not a

vertex of X (See (a)). Then we consider the face F (w) of X containing w in its

interior (See (b)). We solve min{dx | x ∈ F (w) } to obtain the vertex v0 ∈ XE∩XV

(See (c)). Since there is the vertex v1 ∈ NM(v0) such that dv1 < dv0, we go to the

next iteration. Finally we stop the procedure at v1 because {x ∈ NM(v1) | dx <

dv1 } = ∅ (See (d)).

5.2.3 Implementation issues about a local search procedure

In Step 〈k〉 of the LS(w) procedure, we choose a point vk+1 in {v ∈ NM(vk) | dv <

dvk } and set k := k + 1 unless this set is empty. To do this, we consider the linear

programming problem

∣∣∣∣∣∣∣∣∣

min
x

dx

s.t. Ax = 0

0 5 x 5 c.

Introducing slack variables s = (s1, · · · , sn), we convert this problem to

∣∣∣∣∣∣∣∣∣∣∣∣

min
(x,s)

dx

s.t. Ax = 0

x + s = c

(x, s) = 0,
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X

XE dw

(a) starting point w

X

XE dw

F (w)

(b) face F (w) of X

X

XE dw

v0

(c) obtaining v0

X

XE dw

v0

v1

(d) termination at v1

Figure 5.2: Local search procedure LS(w)

which is further written as
∣∣∣∣∣∣∣∣∣

min
y

dsy

s.t. Asy = b

y = 0,

where

ds =
[
d 0

]
, As =


A O

I I


 , y =


x

s


 and b =


0

c


 .

The following form is called a tableau for the above problem.

As b

ds min
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Letting B and N be the basic and nonbasic matrices, respectively, of the system

Asy = b, the above tableau is rewritten as

B N b

dB dN min

We assume, in Step 〈k〉, that vk ∈ XV and we have obtained the basic matrix B

and the nonbasic matrix N corresponding to the solution y = (vk, c− vk) at hand.

Let (yB, yN) be the partition of y. Step 〈k〉 of the LS(w) procedure is implemented

as follows. We compute the reduced cost d̄
N

= dN − dBB−1N . If d̄
N = 0 we have

done, otherwise we define

R = { j | yN
j is a nonbasic variable, d̄N

j < 0 }.

We choose j ∈ R, delete j from R and compute the following as long as R is not

empty. We temporarily compute the basic solution y′ = (x′, s′) adjacent to y by

pivotting in the variable yN
j . Let B′ and N ′ be the basic matrix and the nonbasic

matrix corresponding to the solution y′. If ḡ(x′) 5 0, meaning x′ is a maximal flow,

then we update (B, N) to (B′, N ′) and repeat Step 〈k〉.
If we have not obtained an initial basic matrix B and nonbasic matrix N cor-

responding to the solution y, we need to solve min{dx | x ∈ F (w) } in Step 〈0〉.
The detailed description of the problem min{dx | x ∈ F (w) } is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x

dx

s.t. Ax = 0

0 5 x 5 c

eix 5 0 for i ∈ Iz(w)

ejx = cj for j ∈ Ic(w),

where

Iz(w) = { j ∈ {1, . . . , n} | wj = 0 }, and

Ic(w) = { j ∈ {1, . . . , n} | wj = cj }.

We apply the dual simplex method to solve the problem and obtain the matrices B

and N to be used in Step 〈k〉. See Appendix B for the dual simplex method.
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5.3 Cut-and-Split Method for (mmF )

In this section we propose an algorithm for (mmF ), which is based on the CS

method. Note that we can directly apply the CS method to (mmF ) since it satisfies

the assumptions of (2.6), i.e.,

X j Rn
+ and 0 ∈ XV ∩ int Ḡ. (5.6)

To make the algorithm more efficient we combine the LS(w) procedure with the CS

method, namely we apply the LS(w) procedure to obtain a tighter upper bound

every time we find a feasible solution w ∈ XM .

5.3.1 Algorithm

The CS method for (mmF ) is described as follows.

/** CS method for (mmF ) **/

〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM ∩ XV of (mmF ).

If NM(w0) = ∅ then stop (w0 is the unique optimal solution of (mmF )).

Otherwise, apply the LS(w0) procedure to obtain a locally optimal vertex

x̄ ∈ XM ∩XV . Set K0 := Rn
+, S := {K0}, R := S, γ := 0 and k := 0.

〈k〉 (iteration k) For each K ∈ S, solve βK := min{dx | x ∈ X ∩K, lK(x) = 0 }
to obtain a solution ωK if the problem is feasible, set βk := ∞ otherwise, where

lK(x) = 0 is the concavity cut for K \ Ḡ.

〈k1〉 (update) Set L := {K ∈ S | ωK ∈ XM }. If L 6= ∅ then apply the

LS(ωK) procedure to obtain a locally optimal vertex vK for each K ∈ L.

Solve min{dvK | K ∈ L} to obtain the cone K∗. If dvK∗
< dx̄, set

x̄ := vK∗
.

〈k2〉 (termination) Set R′ := {K ∈ R | βK < dx̄ }. If R′ = ∅ or dx̄− γ < 1

then stop (x̄ solves (mmF )).

〈k3〉 (subdivision) Solve min{ βK | K ∈ R′ } to obtain the cone K∗∗. If βK∗∗ >

γ then set γ := βK∗∗ . Perform the ω-subdivision on K∗∗ for some ω ∈ K∗∗,
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and let S∗∗ be the partition of K∗∗. Set S := S∗∗, R := S∗∗∪(R′ \{K∗∗}),
k := k + 1 and go to 〈k〉.

We illustrate the CS method for (mmF ) in Figure 5.3, in which we use a two-

dimensional general polyhedron X = {x ∈ R2 | Ax = b, x = 0 } instead of

X = {x ∈ Rn | Ax = 0, 0 5 x 5 c } since the latter is unsuitable for illustration.

We first obtain a locally optimal vertex x̄ ∈ XM ∩XV and set K0 := Rn
+ (See (a)).

We determine the concavity cut lK0(x) = 0 for K0 \ Ḡ and obtain a point ωK0 (See

(b)). The value dωK0 is a lower bound with respect to K0. Since ωK0 6∈ XM and

dωK0 < dx̄, we split the cone K0 into K1 and K2 (See (c)). In the next iteration,

points ωK1 and ωK2 are obtained (See (d)). We see that ωK2 ∈ XM , and hence

apply the LS(ωK2) procedure to obtain a better point vK2 and update the incumbent

x̄ to vK2 . The cone K2 is discarded, since dωK2 = dx̄. Meanwhile K1 is split into

K3 and K4 since ωK1 6∈ XM and dωK1 < dx̄ (See (e)). We obtain points ωK3 and

ωK4 in the next iteration (See (f)) and continue the algorithm.
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X

XM
Ḡ

dx̄

K0

(a) initialization

X

Ḡ

dx̄

K0

lK0(x) = 0

ωK0

(b) obtaining ωK0

X

Ḡ

dx̄

K1

K2

ω

(c) splitting K0 into K1 and K2

X

Ḡ

dx̄

K1

lK2(x) = 0

ωK1

K2

lK1(x) = 0

ωK2

Local SearchvK2

(d) obtaining ωK1 and ωK2

X

Ḡ

d

x̄

K3

K4

ω

(e) splitting K1 into K3 and K4

X

Ḡ

d

x̄

K3

lK4(x) = 0

ωK3

lK3(x) = 0 K4

ωK4

(f) obtaining ωK3 and ωK4

Figure 5.3: CS method for (mmF )
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5.3.2 The way of deciding ω for subdivision and convergence

of the algorithm

In Step 〈k3〉 the direction ω ∈ K∗∗ is obtained as follows. Suppose that K∗∗ is

generated by the directions u1, . . . , un such that ui ∈ ∂ Ḡ, initially ui = α∗ei with

α∗ = max{α | ḡ(αei) = 0 } for each i = 1, . . . , n. The function lK∗∗ : Rn → R

defining the concavity cut lK∗∗(x) = 0 for K∗∗ \ Ḡ is given by lK∗∗(x) = eU−1x− 1,

where U =
[
u1 · · · un

]
. Here we solve

η = max{ lK∗∗(y) | y ∈ X ∩K∗∗ }, (5.7)

to obtain a solution y∗. Since K∗∗ is in R′, i.e., βK∗∗ < dx̄, we see that η = 0. If

η > 0 then we perform ω-subdivision on K∗∗ with ω = y∗. If η = 0 then we discard

K∗∗ from R′ and go back to Step 〈k2〉. In this case there is no point v ∈ XV ∩K∗∗

such that v 6= ui for each i = 1, . . . , n. Then we can discard K∗∗ from further

consideration, because at least one vertex of X solves (mmF ).

Every time we obtain an optimal solution y∗ of (5.7) with η > 0, we can perform

y∗-subdivision on K∗∗. This assertion follows from the following theorem.

Theorem 5.5 Let K∗∗ be a cone generated by the directions u1, . . . , un such that

ui ∈ ∂ Ḡ for each i = 1, . . . , n, and y∗ be an optimal solution of (5.7) with η > 0.

Then y∗ 6= αui for any i = 1, . . . , n and for any α > 0.

Proof: Assume that y∗ lies on an extreme ray of K∗∗, i.e., y∗ = αuj for some

α > 0 and uj. Since 0 < η = lK∗∗(y∗) = eU−1(αuj) − 1 = α − 1, we have α > 1.

By the choice of uj, we have ḡ((1 + ε)uj) < 0 for any ε > 0. Therefore we have

ḡ(y∗) < 0. On the other hand, y∗ ∈ X ∩K∗∗ j K, which implies ḡ(y∗) = 0. This

is a contradiction. 2

Furthermore the following assertion is also available in this subdivision rule.

Theorem 5.6 Let K be the cone generated by the directions u1, . . . , un and U =[
u1 · · · un

]
. If ui ∈ XM for each i = 1, . . . , n then some uj solves min{dx |

x ∈ X ∩K, lK(x) = 0 }.

Proof: Let ω be an optimal solution of min{dx | x ∈ X ∩K, lK(x) = 0 }. Since

ω ∈ K, there are nonnegative numbers µ1, . . . , µn such that ω =
∑n

i=1 µiu
i. Also
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we see that 0 5 lK(ω) = eU−1(
∑n

i=1 µiu
i)−1 =

∑n
i=1 µi−1, and hence

∑n
i=1 µi = 1.

Note that dx = 0 for all x ∈ X by the assumption that a given network has no

t-s-path. Let uj attain min{dui | i = 1, . . . , n }. Then duj 5
∑n

i=1 µidui = dω,

in other words, uj ∈ XM solves min{dx | x ∈ X ∩K, lK(x) = 0 }. 2

We see that the set {x ∈ K∗∗ | lK∗∗(x) > 0 } does not contain a vertex of X

when η of (5.7) is zero. Suppose that an oracle is available that provides a vertex of

X in {x ∈ K∗∗ | lK∗∗(x) > 0 } whenever there are some, and take the vertex as the

direction ω in Step 〈k3〉. Then, owing to the finiteness of XV , the ω-subdivision

is repeated at most |XV | times, and hence the CS method terminates after finitely

many iterations. However, the oracle is costly and the authors estimate it NP -

complete to check whether XV ∩ {x ∈ K∗∗ | lK∗∗(x) > 0 } is not empty. See

Freund-Orlin [20].

5.3.3 Implementation issue about the CS Method for (mmF )

In the CS method for (mmF ) we need to obtain the point u ∈ {αω | α > 0 } ∩ ∂ Ḡ

for a direction ω, by applying the parametric simplex method. The detail will be

explained in Subsection 5.4.3.

Let K be the cone given by

K = {Uµ | µ = 0 },

where the jth column uj of U is contained in ∂ Ḡ. To check if the set {x ∈ X ∩K |
lK(x) = 0 } is empty, we solve

ηK = max{ lK(x) | x ∈ X ∩K },

and we see that the set is empty if ηK < 0. This problem is

∣∣∣∣∣∣∣∣∣

ηK = max
(x,µ)

eU−1x− 1

s.t. Ax = 0, 0 5 x 5 c

x = Uµ, µ = 0,

which is equivalent to
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∣∣∣∣∣∣∣∣∣

ηK = max
µ

eµ− 1

s.t. AUµ = 0, 0 5 Uµ 5 c

µ = 0.

To obtain a locally optimal vertex vK , we first solve

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X ∩K,

and we then solve
∣∣∣∣∣∣

βK = min
x

dx

s.t. x ∈ X ∩K, lK(x) = 0,

by the dual simplex method, which will be explained in Appendix. Since the above

problem is equivalent to

∣∣∣∣∣∣∣∣∣

βK = min
µ

dUµ

s.t. AUµ = 0, 0 5 Uµ 5 c

eµ = 1, µ = 0,

we need not calculate the inverse matrix U−1.

If the set X ∩K ∩ {x | lK(x) = 0 } contains either no integer solution or only

one integer solution, then we stop dividing the cone K. For each i = 1, . . . , n, let

UB(K, i) = max{u1
i , · · · , un

i , ηKu1
i , . . . , ηKun

i }, and

LB(K, i) = min{u1
i , · · · , un

i , ηKu1
i , . . . , ηKun

i }.

It is readily seen that

X ∩K ∩ {x | lK(x) = 0 } j conv{u1, · · · , un, ηKu1, · · · , ηKun}
j Πn

i=1[LB(K, i), UB(K, i)],

where convS means the convex full of a set S. If there is i ∈ {1, . . . , n} such that

bUB(K, i)c < dLB(K, i)e then the hypercube Πn
i=1[LB(K, i), UB(K, i)] contains no

integer solution. Also if bUB(K, i)c = dLB(K, i)e for all i ∈ {1, . . . , n} then the

above hypercube contains only one integer solution whose ith element is bUB(K, i)c.
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5.4 Outer Approximation Method for (mmF )

In this section we propose an algorithm for (mmF ), which is based on the OA

method. Obviously, X of (4.1) is bounded, and by Assumption 5.1 (ii)-(iii) we have

0 ∈ X ∩ int Ḡ, and min{dx | x ∈ X } = 0, (5.8)

which correspond to (2.9). Then we can apply the OA method to (mmF ) if the

regularity condition is met.

5.4.1 Regularity and optimality condition

Unfortunately, the problem (mmF ) is not regular, i.e.,

X \ int Ḡ = cl (X \ Ḡ) (5.9)

does not hold. To work out countermeasures we introduce a positive tolerance ε

and consider, instead of (mmF ),

(mmFε)

∣∣∣∣∣∣
min
x

dx

s.t. x ∈ X \ int Ḡε,

where

Ḡε = {x ∈ Rn | ḡ(x) = ε }. (5.10)

We call an optimal solution of (mmFε) an ε-optimal solution of (mmF ).

First we show that any positive ε ensures the regularity of (mmFε).

Theorem 5.7 The problem (mmFε) is regular for any ε > 0.

Proof: We show that

X \ int Ḡε = cl(X \ Ḡε) (5.11)

holds for any ε > 0.

(k) Since X \ int Ḡε is closed and X \ int Ḡε k X \ Ḡε, we have

X \ int Ḡε = cl(X \ int Ḡε) k cl(X \ Ḡε).

(j) Let x be an arbitrary point of X \ int Ḡε. We show that there is always a

point, say x′ in Nδ(x) ∩ (X \ Ḡε). If ḡ(x) > ε then there exists γ > 0 such that
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ḡ(x′) > ε for any point x′ ∈ Nγ(x) by the continuity of ḡ. This implies Nγ(x) j Ḡε,

and hence x ∈ int Ḡε. Therefore the assumption x ∈ X \ int Ḡε implies that x ∈ X

and ḡ(x) 5 ε. By Theorem 5.3, we have ḡ(x) = g(x). When ḡ(x) < ε, take

x as x′. Clearly x′ = x 6∈ Ḡε and x′ = x ∈ Nδ(x), and we have done. When

g(x) = ḡ(x) = ε, there is an optimal solution y∗ of max{ ey | y ∈ X, y = x } such

that e(y∗−x) = ε, and hence y∗ 6= x. Take λ such that 0 < λ < min{ 1, δ/‖y∗−x‖ }
and let x′ = λy∗ + (1− λ)x. Since ‖x′ − x‖ = λ‖y∗ − x‖ < δ, we see x′ ∈ Nδ(x).

Also we see that x′ ∈ X by the convexity of X, and hence g(x′) = ḡ(x′) by applying

Theorem 5.3 again. Since x′ = x and x′ 6= x, we have

ḡ(x′) = g(x′)

= max{ ey | y ∈ X, y = x′ } − ex′

< max{ ey | y ∈ X, y = x } − ex

= e(y∗ − x) = ε.

Therefore we see that x′ 6∈ Ḡε. This completes the proof. 2

We illustrate a difference between (mmF ) and (mmFε) in Figure 5.4, in which we

see that X \ int Ḡε = cl (X \ Ḡε) while X \ int Ḡ 6= cl (X \ Ḡ).

X

Ḡε

X

Ḡ

XM = X \ int Ḡ X \ int Ḡε

Figure 5.4: A difference between (mmF ) and (mmFε)

Next we discuss an upper bound of ε, which will be crucial for the convergence

of the algorithm.

Lemma 5.8 If ε ∈ (0, 1) then 0 ∈ int Ḡε, and (0, v) ∩ ∂ Ḡε 6= ∅ for any point v

such that ḡ(v) 5 0.
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Proof: We have ḡ(0) > 0 since 0 ∈ int Ḡ. Note that ḡ(0), which coincides with

g(0), takes an integer value by the integrality property of X, and hence ḡ(0) = 1.

Then we have ḡ(0) > ε, i.e., 0 ∈ int Ḡε for any ε ∈ (0, 1). The continuity of ḡ

ensures the last assertion. 2

In the following lemma, we use δs to denote the number of arcs leaving node s, i.e.,

δs = |{h ∈ E | dh = +1 }|. (5.12)

Lemma 5.9 Let x∗ and x∗ε be an optimal solution and an ε-optimal solution of

(mmF ), respectively. Then 0 5 dx∗ − dx∗ε 5 εδs.

Proof: Since x∗ ∈ X and ḡ(x∗) 5 0, x∗ is a feasible solution of (mmFε), and hence

dx∗ε 5 dx∗. Let y∗ε be an optimal solution of max{ ey | y ∈ X, y = x∗ε }. Clearly

y∗ε ∈ XM , i.e., y∗ε is a feasible solution of (mmF ), and hence dx∗ 5 dy∗ε. We see that

(y∗ε)h− (x∗ε)h 5 ε for each h = 1, . . . , n, since y∗ε−x∗ε = 0 and e(y∗ε−x∗ε) 5 ε. That

implies d(y∗ε −x∗ε) 5 ε|{h | dh = +1 }| = εδs, hence dx∗ε 5 dx∗ 5 dy∗ε 5 dx∗ε + εδs.

2

Theorem 5.10 Let x∗ε be an ε-optimal solution for some ε ∈ (0, 1/δs). Then ddx∗εe
coincides with the optimal value of (mmF ).

Proof: From Lemma 5.9 we see that 0 5 dx∗ − dx∗ε < 1. This inequality and the

integrality of dx∗ gives the assertion. 2

In the sequel we choose ε from the open interval (0, 1/δs).

Note that ḡ(x∗ε) 5 ε holds for an ε-optimal solution x∗ε of (mmF ). Therefore

ḡ(x) 5 0 for any accumulation point x of {x∗ε}ε→0+. This observation leads to the

following corollary.

Corollary 5.11 Let {x∗ε}ε→0+ be a sequence of ε-optimal solutions of (mmF ) for ε

converging to 0 from above. Then any accumulation point of {x∗ε}ε→0+ is an optimal

solution of (mmF ).

For η ∈ R let

X(η) = {x ∈ X | dx 5 η }. (5.13)
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As seen in Theorem 2.5, the optimality condition of (mmFε) is X(dx̄ε) j Ḡε for

some x̄ε ∈ X \ int Ḡε. We can further relax this condition.

Theorem 5.12 Let x̄ε ∈ X \ int Ḡε for some ε ∈ (0, 1/δs). If X(ddx̄ε− 1e) j Ḡε′

for some ε′ > 0 then ddx̄εe coincides with the optimal value of (mmF ).

Proof: Let x∗ and x∗ε be an optimal solution and an ε-optimal solution of (mmF ),

respectively. Since x̄ε is a feasible solution of (mmFε), we have dx∗ε 5 dx̄ε. It is

also clear that dx∗ε 5 dx∗. If dx∗ < dx̄ε then we have x∗ ∈ X(ddx̄ε − 1e) j Ḡε′

since dx∗ is integer, and hence ḡ(x∗) = ε′ > 0, which contradicts that ḡ(x∗) = 0.

Then we have dx̄ε 5 dx∗. Hence by Lemma 5.9 we obtain dx∗ε 5 dx̄ε 5 dx∗ 5
dx∗ε + εδs < dx∗ε + 1. This completes the proof. 2

We construct a polytope P satisfying X(ddx̄ε−1e) j P for some x̄ε ∈ X\int Ḡε.

Let v∗ be a vertex minimizing ḡ(v) over PV and ε′ = ḡ(v∗). For any x ∈ P we have

ḡ(x) = ḡ(v∗), i.e., 0 5 ḡ(x)− ḡ(v∗) = ḡ(x)− ε′, and hence P j Ḡε′ . This implies

that X(ddx̄ε − 1e) j Ḡε′ . Therefore if ε′ > 0 then the optimal value of (mmF ) is

obtained by Theorem 5.12.

5.4.2 Algorithm and its convergence

We describe the OA method for (mmF ) as follows.

/** OA method for (mmF ) **/

〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XM ∩ XV of (mmF ).

If NM(w0) = ∅ then stop (w0 is the unique feasible solution of (mmF )).

Otherwise, apply the LS(w0) procedure to obtain a locally optimal vertex

x̄0 ∈ XM ∩ XV . Solve ζ := max{ ex | x ∈ X, dx 5 dx̄0 − 1 } and con-

struct an initial polytope P 0 k X(dx̄0 − 1) by setting P 0 := {x ∈ Rn | ex 5
ζ, dx 5 dx̄0 − 1, x = 0 }. Compute the vertex set P 0

V of P 0. Set k := 0.

〈k〉 (iteration k) Find a vertex vk ∈ P k
V such that ḡ(vk) 5 0 if any.
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〈k1〉 (termination) If either dx̄k = 0 or ḡ(v) > 0 for all v ∈ P k
V then stop

(the optimal value of (mmF ) is ddx̄ke). Otherwise, obtain the point xk
ε ∈

(0, vk) ∩ ∂ Ḡε. (Note that Lemma 5.8 ensures that (0, vk) ∩ ∂ Ḡε 6= ∅).
〈k2〉 (update) If xk

ε ∈ X, obtain the point xk ∈ (0, vk] ∩ ∂ Ḡ.

〈k2.1〉 If xk ∈ X, meaning xk ∈ XM , then obtain the locally opti-

mal vertex zk ∈ XM ∩ XV by applying the LS(xk) procedure,

and further obtain the point zk
ε ∈ (0, zk) ∩ ∂ Ḡε. Set x̄k+1 :=

argmin{dzk
ε , dxk

ε } and P k+1 := P k ∩ {x ∈ Rn | dx 5 ddx̄k+1 −
1e }.

〈k2.2〉 If xk 6∈ X, meaning xk 6∈ XM , then set x̄k+1 := xk
ε and

P k+1 := P k ∩{x ∈ Rn | dx 5 ddx̄k+1− 1e, l(x) 5 0 }, with some

affine function l : Rn → R.

〈k3〉 If xk
ε 6∈ X then set x̄k+1 := x̄k and P k+1 := P k ∩ {x ∈ Rn | l(x) 5 0 },

with some affine function l : Rn → R.

〈k4〉 Compute the vertex set P k+1
V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 5.13 The inequality l(x) 5 0 in Step 〈k2.2〉 and Step 〈k3〉 is given by one

of the inequalities ±Ax 5 0 and x 5 c not satisfied by the point vk, i.e.,

(i) l(x) = ejx− cj for some j ∈ {1, . . . , n} such that vk
j > cj, or

(ii) l(x) = sgn(aivk)aix for some i ∈ {1, . . . , m} such that aivk 6= 0, where ai is

the ith row of A, and

sgn(α) =





+1 when α > 0

−1 when α < 0.

Lemma 5.14 Let zk be the locally optimal vertex obtained by applying the LS(xk)

procedure starting with xk in Step 〈k2.1〉 at iteration k, and suppose dzk > 0. Then

dzk′ < dzk for iteration k′ such that k′ > k.

Proof: It suffices to show that dzk+1 < dzk. By the construction of P k+1 we have

P k+1 j {x | dx 5 ddx̄k+1 − 1e }. Since xk+1 ∈ (0, vk+1] j P k+1 and zk+1 is

obtained by LS(xk+1), we have

dzk+1 5 dxk+1 5 ddx̄k+1 − 1e.
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Since we assume that dzk > 0, we have 0 < dzk
ε < dzk by the choice of zk

ε .

Therefore in Step 〈k2.1〉

ddx̄k+1 − 1e < dx̄k+1 = min{dxk
ε , dzk

ε} < dzk.

Combining the two inequalities yields the desired result. 2

Theorem 5.15 The OA method for (mmF ) works correctly and terminates after

finitely many iterations with the optimal value of (mmF ).

Proof: (correctness) If NM(w0) = ∅ at the initialization step, we can conclude

from the connectedness of XM that w0 is a unique feasible solution of (mmF ) and

hence solves the problem. When the algorithm terminates in Step 〈k1〉, the optimal

value of (mmF ) is equal either to zero by Assumption 5.1 (iii), or to ddx̄ke by

Theorem 5.12. So the optimal value is obtained whenever the algorithm terminates.

We suppose that the algorithm has not yet terminated at iteration k, i.e., dx̄k > 0

and ḡ(vk) 5 0, and show that each step of the algorithm can be done. Lemma 5.8

ensures that there are points xk
ε ∈ (0, vk)∩∂ Ḡε and zk

ε ∈ (0, zk)∩∂ Ḡε, in Step 〈k1〉
and Step 〈k2.1〉, respectively. Since 0 ∈ int Ḡ and vk 6∈ int Ḡ, there also exists a

point xk ∈ (0, vk] ∩ ∂ Ḡ. When xk
ε 6∈ X, clearly vk 6∈ X, and hence the function

l : Rn → R of Remark 5.13 can be found in Step 〈k3〉. To show that the function

l : Rn → R is found in Step 〈k2.2〉 we have only to show that vk 6∈ X. Suppose the

contrary, i.e., vk ∈ X. By the assumption that ḡ(vk) 5 0 and the fact that ḡ(x) = 0

for all x ∈ X, we have ḡ(vk) = 0, i.e., vk ∈ ∂ Ḡ, and hence vk ∈ X \ int Ḡ = XM .

This implies xk = vk ∈ XM by the choice of xk, which contradicts that we are

currently at Step 〈k2.2〉. Therefore we have seen that vk 6∈ X in Step 〈k2.2〉.
(finiteness) Suppose that the polytope P ν at iteration ν meets the condition

P ν j X and P ν ∩XM = ∅, (5.14)

after updated either in Step 〈k2〉 or in Step 〈k3〉, and consider the next iteration.

Since vν is chosen from P ν , we have vν ∈ X\XM and consequently ḡ(vν) > 0. Then

the algorithm stops at Step 〈k1〉. Therefore we have only to prove that (5.14) holds

within a finite number of iterations. Note first that both Step 〈k2.2〉 and Step 〈k3〉
are done only a finite number of times. By the definition of affine function l, the
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polytope, say P k′ , when 2m+n cuts l(x) 5 0 have been added to the initial polytope

P 0, is contained in X. Therefore vk′ as well as xk′
ε lies in X, and hence we obtain

that xk′ = vk′ ∈ XM in the same way as in the former part of this proof. Therefore

we come to neither Step 〈k2.2〉 nor Step 〈k3〉 after iteration k′. Namely, Step 〈k2.1〉
followed by Step 〈k4〉 repeats itself after iteration k′. For iteration k with k = k′+1,

we have xk ∈ XM . We then locate zk ∈ XM ∩XV by applying the LS(xk) procedure

and obtain a point zk
ε ∈ (0, zk) ∩ ∂ Ḡε. If dzk = 0 for some k = k′ + 1 then we set

x̄k+1 := zk
ε since dzk

ε = dzk = 0 5 dxk
ε . Then the incumbent value dx̄k+1 becomes

zero, and hence the algorithm stops in Step 〈k1〉 at the next iteration. If dzk > 0

for all k with k = k′+1, we see that dzk+1 < dzk for all k = k′+1 by Lemma 5.14.

Since |XM ∩XV | is finite, we eventually obtain a point zν−1 ∈ XM ∩XV such that

dzν−1 5 dz for all z ∈ XM ∩ XV . Also we have dzν−1
ε < dzν−1 by the choice of

zν−1
ε . The polytope P ν is then defined as P ν := P ν−1 ∩ {x | dx 5 ddx̄ν − 1e },

where x̄ν satisfies that dx̄ν = min{dxν−1
ε , dzν−1

ε } < dzν−1. This means that

P ν ∩ (XM ∩XV ) = ∅. Since XM is a connected union of several faces of X, we see

that dzν−1 5 dx for all x ∈ XM . Therefore we conclude that P ν ∩XM = ∅. 2

We illustrate the OA method for (mmF ) in Figure 5.5. We obtain a locally

optimal vertex x̄0 ∈ XM ∩ XV and set up an initial polytope P 0 (See (a)). It

is easy to enumerate all vertices of P 0 because this polytope is simply given by

P 0 := {x ∈ Rn | ex 5 ζ, dx 5 dx̄0 − 1, x = 0 }. We obtain a point v0 ∈ P 0
V

such that ḡ(v) 5 0 and a point x0
ε ∈ (0, v0) ∩ ∂ Ḡε (See (b)). We see that x0

ε 6∈ X,

and hence set x̄1 := x̄0 and cut off v0 from P 0 (See (c)). In the next iteration, we

obtain points v1, x1
ε and x1. Since x1 ∈ XM , we apply the LS(x1) procedure to

obtain a point z1, and obtain a point z1
ε ∈ (0, z1)∩ ∂ Ḡε (See (d)). We find a point

z1
ε ∈ X \ int Ḡε such that dz1

ε < dx1
ε. We then set x̄2 := z1

ε and construct P 2 by

adding the cut dx 5 ddx̄2 − 1e to P 1 (See (e)). Because ḡ(v) > 0 for all vertices v

of P 2 (See (f)), we terminate at the next iteration with the optimal value ddx̄2e.
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(a) polytope P 0
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(b) obtaining v0 and x0
ε
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Ḡε
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(c) cutting off v0 from P 0
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(d) obtaining v1, x1
ε and z1
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P 1
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(e) cutting off v1 from P 1

X

Ḡε

P 2

x̄2

v3 · · · ḡ(v3) > 0

(f) termination

Figure 5.5: OA method for (mmF )
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5.4.3 Implementation issue about the OA method for (mmF )

The key implementation issue about OA method for (mmF ) is the way of computing

the point x ∈ (0, v) ∩ ∂ Ḡγ for a given point v ∈ P k
V such that ḡ(v) 5 0, and

γ ∈ {0, ε}. In other words, for a given v and γ, we compute θ ∈ (0, 1] such that

ḡ(θv) = γ, (5.15)

and set x := θv. As seen in Section 5.2.1 the extended gap function ḡ(θv) is given

by the optimal value of

(P (θv))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(y,t)

ey − net− θev

s.t. Ay = 0

y 5 c

y + t = θv

(y, t) = 0.

Introducing slack variables s, (P (θv)) is equivalent to

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
(y,t,s1,s2)

ey − net− θev

s.t. Ay = 0

y + s1 = c

y + t− s2 = θv

(y, t, s1, s2) = 0.

The tableau of this problem is

A O O O 0

I O I O c

I I O −I θv

e −ne 0 0 max(−θev)

(5.16)

For a basic matrix B and a nonbasic matrix N , let (dB, dN) be the partition of
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[
e −ne 0 0

]
, and let πB = dBB−1. We then define the linear function

ḡB(θ) = πB




0

c

θv


− θev, (5.17)

with respect to the basic matrix B. Note that ḡB(θ) is a nonincreasing piece-wise

linear concave function. Using the above function, we apply the parametric linear

programming technique described as follows.

/** procedure of computing θ ∈ (0, 1] such that ḡ(θv) = γ **/

〈0〉 Set θ0 := 1 and k := 0.

〈k〉 Solve (P (θkv)) to obtain the optimal basic matrix Bk with the optimal value

β. If β = γ the stop (we obtain θk to be computed). Otherwise compute θk+1

satisfying ḡBk(θk+1) = γ. Set k := k + 1 and go to 〈k〉.

We illustrate this procedure in Figure 5.6.

θ
0

ḡ(θv)

γ

θ0

θ1θ2θ3

ḡB0(θ)

Figure 5.6: Procedure of computing θ ∈ (0, 1] such that ḡ(θv) = γ

5.5 Reducing the Number of Variables in (mmF )

If we reduce the number of variables in (mmF ), we can make algorithms more

efficiently. The dimension of X = {x ∈ Rn | Ax = 0, 0 5 x 5 c } is much smaller
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than the number of variables in many cases. This property seems to be useful,

however, there was some difficulties to overcome (See Appendix C).

In this section we improve the algorithms by reducing the number of variables.

To do this we introduce an idea of decomposition by the basic matrix. After we

modify the extended gap function and local search procedure, we state the improved

CS method and improved OA method. We discuss the effect of the decomposition,

and how to modify these algorithms in the case where a network does not hold

Assumption5.1 (i).

5.5.1 Decomposition by the basic matrix

For an incidence matrix A, let B and N be a basic matrix and a nonbasic matrix,

respectively, of the system Ax = 0. Note that B has the inverse matrix B−1. After

we divide c and d into two part, say (cB, cN) and (dB, dN), corresponding to B

and N , respectively, we rearrange c, d and columns of A so that c = (cB, cN),

d = (dB, dN) and A =
[
B N

]
. Note also that the above matrix B is fixed

throughout the algorithm. We then define

XR = {xN ∈ Rn−m | x ∈ X, x = (xB, xN) } (5.18)

= {xN ∈ Rn−m | BxB + NxN = 0, 0 5 xB 5 cB, 0 5 xN 5 cN }
= {xN ∈ Rn−m | xB = −B−1NxN , 0 5 xB 5 cB, 0 5 xN 5 cN }
= {xN ∈ Rn−m | 0 5 −B−1NxN 5 cB, 0 5 xN 5 cN }
= {xN ∈ Rn−m | 0 5 TxN 5 c },

where

T =


−B−1N

I


 . (5.19)

Clearly 0 ∈ XR
V and XR j {x ∈ Rn−m | x = 0 }. Furthermore we have the

following lemmas.

Lemma 5.16

(i) (xB, xN) ∈ {x ∈ Rn | Ax = 0 } ⇔ xB = −B−1NxN and xN ∈ Rn−m.

(ii) (xB, xN) ∈ X ⇔ xB = −B−1NxN and xN ∈ XR.

(iii) (vB, vN) ∈ XV ⇔ vB = −B−1NvN and vN ∈ XR
V .
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Proof: Since (i) and (ii) are clear, we only show the assertion (iii).

(iii) (⇐) Assume that (vB, vN) 6∈ XV . If (vB, vN) /∈ X then vB 6= −B−1NvN or

vN 6∈ XR by (ii), and hence we have done. Otherwise, there are at least two or more

distinct vertices of X, say v1, · · · , vk ∈ XV , such that (vB, vN) =
∑k

j=1 θkv
k for

some θj > 0 (j = 1, . . . , k). Let (v(j,B), v(j,N)) be the partition of vj corresponding

to B and N for each j = 1, . . . , k. Clearly v(j,N) ∈ XR for each j = 1, . . . , k by

using (ii). When i 6= j we see that v(i,N) 6= v(j,N), since vi 6= vj. Therefore we

have v(j,N) ∈ XR and θj > 0 (j = 1, . . . , k) such that vN =
∑k

j=1 θjv
(j,N), and

v(i,N) 6= v(j,N) if i 6= j. This means vN /∈ XR
V .

(⇒) If vB 6= −B−1NvN or vN 6∈ XR, we have (vB, vN) 6∈ X by (ii), then we have

done. Assume that vN 6∈ XR
V and vB = −B−1NvN , and let v = (vB, vN). There

are at least two or more distinct vertices of XR, say v(1,N), · · · , v(k,N) ∈ XR
V , such

that vN =
∑k

j=1 θkv
(k,N) for some θj > 0 (j = 1, . . . , k). Let v(j,B) = −B−1Nv(j,N)

and vj = (v(j,B), v(j,N)) for each j = 1, . . . , k. Clearly vj ∈ X for each j = 1, . . . , k

by using (ii). When i 6= j we see that vi 6= vj, since v(i,N) 6= v(j,N). Therefore we

have vj ∈ X and θj > 0 (j = 1, . . . , k) such that v =
∑k

j=1 θjv
j, and vi 6= vj if

i 6= j. This means v /∈ XV . 2

Lemma 5.17 (Full dimensionality) XR has full dimension, i.e., dimXR = n−m.

Proof: Lemma 5.2 ensures that there is a vector x ∈ X such that 0 < x < c. By

Lemma 5.16 there is a vector xN ∈ XR such that 0 < TxN < c, i.e., xN ∈ int XR.

This implies that dim XR = n−m. 2

For XR we define

XR
M = {xN ∈ XR | @yN ∈ XR : TyN = TxN , TyN 6= TxN }. (5.20)

Theorem 5.18

(i) (xB, xN) ∈ XM ⇔ xB = −B−1NxN and xN ∈ XR
M .

(ii) min{dx | x ∈ XM } = min{dTxN | xN ∈ XR
M }.

Proof: (i) (⇐) If (xB, xN) 6∈ X then xB 6= −B−1NxN or xN 6∈ XR by

Lemma 5.16 (ii), hence we have done. If (xB, xN) ∈ X \XM , there is (yB, yN) ∈ X
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such that (yB, yN) = (xB, xN) and (yB, yN) 6= (xB, xN). Using Lemma 5.16 (ii)

again, we see that xB = −B−1NxN , xN ∈ XR, yB = −B−1NyN and yN ∈ XR.

We then have yN ∈ XR such that TyN = TxN and TyN 6= TxN , which implies

xN 6∈ XR
M .

(⇒) If xB 6= −B−1NxN then (xB, xN) 6∈ X by Lemma 5.16 (ii), hence we have

done. If xN 6∈ XR
M , there is yN ∈ XR such that TyN = TxN , TyN 6= TxN .

Letting xB = −B−1NxN and yB = −B−1NyN , we have (yB, yN) ∈ X such that

(yB, yN) = (xB, xN) and (yB, yN) 6= (xB, xN). Then (xB, xN) 6∈ XM .

(ii) Applying (i), it is clear that

min{dx | x ∈ XM } = min{dBxB + dNxN | (xB, xN) ∈ XM }
= min{dBxB + dNxN | xB = −B−1NxN , xN ∈ XR

M }
= min{ (−dBB−1N + dN)xN | xN ∈ XR

M }
= min{dTxN | xN ∈ XR

M }.

2

By Theorem 5.18, (mmF ) can be cast into the following problem.

Definition 5.19 (Modified minimum maximal flow problem)

(mmFR)

∣∣∣∣∣∣
min

x∈Rn−m
dTx

s.t. x ∈ XR
M .

Let (MC) be defined for C = T and X = XR, and let φ(x) = dTx. Then (mmFR)

also reduces to Problem (PE).

5.5.2 Modification of extended gap function and a local

search procedure

As seen in Section 3.2, the set XR
M of (5.20) can be written as XR

M = {x ∈ XR |
gR(x) 5 0 } by using

gR(x) = max{ eTy | y ∈ XR, Ty = Tx } − eTx. (5.21)
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Furthermore defining

ḡR(x) = max{ eTy − net | y ∈ XR, Ty + t = Tx, t = 0 } − eTx, (5.22)

we have

Theorem 5.20

(i) The domain of ḡR is Rn−m.

(ii) ḡR(xN) = gR(xN) for all xN ∈ XR.

Proof: For any xN ∈ Rn−m we have

g(TxN) = max{ ey | y ∈ X, y = TxN } − eTxN

= max{ e(yB + yN) | (yB, yN) ∈ X, (yB, yN) = TxN } − eTxN

= max{ e(yB + yN) | yB = −B−1NyN , yN ∈ XR, (yB, yN) = TxN } − eTxN

= max{ eTyN | yN ∈ XR, TyN = TxN } − eTxN

= gR(xN),

and

ḡ(TxN) = max{ ey − net | y ∈ X, y + t = TxN , t = 0 } − eTxN

= max{ e(yB + yN)− net | (yB, yN) ∈ X, (yB, yN) + t = TxN , t = 0 } − eTxN

= max{ eTyN − net | yN ∈ XR, TyN + t = TxN , t = 0 } − eTxN

= ḡR(xN).

(i) By the above observation and the domain of ḡ is Rn, we see that ḡR(xN) =

ḡ(TxN) > −∞ for any xN ∈ Rn−m, and hence the domain of ḡR is Rn−m.

(ii) If xN ∈ XR then TxN ∈ X by Lemma 5.16 (ii). Since ḡ = g on domain of g

and X j dom g, we have ḡR(xN) = ḡ(TxN) = g(TxN) = gR(xN) for all xN ∈ XR.

2

Note that gR and ḡR are also piece-wise linear concave functions. Note also that

gR(0) = ḡR(0) > 0. By Theorem 5.20, to solve (mmF ) we consider

(mmFR)

∣∣∣∣∣∣
min

x∈Rn−m
dTx

s.t. x ∈ XR \ int ḠR,
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where

ḠR = {x ∈ XR | ḡR(xN) = 0 }. (5.23)

For v ∈ XR
M ∩XR

V , we define the set of efficient vertices linked to v by an edge

as

NR
M(v) = {v′ ∈ XR

M ∩XR
V | [v, v′] is an edge of XR } (5.24)

= {v′ ∈ XR
V | [v, v′] is an edge of XR and ḡR(v′) 5 0 }.

Whenever we find a feasible solution w ∈ XR
M , we apply the modified local search

procedure starting with w (modified LS(w) for short) for further improvement.

The procedure is described as follows.

/** modified LS(w) procedure **/

〈0〉 (initialization) If w 6∈ XR
V then solve min{dTx | x ∈ FR(w) }, where FR(w)

is the face of XR containing w in its relative interior, to obtain a vertex v0 ∈
XR

M ∩XR
V , otherwise set v0 := w. Set k := 0.

〈k〉 (iteration k) If {v ∈ NR
M(vk) | dTv < dTvk } = ∅ then stop (vk is the locally

optimal vertex of (mmFR)). Otherwise choose vk+1 in the set, set k := k + 1

and go to 〈k〉.

Remark 5.21 Whenever w ∈ XR
M , the face FR(w) of XR containing w in its

relative interior is contained in XR
M since XR

M is a connected union of several faces

of XR.

5.5.3 Improved CS method for (mmF )

Problem (mmFR) holds every conditions for the CS method and hence we can

directly apply this algorithm to (mmFR). The improved CS method for (mmF ) is

described as follows.

/** improved CS method for (mmF ) **/
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〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XR
M ∩ XR

V of (mmFR).

If NR
M(w0) = ∅ then stop (Tw0 is the unique optimal solution of (mmF )).

Otherwise, apply the modified LS(w0) procedure to obtain a locally optimal

vertex x̄ ∈ XR
M ∩XR

V . Set K0 := Rn−m
+ , S := {K0}, R := S, γ := 0 and k := 0.

〈k〉 (iteration k) For each K ∈ S, solve βK := min{dTx | x ∈ XR ∩K, lK(x) =
0 } to obtain a solution ωK if the problem is feasible, set βk := ∞ otherwise,

where lK(x) = 0 is the concavity cut for K \ ḠR.

〈k1〉 (update) Set L := {K ∈ S | ωK ∈ XR
M }. If L 6= ∅ then apply the

modified LS(ωK) procedure to obtain a locally optimal vertex vK for each

K ∈ L. Solve min{dTvK | K ∈ L} to obtain the cone K∗. If dTvK∗
<

dT x̄, set x̄ := vK∗
.

〈k2〉 (termination) SetR′ := {K ∈ R | βK < dT x̄ }. IfR′ = ∅ or dT x̄−γ < 1

then stop (T x̄ solves (mmF )).

〈k3〉 (subdivision) Solve min{ βK | K ∈ R′ } to obtain the cone K∗∗. If βK∗∗ >

γ then set γ := βK∗∗ . Perform the ω-subdivision on K∗∗ for some ω ∈ K∗∗,

and let S∗∗ be the partition of K∗∗. Set S := S∗∗, R := S∗∗∪(R′ \{K∗∗}),
k := k + 1 and go to 〈k〉.

5.5.4 Improved OA method for (mmF )

To be applied the OA method (mmFR) must be hold regularity condition, however,

(mmFR) is not regular by the same reason of (mmF ). Thus we introduce an idea

of ε-optimal solution again. Additionally we need to study the range of ε and

optimality condition, and prove finite convergence of the improved OA algorithm.

In the similar way stated in Section 5.4, we introduce ε > 0 and consider

(mmFR
ε )

∣∣∣∣∣∣
min

x∈Rn−m
dTx

s.t. x ∈ XR \ int ḠR
ε ,

where

ḠR
ε = {x ∈ XR | ḡR(x) = ε }. (5.25)

Lemma 5.22 For any ε > 0, (mmFR
ε ) is regular.
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Proof: We show that

XR \ int ḠR
ε = cl(XR \ ḠR

ε ), (5.26)

holds for any ε > 0.

(k) Since XR \ int ḠR
ε is closed and XR \ int ḠR

ε k XR \ ḠR
ε , we have

XR \ int ḠR
ε = cl(XR \ int ḠR

ε ) k cl(XR \ ḠR
ε ).

(j) Let x be an arbitrary point of XR \ int ḠR
ε . We show that there is always a

point, say x′ in Nδ(x)∩ (XR \ ḠR
ε ), where Nδ(x) = {x′ ∈ Rn−m | ‖x′−x‖ < δ }. If

ḡR(x) > ε then there exists γ > 0 such that ḡR(x′) > ε for any point x′ ∈ Nγ(x) by

the continuity of ḡR. This implies Nγ(x) j ḠR
ε , and hence x ∈ int ḠR

ε . Therefore the

assumption x ∈ XR\ int ḠR
ε implies that x ∈ XR and ḡR(x) 5 ε. By Theorem 5.20,

we have ḡR(x) = gR(x). When ḡR(x) < ε, take x as x′. Clearly x′ = x 6∈ ḠR
ε and

x′ = x ∈ Nδ(x), and we have done. When gR(x) = ḡR(x) = ε, there is an optimal

solution y∗ of max{ eTy | y ∈ XR, Ty = Tx } such that eT (y∗−x) = ε, and hence

y∗ 6= x. Take λ such that 0 < λ < min{ 1, δ/‖y∗−x‖ } and let x′ = λy∗+(1−λ)x.

Since ‖x′ − x‖ = λ‖y∗ − x‖ < δ, we see x′ ∈ Nδ(x). Also we see that x′ ∈ XR by

the convexity of XR, and hence gR(x′) = ḡR(x′) by applying Theorem 5.20 again.

Since x′ = x and x′ 6= x, we have

ḡR(x′) = gR(x′)

= max{ eTy | y ∈ XR, Ty = Tx′ } − eTx′

< max{ eTy | y ∈ XR, Ty = Tx } − eTx

= eT (y∗ − x) = ε.

Therefore we see that x′ 6∈ ḠR
ε . This completes the proof. 2

Lemma 5.23 If ε ∈ (0, 1) then 0 ∈ int ḠR
ε , and (0, v) ∩ ∂ ḠR

ε 6= ∅ for any point v

such that ḡR(v) 5 0.

Proof: We have ḡR(0) > 0 since 0 ∈ int ḠR. Note that ḡR(0), which coincides

with gR(0), takes an integer value by the integrality property of XR, and hence

ḡR(0) = 1. Then we have ḡR(0) > ε, i.e., 0 ∈ int ḠR
ε for any ε ∈ (0, 1). The

continuity of ḡR ensures the last assertion. 2

Using the same δs given by (5.12), we have the following lemma.
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Lemma 5.24 Let x∗ and x∗ε be optimal solutions of (mmFR) and (mmFR
ε ), re-

spectively. Then dTx∗ε 5 dTx∗ 5 dTx∗ε + εδs.

Proof: Since x∗ ∈ XR and gR(x∗) 5 0, x∗ is a feasible solution of (mmFR
ε ),

and hence dTx∗ε 5 dTx∗. Let y∗ε be an optimal solution of max{ eTy | y ∈
XR, Ty = Tx∗ε }. Clearly y∗ε ∈ XR

M , i.e., y∗ε is a feasible solution of (mmFR),

and hence dTx∗ 5 dTy∗ε. Since Ty∗ε − Tx∗ε = 0 and e(Ty∗ε − Tx∗ε) 5 ε, we see

that thy∗ε − thx∗ε 5 ε, where th is the hth row of T , for each h = 1, . . . , n. That

implies d(Ty∗ε − Tx∗ε) 5 ε|{h | dh = +1 }| = εδs, hence dTx∗ε 5 dTx∗ 5 dTy∗ε 5
dTx∗ε + εδs. 2

Theorem 5.25 Let x∗ε be an optimal solution of (mmFR
ε ) for some ε ∈ (0, 1/δs).

Then ddTx∗εe coincides with the optimal value of (mmFR).

Proof: From Lemma 5.24 we see that 0 5 dTx∗ − dTx∗ε < 1. This inequality and

the integrality of dTx∗ gives the assertion. 2

Letting

XR(η) = {x ∈ XR | dTx 5 η }, (5.27)

for η ∈ R, we have the following theorem.

Theorem 5.26 Let x̄ε ∈ XR \ int ḠR
ε for some ε ∈ (0, 1/δs). If XR(ddT x̄ε−1e) j

ḠR
ε′ for some ε′ > 0 then ddT x̄εe coincides with the optimal value of (mmFR).

Proof: Let x∗ and x∗ε be an optimal solution of (mmFR) and (mmFR
ε ), respectively.

Since x̄ε is a feasible solution of (mmFR
ε ), we have dTx∗ε 5 dT x̄ε. It is also clear

that dTx∗ε 5 dTx∗. If dTx∗ < dT x̄ε then we have x∗ ∈ X(ddT x̄ε−1e) j ḠR
ε′ since

dTx∗ is integer, and hence ḡR(x∗) = ε′ > 0, which contradicts that ḡR(x∗) = 0.

Then we have dT x̄ε 5 dTx∗. Hence by Lemma 5.24 we obtain dTx∗ε 5 dT x̄ε 5
dTx∗ 5 dTx∗ε + εδs < dTx∗ε + 1. This completes the proof. 2

We describe the improved OA method for (mmF ) as follows.

/** improved OA method for (mmFR) **/
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〈0〉 (initialization) Find an initial feasible vertex w0 ∈ XR
M ∩ XR

V of (mmF ). If

NR
M(w0) = ∅ then stop (w0 is a unique feasible solution of (mmFR)). Otherwise,

apply the modified LS(w0) procedure to obtain a locally optimal vertex x̄0 ∈
XR

M ∩ XR
V . Solve ζ := max{ ex | x ∈ XR, dTx 5 dT x̄0 − 1 } and construct

an initial polytope P 0 k X(dT x̄0 − 1) by setting P 0 := {x ∈ Rn−m | ex 5
ζ, dTx 5 dT x̄0 − 1, x = 0 }. Compute the vertex set P 0

V of P 0. Set k := 0.

〈k〉 (iteration k) Find a vertex vk ∈ P k
V such that ḡR(vk) 5 0.

〈k1〉 (termination) If either dT x̄k = 0 or ḡR(v) > 0 for all v ∈ P k
V then stop

(the optimal value of (mmFR) is ddT x̄ke). Otherwise, obtain the point

xk
ε ∈ (0, vk)∩∂ ḠR

ε . Note that Lemma 5.23 ensures that (0, vk)∩∂ ḠR
ε 6= ∅.

〈k2〉 (update) If xk
ε ∈ XR, obtain the point xk ∈ (0, vk] ∩ ∂ ḠR.

〈k2.1〉 If xk ∈ XR, meaning xk ∈ XR
M , then obtain the locally optimal

vertex zk ∈ XR
M ∩XR

V by applying the modified LS(xk) procedure,

and further obtain the point zk
ε ∈ (0, zk) ∩ ∂ ḠR

ε . Set x̄k+1 :=

argmin{dTzk
ε , dTxk

ε } and P k+1 := P k ∩ {x ∈ Rn−m | dTx 5
ddT x̄k+1 − 1e }.

〈k2.2〉 If xk 6∈ XR, meaning xk 6∈ XR
M , then set x̄k+1 := xk

ε and

P k+1 := P k∩{x ∈ Rn−m | dTx 5 ddT x̄k+1−1e, l(x) 5 0 }, with

some affine function l : Rn−m → R.

〈k3〉 If xk
ε 6∈ XR then set x̄k+1 := x̄k and P k+1 := P k∩{x ∈ Rn−m | l(x) 5 0 },

with some affine function l : Rn−m → R.

〈k4〉 Compute the vertex set P k+1
V of P k+1. Set k := k + 1 and go to 〈k〉.

Remark 5.27 The inequality l(x) 5 0 in Step 〈k2.2〉 and Step 〈k3〉 is given by one

of the inequalities B−1Nx 5 0, −B−1Nx 5 cB and x 5 cN not satisfied by the

point vk.

Lemma 5.28 Let zk be the locally optimal vertex obtained by applying the LS(xk)

procedure starting with xk in Step 〈k2.1〉 at iteration k, and suppose dTzk > 0.

Then dTzk′ < dTzk for iteration k′ such that k′ > k.
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Proof: It suffices to show that dTzk+1 < dTzk. By the construction of P k+1 we

have P k+1 j {x | dTx 5 ddT x̄k+1 − 1e }. Since xk+1 ∈ (0, vk+1] j P k+1 and zk+1

is obtained by LS(xk+1), we have

dTzk+1 5 dTxk+1 5 ddT x̄k+1 − 1e.

Since we assume that dTzk > 0, we have 0 < dTzk
ε < dTzk by the choice of zk

ε .

Therefore in Step 〈k2.1〉

ddT x̄k+1 − 1e < dT x̄k+1 = min{dTxk
ε , dTzk

ε } < dTzk.

Combining the two inequalities yields the desired result. 2

Theorem 5.29 The OA method for (mmF ) works correctly and terminates after

finitely many iterations with the optimal value of (mmF ).

Proof: (correctness) If NR
M(w0) = ∅ at the initialization step, we can conclude

from the connectedness of XR
M that w0 is a unique feasible solution of (mmFR) and

hence solves the problem. When the algorithm terminates in Step 〈k1〉, the optimal

value of (mmFR) is equal either to zero by Assumption 5.1 (ii), or to ddT x̄ke by

Theorem 5.12. So the optimal value is obtained whenever the algorithm terminates.

We suppose that the algorithm has not yet terminated at iteration k, i.e.,

dT x̄k > 0 and ḡR(vk) 5 0, and show that each step of the algorithm can be done.

Lemma 5.23 ensures that there are points xk
ε ∈ (0, vk)∩∂ ḠR

ε and zk
ε ∈ (0, zk)∩∂ ḠR

ε ,

in Step 〈k1〉 and Step 〈k2.1〉, respectively. Since 0 ∈ int ḠR and vk 6∈ int ḠR, there

also exists a point xk ∈ (0, vk]∩∂ ḠR. When xk
ε 6∈ XR, clearly vk 6∈ XR, and hence

the function l : Rn−m → R of Remark 5.27 can be found in Step 〈k3〉. To show

that the function l : Rn−m → R is found in Step 〈k2.2〉 we have only to show that

vk 6∈ XR. Suppose the contrary, i.e., vk ∈ XR. By the assumption that ḡR(vk) 5 0

and the fact that ḡR(x) = 0 for all x ∈ XR, we have ḡR(vk) = 0, i.e., vk ∈ ∂ ḠR,

and hence vk ∈ XR \ int ḠR = XR
M . This implies xk = vk ∈ XR

M by the choice of

xk, which contradicts that we are currently at iteration k2.2. Therefore we have

seen that vk 6∈ XR in Step 〈k2.2〉.
(finiteness) Suppose that the polytope P ν at iteration ν meets the condition

P ν j XR and P ν ∩XR
M = ∅, (5.28)
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after updated either in Step 〈k2〉 or in Step 〈k3〉, and consider the next iteration.

Since vν is chosen from P ν , we have vν ∈ XR \XR
M and consequently ḡR(vν) > 0.

Then the algorithm stops at Step 〈k1〉. Therefore we have only to prove that

(5.28) holds within a finite number of iterations. Note first that both Step 〈k2.2〉
and Step 〈k3〉 are done only a finite number of times. By the definition of l, the

polytope, say P k′ , when m+n cuts l(x) 5 0 have been added to the initial polytope

P 0, is contained in XR. Therefore vk′ as well as xk′
ε lies in XR, and hence we

obtain that xk′ = vk′ ∈ XR
M in the same way as in the former part of this proof.

Therefore we come to neither Step 〈k2.2〉 nor Step 〈k3〉 after iteration k′. Namely,

Step 〈k2.1〉 followed by Step 〈k4〉 repeats itself after iteration k′. For iteration k

with k = k′ + 1, we have xk ∈ XR
M . We then locate zk ∈ XR

M ∩ XR
V by applying

the LS(xk) procedure and obtain a point zk
ε ∈ (0, zk) ∩ ∂ ḠR

ε . If dTzk = 0 for

some k = k′ + 1 then we set x̄k+1 := zk
ε since dTzk

ε = dTzk = 0 5 dTxk
ε .

Then the incumbent value dT x̄k+1 becomes zero, and hence the algorithm stops

in Step 〈k1〉 at the next iteration. If dTzk > 0 for all k with k = k′ + 1, we

see that dTzk+1 < dTzk for all k = k′ + 1 by Lemma 5.28. Since |XR
M ∩ XR

V | is

finite, we eventually obtain a point zν−1 ∈ XR
M∩XR

V such that dTzν−1 5 dTz for all

z ∈ XR
M ∩XR

V . Also we have dTzν−1
ε < dTzν−1 by the choice of zν−1

ε . The polytope

P ν is then defined as P ν := P ν−1∩{x | dTx 5 ddT x̄ν−1e }, where x̄ν satisfies that

dT x̄ν = min{dTxν−1
ε , dTzν−1

ε } < dTzν−1. This means that P ν ∩ (XR
M ∩XR

V ) = ∅.
Since XR

M is a connected union of several faces of XR, we see that dTzν−1 5 dTx

for all x ∈ XR
M . Therefore we conclude that P ν ∩XR

M = ∅. 2

5.5.5 Effect of the decomposition by a basic matrix

In this section we would like to emphasize the point that the CS method for (mmF )

and the OA method for (mmF ) are well suited to the decomposition by a basic

matrix. In the improved CS method, we reduce the dimension of the cone to be

cut and splitted. Also, in the improved OA method, we enumerate vertices of the

polytope P with lower dimension. Furthermore, since XR has full dimension, it is

more likely that the incumbent is more frequently updated. This makes a sharp

contrast to the OA method for (mmF ). Note that in the OA method for (mmF ),

there is no possibilities that xk
ε ∈ (0, vk)∩∂ Ḡε is in X whenever vk is not contained
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in {x ∈ Rn | Ax = 0 } (See Figure 5.7).

X

{x | Ax = 0}

P k

vk

Figure 5.7: An explanation; there is no possiblilities that xk
ε ∈ X.

In the OA method, the parameter ε should be as large as possible but chosen

from (0, 1/δs). Adding a dummy source that only one arc goes out of, we can make

δs = 1 and then set ε approximately to one, e.g., ε = 0.99. Namely, defining

Ā =


−1 d

0 A


 , c̄ =




∑n
j=1 cj

c


 , and d̄ =

[
1 0

]
, (5.29)

and replacing (A, c, d) with (Ā, c̄, d̄), we have δs = 1, and hence we can take 0.99

as ε. This operation would increase the dimension of X, which can be a drawback

of the OA method for (mmF ), however, it would not change the dimension of XR.

We should notice that basically this decomposition technique does not reduce

the number of variables. Namely the number of variables in (mmFR) seems to be

reduced in comparison with (mmF ). However, taking into account slack variables

to be introduced, the effect of the decomposition by a basic matrix deteriorates.

As for implementation, we usually introduce slack variables and replace inequality

constraints by equality constraints. Namely we consider

Xs = { (x, s) ∈ Rn+n | Ax = 0, x + s = c, (x, s) = 0 }, (5.30)

instead of X of (4.1). Similarly in (mmFR), we consider

XR
s = { (x, s1, s2) ∈ R(n−m)+m+n | B−1Nx+s1 = 0, Tx+s2 = c, (x, s1, s2) = 0 },

(5.31)
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instead of XR of (5.18). Therefore, counting the slack variables, the number of

variables in (mmFR) equals that in (mmF ).

We also notice that since the variables of XR as well as that of X are bounded,

the simplex method with bounded variables is available when we solve optimization

problems over XR, e.g., when we evaluate the gap function ḡR(v) for some v ∈ P k
V .

5.5.6 Modification for non-integral capacity

In this thesis as well as in other studies for (mmF ), we assume that each capacity

is integer (See Assumption 5.1 (i)). In this subsection we remove this assumption

and explain the modification of our algorithms. When a network does not meet

Assumption 5.1 (i), the feasible region X does not enjoy the integrality property,

which played a crucial role in obtaining the optimal value. Then we need to modify

the algorithms so that the algorithms provide a solution x̄ ∈ XR such that dT x̄ <

dTx+ε for all x ∈ XR
M and for a fixed tolerance ε > 0. Fortunately this modification

is easily done as follows.

For the improved CS method we just replace Step 〈k2〉 with the following:

〈k2〉 (termination) Set R′ := {K ∈ R | βK < dT x̄ }. If R′ = ∅ or dT x̄ − γ < ε

then stop.

For the improved OA method we set ε := ε/δs to assure that dTx∗ε 5 dTx∗ 5
dTx∗ε + ε of Lemma 5.24. We construct the initial polytope P 0 as P 0 := {x ∈
Rn−m | ex 5 ζ, dTx 5 dT x̄0 − ε, x = 0 }, where ζ := max{ ex | x ∈ XR, dTx 5
dT x̄0 − ε }, so that we have P 0 k X(dT x̄0 − ε). Also when we cut the current

polytope P k by using new incumbent solution x̄k+1, we set P k+1 := P k ∩ {x ∈
Rn−m | dTx 5 dT x̄k+1 − ε }. It is readily seen that this modified algorithm also

terminates after finitely many iterations.

5.5.7 Modification for an existence of t-s-path

We assume in this thesis that there is no t-s-path (See Assumption 5.1 (ii)). In

this subsection we remove this assumption and explain the modification of our al-

gorithms. Let xo be a basic optimal solution of min{dx | x ∈ X }. When there is

the t-s-path in a network, the optimal value dxo is negative.
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For the improved CS method we just replace γ := 0 with γ := dxo at the

initialization step.

The modification of the improved OA method is also straightforward. At the

termination step 〈k1〉 we replace dT x̄k = 0 with dT x̄k = γ. And we replace (0, vk),

(0, vk] and (0, zk) with (xo, vk), (xo, vk] and (xo, zk), respectively, at step 〈k〉. It

is easy to prove the existences of xk
ε ∈ (xo, vk) ∩ ∂ ḠR

ε , xk ∈ (xo, vk] ∩ ∂ ḠR and

zk
ε ∈ (xo, zk) ∩ ∂ ḠR

ε . The finite convergence of the algorithm is also clear.

5.6 Computational Experiments

We generated ten instances for each combination of m (= |V \{s, t}|) and n (= |E|)
by using the generation procedure stated in Subsection 5.1.1. We fixed m to 14 and

varied n from 20 to 32. Each capacity ch is randomly chosen from {1, 2, . . . , 10}.
The program was coded in Octave 2.1.71 with Atlas 3.6.0 and C language compiled

by gcc 3.3.3 on cygwin 1.5.14-1, and run on DELL WORKSTATION PWS370 with

Intel Pentium 4 (R) 3.20 GHz, 1.00GB of RAM and Windows XP professional

version 2002 service pack 2.

5.6.1 Heuristics to locate an initial incumbent

By Theorem 3.5 and the definition of XR
M , we see that a solution x ∈ XR is in XR

M

if and only if there is a vector λ ∈ Λ such that x solves max{λTx | x ∈ XR },
where Λ = {λ ∈ Rn | λ = e, λ1 = M } for a sufficiently large M > 0. Shigeno-

Takahashi-Yamamoto [48] proved that n2 suffices for M . By the above observation,

in the initialization step of both the improved OA method and the improved CS

method, we easily obtain n starting points w1, · · · , wn by solving

(SC(λj))

∣∣∣∣∣∣
max

x∈Rn−m
λjTx

s.t. x ∈ XR,

where λj = (n2 − n)ej + e for j = 1, . . . , n. Note that λj is the jth vertex of Λ.

Applying the modified LS(wj) procedure, we obtain n locally optimal solutions. We

then set the incumbent to the best solution among the above solutions.

When we obtain a solution x̄ ∈ XR
M such that dT x̄ = 0 in the initialization step,
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we can immediately stop the algorithm, and hence we conclude that the iteration of

the algorithm is zero for this problem.

5.6.2 Result of the improved CS method for (mmF )

We show the numerical result of the improved CS method for n = 20 in Table 5.1.

The notations used in the table are as follows:

name : problem name

maxF : maximum flow value

mmF : minimum maximal flow value

itr : number of iterations needed

#prob : number of subproblems generated by ω-subdivision

dep : maximum depth of enumeration tree

LStime : CPU time in second to obtain the best locally optimal solution

time : total CPU time in second

Table 5.1: Result of the improved CS method (m = 14, n = 20)

name maxF mmF itr #prob dep LStime time

p20 0 8 5 60 168 9 9.734 55.594

p20 1 1 1 200 557 8 4.578 212.219

p20 2 1 0 0 0 0 1.156 1.156

p20 3 4 3 288 957 9 5.344 291.063

p20 4 3 1 75 229 8 8.734 79.813

p20 5 8 8 858 2423 11 4.875 1086.766

p20 6 2 2 10 38 4 2.515 17.390

p20 7 4 4 805 2170 14 4.734 875.844

p20 8 1 0 0 0 0 2.702 2.702

p20 9 7 6 442 1225 13 5.157 460.813

Note that for test problems p20 2 and p20 8 we obtained a solution x̄ ∈ XR
M such

that dT x̄ = 0 in the initialization step. For every test problem it turned out we
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had already obtained the optimal value in the initialization step, and hence the first

incumbent was not updated. However, we need to solve many subproblems to prove

optimality. While problems in Table 5.1 are relatively easy, long computational

time was needed. Since computation is estimated to become more costly as n

grows, we regrettably conclude that the improved CS method is not satisfactory.

Further improvements of the algorithm, especially improvement of the concavity

cut to strengthen the lower bound, would be required.

5.6.3 Result of the improved OA method for (mmF )

We show the numerical result of the improved OA method for n = 20, · · · , 32 in

Table 5.2-Table 5.6. The notations there are as follows:

name : problem name

#XR
V : number of vertices of XR

#XR
M : number of maximal flows in XR

V

maxF : maximum flow value

mmF : minimum maximal flow value

itr : number of iterations needed

#ḡR(v) : number of evaluations of the function ḡR

Vtime : CPU time in second to calculate the vertex set of P k

time : total CPU time in second

One of the most simple and primitive method for solving (mmFR) is an appli-

cation of vertex enumeration method. Namely to solve (mmFR), we enumerate all

vertices of XR, check if the vertex is a maximal flow by evaluating the gap function

and compare their flow values. Obviously the computational time needed is pro-

portional to the number of vertices of XR. On the other hand, the computational

time of the improved OA method is also needed in proportion to the number of

evaluations of the function ḡR(v) for v ∈ P k
V . Then we can say that the improved

OA method works efficiently when #ḡR(v) is much smaller than #XR
V . We observe

from Table 5.2-Table 5.6 that the improved OA method surpasses an application of

vertex enumeration method in computational time, especially as the number n of
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arcs grows. Take the test problem p28 8 for example. For this test problem only 172

evaluations of the function ḡR(v) ensured the optimality while X has about 5000

vertices. We also observe that for every test problems we have already obtained

the optimal value in the initialization step, and hence the first incumbent was not

updated. Therefore we can say that our local search procedure is considerably good.

Furthermore we observe that the minimum maximal flow value is likely to be zero

as n grows.
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Table 5.2: Result of the improved OA method (m = 14, n = 20, 21, 22)

name #XR
V #XR

M maxF mmF itr #ḡR(v) Vtime time

p20 0 32 11 8 5 8 41 0.125 19.265

p20 1 48 4 1 1 8 29 0.032 12.437

p20 2 32 7 1 0 0 0 0 0.485

p20 3 44 8 4 3 7 42 0.046 15.281

p20 4 55 8 3 1 8 39 0.016 18.343

p20 5 42 14 8 8 7 56 0.032 16.313

p20 6 20 4 2 2 7 29 0.000 9.952

p20 7 31 12 4 4 7 43 0.015 13.641

p20 8 12 5 1 0 0 0 0 0.468

p20 9 39 16 7 6 7 44 0.048 14.359

p21 0 152 15 8 7 12 191 0.125 55.344

p21 1 38 8 2 0 0 0 0 0.484

p21 2 40 10 2 0 0 0 0 0.687

p21 3 124 12 6 6 12 168 0.032 42.875

p21 4 96 4 4 2 7 47 0.063 24.891

p21 5 60 6 16 13 11 84 0.015 30.781

p21 6 26 7 3 1 4 7 0.032 15.079

p21 7 64 8 4 2 6 42 0.047 35.703

p21 8 72 16 3 3 7 46 0.030 17.563

p21 9 64 6 5 5 8 78 0.048 21.782

p22 0 22 19 2 0 0 0 0 0.703

p22 1 13 12 1 0 0 0 0 0.515

p22 2 324 5 8 7 14 448 0.139 122.343

p22 3 21 13 1 1 4 19 0.000 9.657

p22 4 122 45 7 4 10 121 0.031 35.500

p22 5 212 30 7 4 12 212 0.092 58.329

p22 6 35 11 2 1 6 19 0.047 13.391

p22 7 44 19 2 2 6 39 0.000 14.859

p22 8 212 38 10 10 14 227 0.016 57.250

p22 9 23 12 2 2 4 20 0.016 11.344
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Table 5.3: Result of the improved OA method (m = 14, n = 23, 24, 25)

name #XR
V #XR

M maxF mmF itr #ḡR(v) Vtime time

p23 0 224 12 1 0 0 0 0 0.233

p23 1 59 18 1 0 0 0 0 0.531

p23 2 152 32 5 0 0 0 0 8.673

p23 3 80 12 7 7 11 140 0.015 42.563

p23 4 200 32 3 2 10 114 0.046 40.750

p23 5 214 37 2 0 0 0 0 0.562

p23 6 32 7 1 0 0 0 0 0.563

p23 7 124 30 7 7 10 125 0.032 35.499

p23 8 458 81 5 4 16 478 0.063 124.328

p23 9 311 70 4 3 11 210 0.078 64.515

p24 0 39 8 2 2 9 53 0.016 25.922

p24 1 38 10 1 0 0 0 0 0.625

p24 2 60 20 5 2 7 40 0.048 42.610

p24 3 348 131 4 0 0 0 0 0.718

p24 4 120 16 4 2 9 77 0.062 32.626

p24 5 37 16 4 1 8 37 0.032 34.047

p24 6 326 80 10 6 10 201 0.063 59.094

p24 7 84 28 4 3 8 134 0.000 47.094

p24 8 68 20 4 0 0 0 0 1.047

p24 9 380 16 2 0 0 0 0 0.750

p25 0 536 148 9 4 10 227 0.063 73.891

p25 1 439 180 4 0 0 0 0 1.422

p25 2 384 60 4 2 12 193 0.126 69.203

p25 3 2250 258 7 4 12 758 0.171 220.719

p25 4 1024 36 3 1 14 260 0.108 112.750

p25 5 816 291 8 1 12 70 0.063 60.484

p25 6 246 92 6 6 11 353 0.077 95.234

p25 7 426 68 3 2 12 253 0.110 81.328

p25 8 512 18 5 5 8 521 0.077 128.171

p25 9 1232 259 7 5 16 842 0.155 226.000
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Table 5.4: Result of the improved OA method (m = 14, n = 26, 27, 28)

name #XR
V #XR

M maxF mmF itr #ḡR(v) Vtime time

p26 0 556 44 5 4 14 512 0.079 152.610

p26 1 352 111 1 0 0 0 0 0.656

p26 2 44 21 5 4 9 52 0.061 29.126

p26 3 330 128 2 0 0 0 0 0.265

p26 4 380 60 6 3 10 168 0.141 65.954

p26 5 1178 216 2 0 0 0 0 0.640

p26 6 192 14 7 6 13 268 0.109 94.813

p26 7 1052 171 15 10 17 1211 0.469 377.844

p26 8 2128 94 5 5 16 2867 0.483 728.000

p26 9 192 51 2 0 0 0 0 0.860

p27 0 1812 70 7 2 12 501 0.141 203.188

p27 1 2844 893 4 0 0 0 0 1.359

p27 2 584 71 4 2 13 445 0.172 157.687

p27 3 6603 574 5 0 0 0 0 18.687

p27 4 640 348 4 0 0 0 0 1.046

p27 5 560 464 2 0 0 0 0 0.937

p27 6 120 36 4 2 9 147 0.094 58.828

p27 7 56 13 1 0 0 0 0 0.251

p27 8 166 32 6 5 11 188 0.079 91.297

p27 9 120 94 3 0 0 0 0 0.609

p28 0 2309 1250 2 2 15 1483 0.438 435.360

p28 1 970 407 6 0 0 0 0 1.235

p28 2 352 99 1 0 0 0 0 1.001

p28 3 392 70 4 0 0 0 0 2.609

p28 4 2056 341 2 2 16 1314 0.377 414.859

p28 5 5532 1198 12 10 20 5589 1.905 1668.359

p28 6 96 33 3 0 0 0 0 0.218

p28 7 1106 477 2 0 0 0 0 0.797

p28 8 5934 401 4 1 15 172 0.077 94.078

p28 9 12138 2024 14 14 28 12588 106.534 3847.781
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Table 5.5: Result of the improved OA method (m = 14, n = 29, 30, 31)

name #XR
V #XR

M maxF mmF itr #ḡR(v) Vtime time

p29 0 21328 2856 2 0 0 0 0 1.187

p29 1 36 25 1 0 0 0 0 0.813

p29 2 88 24 3 1 11 20 0.110 39.563

p29 3 1388 379 5 2 15 570 0.347 231.048

p29 4 1948 281 13 9 18 1976 0.908 673.625

p29 5 193 141 4 3 12 107 0.109 68.046

p29 6 2412 308 6 1 15 588 0.203 232.250

p29 7 584 88 8 1 10 57 0.064 59.844

p29 8 3013 398 5 0 0 0 0 1.141

p29 9 424 90 11 8 13 421 0.185 192.155

p30 0 7126 1113 1 1 23 1105 0.472 448.017

p30 1 40 19 1 0 0 0 0 0.266

p30 2 29682 1774 13 7 27 26838 111.998 9696.844

p30 3 2288 434 4 0 0 0 0 1.937

p30 4 86 32 2 1 10 34 0.094 29.063

p30 5 2751 1249 2 0 0 0 0 1.140

p30 6 22336 3608 6 6 24 22029 42.922 7679.844

p30 7 17940 858 5 0 0 0 0 2.063

p30 8 1124 178 3 0 0 0 0 0.250

p30 9 476 215 2 0 0 0 0 1.406

p31 0 17330 1837 6 4 20 17459 28.453 6305.281

p31 1 292 93 3 0 0 0 0 1.453

p31 2 648 56 3 0 0 0 0 1.999

p31 3 5030 872 3 0 0 0 0 0.828

p31 4 4767 290 1 1 22 2114 1.174 768.328

p31 5 352 56 4 0 0 0 0 1.547

p31 6 65178 2254 3 0 0 0 0 0.298

p31 7 5998 2244 2 0 0 0 0 1.234

p31 8 660 66 4 0 0 0 0 13.188

p31 9 3384 144 14 6 19 3066 1.403 1184.359
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Table 5.6: Result of the improved OA method (m = 14, n = 32)

name #XR
V #XR

M maxF mmF itr #ḡR(v) Vtime time

p32 0 8172 1289 2 0 0 0 0 0.281

p32 1 4901 545 2 0 0 0 0 3.109

p32 2 275432 11332 5 2 28 162125 13180.059 103012.640

p32 3 52910 8047 5 0 0 0 0 3.422

p32 4 84799 10442 9 0 0 0 0 17.688

p32 5 28314 5272 10 4 21 15638 34.827 8805.343

p32 6 101027 6630 5 0 0 0 0 1.312

p32 7 8682 1235 5 1 18 814 0.580 636.437

p32 8 139377 10678 7 0 0 0 0 2.110

p32 9 3544 404 7 7 17 4550 2.970 2476.688

5.6.4 Result of the method in Section 4.2

To compare the improved OA method and the method in Section 4.2, we show the

numerical result for n = 20, · · · , 22 in Table 5.7. The notations used in the table

are as follows:

name : problem name

#XR
V : #XR

V in Table 5.2

#ḡR(v) : #ḡR(v) in Table 5.2

maxF : maximum flow value

mmF : minimum maximal flow value

itr : number of iterations needed

#up : number of update

#τα(λ) : number of evaluations of the function τα

Vtime : CPU time in second to calculate the vertex set of epi σW

time : total CPU time in second

We observe from Table 5.7 that the method in Section 4.2 requires more eval-
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uations of the function τα to check the optimality than the improved OA method

requires the evaluation of ḡR. Since the computational time is needed in proportion

to #τα(λ), we can say that the improved OA method surpasses the method in Sec-

tion 4.2. Since the dimension of epi σW is n + 1, the computational time begins to

grow rapidly when n is about 22. We also observe that there are some test prob-

lems for which we have not obtained the optimal value in the initialization step, and

hence the first incumbent was updated (See rows of p20 0, p20 3, p20 9 and p22 4

in Table 5.7). Such differences between the improved methods and the method in

Section 4.2 are due to the modification of the local search procedure. This is also a

merit of the decomposition technique by the basic matrix.

5.6.5 Figures of test problems p20 2 and p20 5

From the numerical results we observe that the maximum flow value and the mini-

mum maximal flow value are different for a good many instances. However it is not

easy to say if these values are different for a given network. Take problems p20 2

and p20 5 for examples. For p20 2 these values are different: the minimum maximal

flow value is 0 while the maximum flow value is 1. On the other hand, for p20 5

both values are 8. We show examples of a maximal flow and a minimum maximal

flow for p20 2 in Figure 5.8 and for p20 5 in Figure 5.9, respectively.
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Table 5.7: Result of the method in Section 4.2 (m = 14, n = 20, 21, 22)

name #XV #ḡR(v) maxF mmF itr #up #τα(λ) Vtime time

p20 0 32 41 8 5 11 1 760 5.906 49.436

p20 1 48 29 1 1 2 0 47 0.000 6.406

p20 2 32 0 1 0 0 0 0 0 0.547

p20 3 44 42 4 3 5 1 93 0.079 9.844

p20 4 55 39 3 1 5 0 360 0.235 25.906

p20 5 42 56 8 8 5 0 137 0.234 11.469

p20 6 20 29 2 2 4 0 158 0.110 9.579

p20 7 31 43 4 4 9 0 619 4.953 42.203

p20 8 12 0 1 0 0 0 0 0 0.532

p20 9 39 44 7 6 13 1 1085 74.111 133.298

p21 0 152 191 8 7 7 0 235 4.374 33.062

p21 1 38 0 2 0 0 0 0 0 0.188

p21 2 40 0 2 0 0 0 0 0 0.688

p21 3 124 168 6 6 5 0 131 0.139 15.796

p21 4 96 47 4 2 2 0 65 0.016 13.859

p21 5 60 84 16 13 3 0 81 0.061 16.109

p21 6 26 7 3 1 1 0 44 0.000 15.890

p21 7 64 42 4 2 6 0 116 0.187 32.719

p21 8 72 46 3 3 8 0 959 1.888 58.546

p21 9 64 78 5 5 4 0 144 0.094 12.298

p22 0 22 0 2 0 0 0 0 0 0.577

p22 1 13 0 1 0 0 0 0 0 0.438

p22 2 324 448 8 7 2 0 61 0.016 27.235

p22 3 21 19 1 1 5 0 322 0.234 19.890

p22 4 122 121 7 4 46 1 4448 7438.077 7686.390

p22 5 212 212 7 4 12 0 4208 1160.486 1411.188

p22 6 35 19 2 1 3 0 82 0.016 9.484

p22 7 44 39 2 2 6 0 1700 24.733 126.093

p22 8 212 227 10 10 17 0 10918 3141.468 3791.937

p22 9 23 20 2 2 6 0 2112 3.533 103.297
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Figure 5.8: maximum flow vs. minimum maximal flow for p20 2
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Figure 5.9: maximum flow vs. minimum maximal flow for p20 5





Chapter 6

Conclusion and Further Works

In this chapter we sum up our study and list some possible further works.

6.1 Conclusion

We considered the minimum maximal flow problem which we think is one of typ-

ical and most difficult optimization problems over the efficient set. We used the

integrality property of network flow problems and developed two algorithms: the

cut-and-split method and the outer approximation method based on the D.C. opti-

mization algorithms.

Exploiting the flow conservation equations of the problem, we further proposed

an improvement on the algorithms by reducing the number of variables. Concerning

the convergence of the algorithms, we showed that the outer approximation method

terminates after finitely many iterations with the optimal value. We also extended

the gap function to the whole space. Finally we carried out the computational

experiment. We observed from the numerical results that the improved OA method

works efficiently for many problems and surpasses both an application of vertex

enumeration method and the method in Section 4.2 in computational time, especially

as the number of variables grows. We also observed that our heuristics using the

modified local search procedure provides a pretty good initial incumbent.

143
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6.2 Further Works

More computational experiments should be carried out to verify the efficiency of

the algorithms we proposed in this thesis. In many problems formulated as (PE)

the criterion matrix C has quite a small number p of rows. Some sophisticated

algorithms for (PE) take advantage of this property. However, in (mmF ) the number

p is equal to the number of arcs, i.e., p = n. Therefore it is likely that a primitive

method surpasses some sophisticated algorithms. A well-organized comparative

study of algorithms for (mmF ) is necessary.

6.2.1 The way of finding an optimal solution

As we have shown in Section 5.4, the OA method provides the optimal value but

may fail to provide an optimal solution of (mmF ). Finding an optimal solution

is still a hard task even when its value is at hand, however, the following lemma

affords a clue to the way of finding an optimal solution.

Lemma 6.1 Let ε ∈ (0, 1), x∗ε be an ε-optimal solution of (mmF ) and

∆ε = { ξ ∈ Rn | Aξ = 0, ξ = 0, eξ 5 ε }. (6.1)

If x∗ε + ξ̄ is an integer vector for some ξ̄ ∈ ∆ε then x∗ε + ξ̄ is an optimal solution of

(mmF ).

Proof: (feasibility) Let x∗ = x∗ε + ξ̄ and y∗ be an optimal solution of max{ ey |
y ∈ X, y = x∗ }. Note that

ex∗ is integer, (6.2)

ex∗ε 5 ex∗ 5 ey∗, (6.3)

and also

ey∗ is integer, (6.4)

since X ∩ {y | y = x∗ } inherits the integrality property of X.

Suppose we have the inequality

ey∗ < ex∗ε + 1. (6.5)
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Then by (6.3) and (6.5) together with the integrality of ex∗ and ey∗ we see that

ex∗ = ey∗. Hence ḡ(x∗) = ey∗ − ex∗ = 0, meaning that x∗ ∈ XM .

The inequality (6.5) is seen as follows. Let y∗ε be an optimal solution of max{ ey |
y ∈ X, y = x∗ε }, and let ξ∗ = y∗ε −x∗ε. We see that Aξ∗ = Ay∗ε −Ax∗ε = 0, ξ∗ = 0

and eξ∗ = e(y∗ε − x∗ε) = g(x∗ε) 5 ε, and hence ξ∗ ∈ ∆ε. Then ey∗ε = e(x∗ε + ξ∗) 5
ex∗ε +ε < ex∗ε +1. The point y∗ is a feasible solution of max{ ey | y ∈ X, y = x∗ε },
since y∗ ∈ X and y∗ = x∗ = x∗ε + ξ̄ = x∗ε. Then we see that e(y∗ε − y∗) = 0, and

hence ey∗ 5 ey∗ε < ex∗ε + 1.

(optimality) We show that x∗ solves (mmF ). Clearly, dξ̄ 5 eξ̄ since d 5 e and

ξ̄ = 0. For any v ∈ XM ∩XV , we see that g(v) 5 ε, and v is an integer vector by

the integrality property of X. Since x∗ε = x∗− ξ̄ is an optimal solution of (mmFε),

we have dx∗ε 5 dx for all x ∈ X such that g(x) 5 ε, and hence dx∗ε 5 dv for all

v ∈ XM ∩XV . Then we see that dx∗ = dx∗ε + dξ̄ 5 dv + eξ̄ < dv + 1. Since both

x∗ and v are integer vectors, we have dx∗ 5 dv for all v ∈ XM ∩XV . 2

6.2.2 Improvement of the outer approximation method of

the parameter set

The fact that T of (5.19) has n rows, which corresponds the criteria, is also a

drawback of the variable reduction technique in Section 5.5. When we apply the

outer approximation algorithm stated in Section 4.2 to (mmFR), we consider

∣∣∣∣∣∣∣∣∣

min
x∈Rn−m

dTx

s.t. (x, λ) ∈ XR × Λ

λTx = λTx′ for all x′ ∈ XR.

Note that Λ has only n vertices, which we will denote by λ1, · · · , λn. This problem

is equivalent to

∣∣∣∣∣∣∣∣∣

min
x∈Rn−m

dTx

s.t. (x, t) ∈ XR × Λ(T )

tx = tx′ for all x′ ∈ XR,
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where

Λ(T ) = {λT ∈ Rn−m | λ ∈ Λ } = conv{λ1T, · · · , λnT}.

By the above observation, if we find the minimal set of inequality constraints defining

Λ(T ), we can reduce the dimension of the parameter set in Section 4.2. However,

it is difficult to find such set of inequality constraints.

6.2.3 The way of constructing the submatrix T of (5.19)

We do not know at present which submatrix is theoretically best as the basic matrix

of the decomposition. The matrix T of (5.19) is

T =


−B−1N

I


 ,

and its size is n × (n − m). If a row of −B−1N is nonnegative, it is obviously a

nonnegative linear combination of rows of I. Hence, it can be deleted from the

beginning. Let T ′ be the matrix after deleting all such rows from T . Then the

downsized problem

∣∣∣∣∣∣∣∣∣

min
x∈Rn−m

dTx

s.t. x ∈ XR

@yN ∈ XR : T ′yN = T ′xN and T ′yN 6= T ′xN

is equivalent to (mmFR). Therefore, it is desirable to find the basic matrix B such

that −B−1N has as many nonnegative rows as possible. The efficient algorithm for

finding such a basic matrix, however, awaits future studies.
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A Uncontrollable Flow

The concept of uncontrollable flow, raised by Iri [29–31], is closely related to but

slightly different from the maximal flow.

Given the directed network N = (V, E, c) in Section 4.1, let

supp(x) = {h ∈ E | xh 6= 0 }, (6.6)

and

F =



 x ∈ Rn

Ax = 0, x = 0, fv(x) = 0, and

supp(x) is an elementary s-t-path



 . (6.7)

A flow x is said to be an uncontrollable flow, abbreviated to u-flow, if x is a non-

negative combination of flows in F . Note that x = 0 is a trivial u-flow. An u-flow

x is said to be feasible if x 5 c. And a feasible u-flow x is said to be maximal if

there is no u-flow x′ such that x′ 6= 0 and x + x′ is feasible. Figure 6.1 shows an

example of a maximal u-flow. Note that the flow in this figure is not maximal flow.

1/1
v2

s t

v1

1/1

1/1

1/1

1/21/2

flow / capacity

Figure 6.1: An example of maximal u-flow
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B Dual Simplex Method

We review the dual simplex method. The aims of Appendix B are to solve

∣∣∣∣∣∣∣∣∣∣∣∣

min
x∈Rn

dx

s.t. Ax = b

x = 0

ejx 5 0 for j ∈ Iz(w),

where Iz(w) = { j | wj = 0 } for a given w ∈ Rn, and to obtain the corresponding

basic matrix of the system Ax = b, x = 0.

/** dual simplex method **/

〈0〉 (initialization) We first solve

∣∣∣∣∣∣∣∣∣

min
x∈Rn

dx

s.t. Ax = b

x = 0.

Let IB0 and IN be the index set of the optimal basic variables and nonbasic

variables, respectively. Introducing slack variables sj for j ∈ Iz(w), we extend

the problem to

∣∣∣∣∣∣∣∣∣∣∣∣

min
(x,s)

dx

s.t. Ā


x

s


 = b̄

(x, s) = 0,

where

Ā =


A O

A′ I


 , A′ =

[
ej

]
j∈Iz(w)

, and b̄ =


b

0


 .
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The current tableau is

A O b

A′ I 0

d 0 min

(6.8)

Defining IB = IB0 ∪{n+1, . . . , n+ |Iz(w)|}, we obtain matrices B =
[
aj

]
j∈IB

and N =
[
aj

]
j∈IN

, where aj is the jth column of Ā.

〈k1〉 (dual simplex phase) Let (dB, dN) be the partition of (d, 0) corresponding

to B and N . Set b̄ := B−1b̄. If b̄ = 0, meaning the current basic solution is

feasible, then go to 〈k2〉 (Since d̄ = 0 is always met in the dual simplex phase,

if b̄ = 0 then we obtain an optimal solution). Otherwise, choose the rth row

of b̄ such that b̄r < 0. Set d̄ := dN − dBB−1N and β := βrN , where βr is

the rth row of B−1. If β = 0, stop (there is no feasible solution). Otherwise,

solve

s ∈ arg min

{
d̄j

βr
j

∣∣∣∣ d̄j < 0

}
. (6.9)

Update B and N by pivotting at (s, r), and go to 〈k1〉.

〈k2〉 (deleting phase) Let IB be the index set of the current basic variables. If

{n + 1, . . . , n + |Iz(w)|} j IB then set IB := IB \ {n + 1, . . . , n + |Iz(w)|}
and stop (the desired index set IB is obtained). Otherwise, choose j ∈ {n +

1, . . . , n + |Iz(w)|} \ IB and add it into IB by pivotting.

C An idea to reduce the number of variables

After explaining a possible way to reduce the number of variables of (mmF ) we

demonstrate that it does not work well due to the high degeneracy of the problem.

An idea to reduce the variables is a combination of primal and dual representa-

tions of the feasible region X = {x ∈ Rn | Ax = 0, 0 5 x 5 c }. First choose a

vertex v0 ∈ XV ∩ int Ḡ and enumerate all, say q adjacent vertices v1, . . . , vq ∈ XV
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linked to v0. Then X can be rewritten as

X =

{
x ∈ Rn

∣∣∣∣ x = v0 +

q∑
i=1

µi(v
i − v0), 0 5 x 5 c, µ = 0

}
.

Letting V =
[
v1 − v0 · · · vq − v0

]
∈ Rn×q, we define

XR = {µ ∈ Rq | 0 5 v0 + V µ 5 c, µ = 0 }, and

XR
M = {µ ∈ XR | ḡR(µ) 5 0 },

where

ḡR(µ) = max{ eV ν − net | ν ∈ XR, V ν + t = V µ, t = 0 } − eV µ.

Then the problem (mmF ) is equivalent to

(mmFR)

∣∣∣∣∣∣
min
µ

d(v0 + V µ)

s.t. µ ∈ XR
M .

If q < n, (mmFR) is worth considering, however, q can be much larger than n in

spite of the low dimensionality of X. Take the network in Figure 6.2 with unit

capacity for all arcs, i.e., c = e, and take the origin 0 as v0 ∈ XV ∩ int Ḡ. Then

we see that the unit flow conveyed along a simple path from source to sink is a

vertex of X linked to the origin. This means that q is as many as the simple paths

from source to sink, which amounts to 33 = 27 in this example while n = 15 and

dim X = 13.

s t

Figure 6.2: The case where q is larger than n
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[15] V. Chvátal. Linear programming. W.H. Freeman and Campany, New York,

1983.

[16] J. P. Dauer and T. A. Fosnaugh. Optimization over the efficient set. J. Global

Optim., 7:261–277, 1995.

[17] J. G. Ecker and I. A. Kouada. Finding efficient points for linear multiple

objective programs. Math. Program., 8:375–377, 1975.

[18] J. G. Ecker and I. A. Kouada. Finding all efficient extreme points for multiple

objective linear programs. Math. Program., 14:249–261, 1978.

[19] J. G. Ecker and J. H. Song. Optimizing a linear function over an efficient set.

J. Optim. Theory Appl., 83(3):541–563, 1994.

[20] R. M. Freund and J. B. Orlin. On the complexity of four polyhedral set con-

tainment problems. Math. Program., 33:139–145, 1985.

[21] K. Fukuda and A. Prodon. Double description method revisited. In Combina-

torics and Computer Science, pages 91–111, 1995.



Bibliography 155
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