Chapter 8

Schema Evolution and View Management in Metrics Databases
using Recursive Graphs
8.1 Introduction

A central theme in this dissertation is to show the value of collecting, storing, and using
software as well project management metrics in improving the quality of software as a product. A
key lesson learned from any successful project is to gain valuable experience for any future
projects that might produce similar or related products. Thus, metrics data collected during the
execution of a project has value beyond the project for which it was collected, and thus the life of
a metrics database may be well beyond the initial project it was created to help manage.

A key issue that arises for long-lived databases, especially those that are put to
subsequent use in related applications, is one of evolution. One Kind of evolution is the addition
of new data. This is rather easy to handle, and some issue such as explicitly managing the
temporal component may ar.ise. Issues in, and techniques for, handling temporal data have been
discussed in the previous chapter. A different, and perhaps more involved, is the issue of change
in the structure of the database itself .

In this chapter, we discuss the issues in the evolution of metrics databases. Specifically,
we examine how the database schema as well as the database evolve with time and the changing
needs of various software projects. In Section 8.2 we present the problem of schema evolution of
metrics databases. In section 8.3 we provide a brief overview of the theory of recursive graphs, or
R-graphs, [BUC79,KUN80,KUN90], and in Section 8.4 show how the problem of database

schema evolution can be formulated in terms of evolution of R-graphs. The theory of R-graphs

has been well established, and its properties with respect to structural changes has been well

8-1

studied. In section 8.5 we discuss the issues in metrics database evolution, and how they are
handled by the R-graph formalism. Based on our findings given in this thesis, we propose a
software metrics database system in Section 8.6.
8.2 Schema Evolution in Metrics Databases

Consider an entity-relationship (E-R) based database schema as shown in Figure 8.1.

Kl fZ 1 r2 Q lb2 / b3
A

a3 R_ab B b4

/0 >\/i /N

ad as 3 r4 b5 b6

Figure 8.1. Initial Database Schema

This schema has two entities, namely A and B, and a relationship R_ab between them.
The entities' A and B, and the relationship R_ab, have five, six, and four atiributes respectively.
Assume that this schema represents the initial database. We now consider the fﬁllowing types of
schema modifications:
» collection of new information about entities and relationships, leading to the addition of
attributes to existing entities and relationships in the schema;
« change of domains of existing attributes, e.g. expansion of a valid range of values,
s collection of information about new relationships, leading to establishment of new
relationships between entities, and
¢ collection of information about new entities, leading to creation of new entities.
8.2.1 Attribute Addition and Deletion
As databases evolve, new information may be collected about existing entities, as the pre-

existing information may not be sufficient for newer applications. Figure 8.2 shows the new

8-2

scherna after new attributes, a6 and »5, have been added to the entity A and the relaﬁonship R_ab

respectively. Also, the attribute b6 has been deleted from entity B, as this is perhaps no longer

needed.
ab rl 2 bl b2 b3
AN /
R_ab B b4
/
3 ’ 4 b5
S

Figure 8.2: Schema After Attribute Addition/Deletion
An example of attribute addition, as given in Chapter 2, is the addition of the cost-of-
manpower attribute as part of the cost metric. That is, we may want to collect data denoting the
cost of manpower for each activity in addition to softv;'are costs. The original _cost metric has the
following tunles, as illustrated in Figure 8.3.

<Data_Date, System_Name, Activity_Type, BWCS, BWCP, AWCP>

Data_Date System_Name Activity_Type

|

Cost

|

BWCS BWCP AWCP
Figure 8.3: Original Schema for Cost Metric Entity

After we add the new cost-of-manpower attribute we have a new cost metric as foliows:
<Data_Date, System_Name, Activity_Type, BWCS, BWCP, AWCP, Manpower>

This is illustrated in Figure 8.4.

8-3

Data_Date System_Name Activity_Type

|

Cost

BWCS BWCP AWCP
Figure 8.4: Adding the Manpower Attribute to the Cost Metric Entity

Manpower

8.2.2 Creating New Relationships
If SCH is the set of all schemas, this schema evolution can be modeled as an operation
op..1 on schemas, which takes one as input and produces another schema as output, or
new_schema < op_I1{old_schema, attributes_to-Add, attributes_to_delete)
As databases evolve, new relationships may emerge amongst existing entities, which then

need to be modeled for meeting the needs of new applications.

ad

sl s2

Figure 8.5: Schema After Adding Relationship
Figure 8.5 shows the schema that emerges when a new relationship, namely S_ab,
between the entitities A and B has been identified and modeled as part of the database schema.
This schema evolution could be modeled as an operation, op_2, which works on schemas, as
follows:

8-4

new_schema_ < op_2(old_schema, relationships_to_add, relationships_to_delete)

As an example, given the relationships between metrics illustrated in the table in Figure
2.4 of Chapter 2, that the Fault Profiles Metric entity is related to the Reliability Metric entity by
the “decreases” relationship; that is, high overall values for the Fault Profiles metric decreases
reliability. This will be modeled originally as given in Figure 8.6. For simplicity, the attributes

for the Fault Profiles and Reliability metrics are referred to in generic terms as f1, £2, ..., and rl,

r2, ... respectively.

fl £2 rl r2 3

Fault
Profiles

decrease

ANEVARN

f3 f4 4 r5

Figure 8.6: Original Relationship Between Fault Profiles and Reliability Entities
Suppose we now want to add another “time” relationship to the two entities; that is, as the

overall values for the Fault Profiles metric drop over time, the reliability of the system

correspondingly increases. The new schema is illustrated in Figure 8.7.

fl f2 rl r2 3
N/
— Fat_m - decrease + Reliabilit
Profiles \ / \
3 f4 r4 s

AN

Figure 8.7: New “Time” Relationship Between Fault Profiles and Reliability Entities

8-5

8.2.3 Creating New Entities

Sometimes, as a metrics database evolves, it may be deemed necessary to collect
information about entirely new kinds of entities, which were not even being considered earlier.
Often this happens in response to (a) the needs of some new project, or (b) a more refined mode!
of the reality whereby the need arises to model more entities. Conversely, sometimes it might be
considered that some entities either do not exist anymore, or are simply not of interest, and hence
information about them may not be collected any more. Such decisions can cause entiticé to be

added to/ deleted from the metrics database schema, as shown in Figure 8.8.

1 a2 I r2 bl b2 b3
a3 A R_ab B b4
/N ->\/<i / 1\
a4 as cl 13 4 bs b6
| A
cZ2] C T_

Figure 8.8: Schema After Addition of a New Entity
As shown in Figure 8.8, the original schema ilfustrated in Figure 8.1 has been modified to
add the new entity C. A new entity is almost always added along with at least one new
relationship, usually one that connects the new entity to some existing entity. The reason for this
is that the existence of a new entity, and the subsequent need to model it, is realized in context of
some existing portion of the database schema. This naturally gives rise to such a relationship.

Once again, this schema restructuring can be modeled as an operation, op_3 which operates on

schemas to produce new ones, as follows:

8-6

new_schema < op_3(old_schema, entities_to_add, relationships_to_add)
8.3 Recursive Graphs (R-graphs): A Brief Introduction

Recursive graphs, or R-graphs, is a formalism first introduced by Kunii et al
{KUN90,BUC79] to develop the mathematical basis for developing a methodology and tool for
interactive system design using a visual paradigm [KUNBSO]. The recursive graph formalism
(RGF) consists of recursive graphs (R-graphs) and recursive graph operators (R-operators) to
manipulate them.
8.31 R-Graphs

Traditionally, the most popular way of representing structures is by a graph, both because
of its formalism as well as visual appeal. A graph G is a triple which consists of nodes N, arcs A,
and an arc function af, specifying the ordered node pairs to which arcs are incident. Then,

G=(N, A, af), where af: A > NxN.
Usually, systems are represented by nodes, and their relationships by arcs. To lay a mathematical
foundation which can incori)oratc a system designer’s intuitive recursive (hierarchical) view of
system design, the standard graph theory formalism has been extended to R-graphs [Kunii &
Harada 1980]. First, an arc function af is extended to map an arc to a pair of node subsets such
that af: A = 2 exp(N) x 2 exp(N). This extension is useful for a designer to relate groups of
nodes by an arc. Next, a subnode function (sn: N <> 2 exp(N)), a port function (pt: N > 2
exp(N)), and a subarc function (sa@ A 2 2 exp(A)) are introduced to incorporate inclusion
relationships among system, interface relationships among systems, and inclusion relationships
among associations, respectively. These extensions increase the structure — representation

capabilities of graphs, i.e. a node semantic function (ns: N > NR) and an arc semantic function

(as: A > AR) are introduced to link nodes and arcs to node records NR and arc records AR,
respectively. Formally, an R-graph is represented by the following tuple:

R =(N, A, af, sn, pt, sa, ns, as)

Here:

N : set of nodes in R-graph

A: set of arcs in R-graph

af: A—> 2V x 2N It is arc function specifying the ordered node pairs to which arcs are incident.
This function allows users to relate groups of nodes by an arc.

sn: N> 2V (sub-node function), pt: N =2 2N(port function), and sa : A= 2% (port function) are
extension functions to incorporate system inclusion, system interface and association inclusion
relationships, respectively. These extensions can enhance the abstraction capabilities of the R-
graph.

ns:N = NR is a node semantic function, that links nodes to nodes records NR, in a relational

schema,

as: A 2> AR is a link semantic function, that links nodes to nodes records NA, in a relational

schema.

The above definition of R-graph is augmented with a set of operators (JOIN, ZIN, ZON,

EXN, SEL, DEL, SURV) to complete the Recursive-Graph Formalism (RGF). These operators

are discussed below.

The most prominent features of RGF include its capability to allow hierarchical design

evolution of complex systems and design automation.

8-8

The domains of the functions af, sn, pt, sa, ns, and as are extended to incorporate the value
“undefined” or “under-defined”, and the value “over-defined” or “redundant”.

Given an R-graph, repeated applications of sn and pt to the nodes and of sa to the arcs
produces a hierarchy of the nodes and that of the arcs, respectively. Given a node or an arc of any
hierarchy, the nodes or arcs produced earlier are called its ancestor nodes or arcs. It is reasonable
to assume that in any system design, a subsystem cannot (directly or indirectly) be a part of itself.
Thus the R-graph created will be a directed acyclic graph (DAG).

8.3.2 R-operators

All elementary operations on a node or an arc of a design schema are performed by
recursive graph operators (R-operators). In total there are eight R-operators that have been
defined in [2UCT79]. The operations are integration operations, four are reduction operations and
one is for deletion of components of a graph. The integration operations are:

(1) rl € JOIN(12, r3, SN, SA),

where r2 and r3 are schemas to be joined, rl is the resulting schema, and SN and SA are lists of
node pairs (including port pairs) and arc pairs, respectively, to be merged.

(2) rl € ZIN(@2, 3, SN),

where 13 is the schema to be inserted into schema r2 in the “zooming-in” process. Here the
zooming-in is with respect to a node.

3) rl € ZIA(12, 13, SA),

where the zooming-in is with respect to an arc.

The reduction operations are as follows:

4y rl € ZON(2, SN),

where 12 is the schema which has to be “zoomed-out” to a single‘node. This zoom-out to a node
operation deletes the sub-graph that has been zoomed-out to a single node.
5y rl & ZOA(r2, SA),
where the zooming-out is with respect to an arc.
(6) rl € EXN(r2, SN),
where the EXN operator extracts the portion of the subgraph which is abstracted as the node SN.
(7Y 1l < EXA(12, SA),
where the EXA operator works similar to EXN, expect it works on edges.
The deletion operator is:
(8) rl< DEL(rl, SN, SA),
where SN and SA are the respective node- and arc-list of nodes and arcs to be deleted from the
original R-graph.
8.3.3 Experience With R-graphs

The R-graph formaliém has been used in a number of application domains, e.g. design of
hospital information systems [KUN80] and design of petrochemical plants [BUC79), and
valuable experience has been gained from it. Based on this, a design tool, called SID (system for
interactive design), has been built [KUN8O] to enable designers to develop complex systems in
an easy-to-use and flexible, visually-oriented tool.

As mentioned above the problem of metrics database evolution can be modeled in terms
of operations on R-graphs. This enables the analysis of the evolution problem in a -rigorous
formalism, as well providing an opportunity to potentially use the SID tool for the task of

evolution management itself.

8-10

8.4 Modeling Metrics Database Schema as R-graphs

In this section we show how a metrics database schema can be modeled in terms of the
formalism. Rather than introduce the complete formalism first, we proceed in an incremental
manner by illustrating concepts with examples, and then formalizing them. Let us say that the
mapping of metrics database schemas into R-graphs is accomplished by some mapping M, where

M: E-R schema = R-graph
8.4.1 Mapping of Simple Schemas

Consider the schema in Figure 8.1. Since the R-graph formalism focuses on the structural
(or topological) properties of graphs, we omit entity and relationship attributes for the present.
For simple schemas such as this, the proposed modeling maps entities into nodes and

relationships into arcs. Figures 8.9 and 8.10 show the mapping,

B3] A ji/_x IB /_b_4 |::I\> (AR ab(B)

a4 a5 3 r4 b5 b6
Figure 8.9: A Simple Schema Figure 8.10: Mapping to R-Graph
Formally,

N ={M(e)| ec E},
A={M()lre R}.
For example, Figure 8.6 denoting the original relationship between the Fault Profiles and

Reliability entities can be modeled as illustrated in Figure 8.11, below.

fl f2 ri 12 3

__/

Fault _ N Relia-
= Profiles pe==n decrease = Reliabilit P— @ decrease

/N

f3/ \f4 r4 r3
Figure 8.11: R-graph of Fault Profiles and Reliability
8.42 Mapping of Schema with Views

As shown above, mapping of simple schemas is quite straightforward. Once schemas
contain views though, the mapping becomes more complex, since it must now handle muiti-level
schemas where entities at one level are (sub-)schemas at a lower level. However, it is here that
the full power of the R-graph formalism becomes evident. Views [AST76] were introduced as a .
concept to capture an entire sub-schema as a single entity, perhaps to be used in-a different

schema. It is useful mechanism for many purposes such as handling database security and

integrity, and managing database evolution [EL.M%4].

-- higher level

b6 -~ lower level

Figure 8.12: A Hierarchical Schema Involving a View

8-12

Figure 8.12 shows an example of a 2-level schema in which an entity at the higher level is
expanded into an entire (sub-)schema at the lower level. The entity B on the higher level is made
up of an E-R sub-schema at the lower level, consisting of entities Bl and B2, and relationship
R_12. Note that the attribute set of B is the union of the. attribute sets of B1, B2, and R_12, In
relational terminology, an entity such as B is called a view. Figure 8.7 shows the corresponding

R-graphs at the two levels,

Figure 8.13: R-graph for Schema in Figure 8.6

R.5 Extending R-Graph to-Support Object-Griented Abstraction and Evolution

As mentioned above, the RGF can be elegantly extended to two important areas of
software life-cycle:
i) to handle software database evolution over time, as discussed in the previous sections, and
ii) to develop an object-oriented based framework for supporting views of quality and risk

management .

In this section we discuss the object-oriented extension in detail.
8.5.1 Object-Oriented View Abstfactions using R-Graph

An R-graph can be mapped into an object hierarchy where its structure base is mappable
to IS_PART_OF aggregation abstraction. Its semantic base is mappable to class definition. The

merging process in an R-graph is equivalent to combining component objects in aggregation

8-13

abstraction to generate composite objects. Aggregation is generally recursive, and is analogous to
the récursive structure of an R-graph.

Starting from an E-R model (Fig. 4.1) of a software metrics data, we can abstract various
views directly from the model. Such views can be grouped or categorized into various classes,
defined within the context of object-oriented paradigm. In other words, for the management of
software development process, we build a quality view hierarchy for a software product by using
the E-R model associated with the software metrics, shown in Figure 4.1. Since, we do not want
to restrict ourselves to any specific underlying data schema, we can build a view hierarchy
directly from the E-R model in form of an R-graph. For this purpose we introduce the following
two semantic operators for view generation which can be used to map an E-R model to an object-
oriented R-graph model.

O: N €CIK

S: N €NIP

Here C represents the scherﬁa based on E-R or relational model. N represents subset of nodes in
R-graph. N’ set represents the newly generated node(s) in the R-graph to support the new view
based on the predicates K or P. In other words, the semantic operator Q provides an abstraction
by analyzing entities and their relations in the E-R model, according to the predicate X. For R-
graph structure, this operator generates new nodes. For the new RGF, we take the operator Q to

the operator S/, proposed in the previous chapter. In other words:

Accordingly, K describes the qualification clause associated with operator SI, as

discussed in the previous chapter.,

8-14

The semantic operator S, on the other hand, aggregates the semantics associated with the
nodes in an R-graph. For this purpose, the predicate P analyzes the node semantic function ns
associated with the existing nodes in the R-graph. The objective is to generate an R-graph that
predicts the quality of software product at various levels of abstraction, during the evolution
process of software life-cycle.

In order to express predicates K and P to carry the notion of quality and risk and to allow
the generation of complex views within R-graph, we need to develop a formal framework which -
allows both temporal and spatial (across various metrics data) semantic to be expressed at any
given level of abstraction in R-graph. The objective is to provide a theoretical mechanism for the
user to express complex view/semantics, irrespective of any constraints which may be exhibited .
by the underlying data model. For this purpose we use the SMPN, proposed in the previous
chapter, for specifying predicate P. We also formalize the concept of views present in the metrics
data. The R-graph based framework allows the conceptualization of metrics data using both °
bottom-up as well as top-do.wn object-oriented approaches for data abstraction. In the bottom-up
approach, a user can build complex views using the semantic operators (and S while in the top-
down approach, a user can integrate/group views having identical semantics.

8.5.2 Spatio-Temporal Modeling of Metrics Data for Predicates K and P and View
Formulation

In the example, given in Section 7.5.1.3, we have assumed a relational schema for the

software data metrics. However, it an be noticed, that operator Q is applicable to any data model,

including E-R, used for the software metrics data.

The result of operator @ can be stored in the form of a node in an R-graph. In other
words, the result, such as shown in Table 7.4, provides a view that is represented by a node in an
R-graph, with a node semantic function (ns) corresponding to the predicate X.
8.5.2.1 Semantic Operator S for R-Graph and A Petri-Net Based Formalism for Predicate P
and Node Semantic Function

Modeling of a view or singularity condition requires occurrence of multiple temporally
related sub-events (views). The overall process of expressing a predicate requires a priori
specification of multiple temporal sub-events. It can be noticed that a simple temporal event can
be expressed formally as a logical composition of various low level predicates (both spatial such
as the type K discussed above and temporal) that analyzes the metrics data over a given time
interval or over the specified part of the life cycle of software development process.
Subsequently, more complex abstractions (views) can be defined recursively in terms of existing
views through an arbitrary specification of temporal relations. This gives rise to a recursive
structure of view abstractién in form of an R-graph. Clearly, the leave nodes of this graph
represents the semantics based on operator (.

As mentioned above, for the new RGF, we propose to use SMPN to represent the predicate P for
the operator S. In other words, from Section 7.5.2.3,

P < Ngwen = {T, P, A, D, M}

Accordingly, the result of operator S can be stored in the form of a node in an R-graph. In
other words, the SMPN associated with the predicate P, provides a view that is represented by
such a node. The node semantic function (ns) in this case corresponds to the temporal

specification given by the SMPN.

8.5.2.2 View Generation, Node Semantic and Arc Semantic Functions in R-Graph

It is important to mention that both predicates X and P for the semantic operators Q and
S, respectively, can be recursively applied to build higher level views. This is possible due to
embedded nature of the predicate K within the places of an SMPN and the recursive formulation
of SMPN to build complex Petri Net structures from the simple ones. A Petri-net can be
embedded in another Petri-net since, associated with each SMPN is a time interval. These
intervals can be aggregated to build large intervals.

As mentioned above, each graphical- primitive (or predicate K) and each SMPN (or P)
yields a view which can be mapped to a node in a R-graph in form of its semantic function (ns).
Such views can be dynamically built or updated as new data metrics or attributes are introduced
in the E-R model of the software metrics data, as discussed earlier in this chapter. In other words,
data evolution can be manaced by specifying predicates X and P a priori for the operators and
S and constantly monitoring of emerging views and singularity conditions.

It can be noticed thaf as nodes of an R-graph are linked to construct a recursive hierarchy;
the links among these nodes represent object-oriented abstractions and associations. In our
formalism, two abstractions, namely; generalization and aggregration, provide the basis for arc
semantic (as) function of the R-graph.
8.5.2.3 Example of an R-Graph for Software Metrics Data

Using a detailed example, we now elaborate the formalism presented above. Suppose, we
would like to assess the quality of a software system, named MDBMS, based on its metrics data.
We assume that the E-R mode] of this data is already available. Without loss of generality, in this
example, we consider the notion of quality based on four metrics, namely, cost, schedule,

requirement traceability and testing. We formulate our views about the quality as follows:

8-17

M View V1: We specify the rule for the view that the software system MDBMS will be of high

quality if the evolution of the above mentioned metrics satisfy the following predicates:
All the requirements of MDBMS become traceable within a time period of d1 program
months followed by the testing phase which should have been completed within a time period
of d2 program months. Also, the gap between these two phases is from 1 to at most 2
program months. The scheduled completion date for the testing phase must note slip beyond
the program month M1. Also, the actual cost must not have exceeded the planned cost for the
entire duration of these two activities.

B View V2: We specify the rule for the view that the software system MDBMS will be of
moderate guality and has a slight risk of not being marketed in time if the evolution of the -
above mentioned metrics satisfy the following predicates:

The total duration for which requirements remain untraceable exceeds d3 program
months but is less than d4 pl.'ogram months. Also, the testing phase is considerably prolonged and
its duration exceeds d5 program months, although it is still less than d6 the gap between two
phases is more than d7 months but still less than d8 months. The scheduled completion date for
testing phase slips beyond the program month M2. For the whole process, the actual cost exceeds
the planned cost by 20%.

B View V3: We specify the rule for the view that the software system MIDDBMS will be of poor
quality and has a high risk of not being marketed in time if the evolution of the above
mentioned metrics satisfy the following predicates:

Requirements are not completely traceable even beyond program month M3. Also, the testing

phase starts, even though many requirements remain untraceable and there is a considerable

8-18

overlap between these two phases. The testing phase is also prolonged beyond target date
M4. The overlap is at least d7 program months. During the whole process, the actual cost
exceeds the planned cost by more than 40%.
We elaborate the process of recursively generating views V1, V2 and V3 from the metrics
data and building an R-graph. The crux of this process is the use of semantic operators ¢ and S
and various object-oriented abstractions, including generalization and aggregation. From the
Requirement Traceability metric, we first generate a sub-view that provides the information
whether or not all the requirements are traceable. In case they are traceable, the overall duration
of this fact is computed. For this purpose, we use the semantic operator () and its concatenability
property. The resulting sub-view, labeled as SV1 in Figures 8.14, 1s specified using the graphical
primitives associated with the operator (9, as discussed in Figure 7.7. According to the semantics
of the predicate of operator @, the duration attribute of the Requirernent Traceability metrics is
analyzed over all the intervz;ls during which the system “MDBMS” has been under development.
Using the concatenability ﬁroperty of the operator Q, all these intervals are aggregated to
generate a super interval over which all the requirements are ultimately traceable. The sub-view
SV1 can be represented in form of a node of an R-graph. This node is labeled as N1 in Figure
8.14. As mentioned earlier, the specification of SV 1, which is based on operator (), can serve as
the node semantic function (ns) for the node NI. Using a similar approach, we can generate
another sub-view, SV2, for the completion process of the testing phase of system MDBMS. For
this purpose, we analyze attributes associated with the Testing metrics of the E-R schema and use
the semantic operator @, along with its concatenability property. Accordingly, associated with S1
is a duration which is equal to the duration of the super interval, The sub-view SV2, as depicted

in Figure 8.14, is built using a graphical primitive and it corresponds to node N2 of the R-graph

3-19

shown in Figure 8.14. Similarly, we can build another sub-view, SV3, to analyze the cost
associated with the system MDBMS. SV3 maintains the condition whether or not the actual cost
has exceeded the planned cost. In case, the actual cost has not exceeded, it provides the overall
duration of this phenomena. For this purpose, various intervals are identified in the cost metrics
and are aggregated based on the concatenability property. The sub-views SVI, SV2, and SV3 can
then be temporally related using a SMPN. The temporal relations in an SMPN follow an object-
oriented abstraction known as aggregation (IS_PART_OF). This aggregation provides the arc
semantic function (as) for the arcs from nodes N1, N2, and N3 to node NS5. Different SMPNs are
needed to construct the desired views, namely; V1, V2 and V3. The specifications of these
SMPNs a-re given in as SV5, SV§, and SVI2 as shown in Figures 8.14, 8.15, and 8.16,
respectively.

For example, for V1, the SMPN that temporally relates SV1, §V2, and SV3, as depicted
in Figure 8.14, provides a higher level sub-view, labeled as SV5. The places in the SMPN
repiesent various sub—views. and a delay place. The delay place corresponds to the gap between
the two phases of software development process and in this case they represent requirement
traceability and testing. The gap is specified according to the rule for building view V1. Also, the
duration of each place (ti) is labeled consistently with the temporal conditions specified by the
rule for generating view V1. The generation of this SMPN is based upon the predicate P of the
semantic operator §. The sub-view SV5 can be represented by a node of the R-graph, which is
labeled as N5 in Figure 8.14. Clearly, the SMPN embedded in this node serves as its node

semantic function (ns).

§-20

In order to build, the final view, V1, we also need to generate a sub-view (SV4) for the
test completion date. In this sub-view, the test completion date is tested against a target date
which is the program month MI. Subsequently, SV4 is aggregated with SV5 using the
aggregation abstraction IS_PART_OF, to build the final view V1. This abstraction provides a
logical AND relation for the two sub-views SV4 and SV5. To manage these two new views (SV4
and V1), we generate two additional nodes, N4 and N6 for the R-graph, as shown in Figure 8.14.
The node semantic function of N6, representing view V1, corresponds to the specification of the
object-oriented abstraction used for its generation. In this case, the arcs from nodes N4 and N5 to
N6 has arc semantic function (as) given by the IS_PART_OF association.

The other two views, V2 and V3 and their R-graphs are constructed in a similar manner.
Figures 8.15 and 8.16 depict the detail of these graphs and the specification of their node
semantic and arc semantic functions in terms of semantic operators, Q and S, and object-orienicd
abstractions.

Collectively, V1, V2- and V3 can be further grouped together, to provide a global quality
view V. For V, the views V1, V2 and V3 can serve as different types of perceived quality views
for the software product. The grouping of VI, V2, and V3 to generate V can be carried on the
basis of another object-oriented abstraction, known as specialization (IS_A). Accordingly, V can
be represented as a node (N14) of the R-graph, with the abstraction IS_A and its inclusion
function serving as its node and arc semantic functions, respectively. This is depicted in Figure
8.17.

It can be noticed from this exarnple, that the proposed R-graph based formalism provides
a powerful methodology for quality and risk management for software development process.

Although, for these examples only four metrics are used, one can build arbitrary views of quality

8-21

and risk by choosing any set of metrics. We can also observe that the proposed formalism can be

applied to any data model, since the graph-based spatial primitives for operator ¢J, do not assume

any specific data model. However, as we have mentioned earlier, use of an E-R model for the

software metrics data greatly facilitate management of evolutionary aspects of the data.

IS PART OF

N6

l<=3c= 12 <=d2
y
N4 N3 N1 N2 «—Qperator S
SYS_namy I sys_namcl ' Sys_nare l
[‘MDBMS’ = ‘MDBMS [= ‘MDBMS| £ ‘MDBMS’ |
K (tal l (; [}
320:3 K evelopin K K zvelopin,
Schedule <= planned | Cost = TRUE |—Requirement Testing 2 - TRUE
cost Traceabitity
A A A
A
Sv4 Sv3 SVl 5v2
Operator O Operator O Onerator O Operator O

E-R Based Metrics Schema

Figure 8.14: An R-graph to Build Quality View V1

(Detail of nodes is obtained using ZIN operator of the R-graph)

§-22

IS PART OF

N1

d7<=t3<=d8

dS<t2<=d6

d3<=tl<=d4
A
N7 Ng
= ‘MDBMS’ = ‘MPDBMS

K l actual l K

Cost
Schedule 1.2+ |1 Cost

lanned copt

A

SV7 SV6

Operator O Operator O

o

N2T -4—QOperator S

‘ sys_name |

SYs_name
[= MDBMS) E mpBMS: |
Eevcloping K K Ecvcloping
=TRUE chuiresr{cnl Testing | _J_ TRUE
Traceability
A A
|
A

SV1 Sv2

Onerator O Qnerator Q

E-R Based Metrics Schema

Figure 8.15: An R-graph to Build Quality View V2

(Detail of nodes is generated using ZIN operator of the R-graph)

8-23

ap v NI3

Svi2 NI2
—>l \@ 12>=(M4 - Mlcst start}
t1>=IM3 - Mreg-startl
N3 I Ni T N2 T(———Onerator S

l sys_name' 'sys_nnmc I
= ‘MDBMS [: ‘MDB@ &DBMS'

! actuak l [; l I
cost K cvc}opin K K cvclopin
14* [] Cost Requirement Testing {1 -
planned coft = TRUE Traceability = TRUE

A A A
3
SvVo SV1 Sv2
Onperator O Overator O Operator O

E-R Based Metrics Schema

Figure 8.16: An R-graph to Build Quality view V3

(Detail of nodes is generated using ZIN function of the R-graph)

8-24

vV NI4

IS_A

O

Vi V2 V3
N6 N10 N13

Figure 8.17: An R-graph to Support the Global Quality View V

8.6 An Architecture for Software Metrics Database Management System

We have compared software metrics queries using 2 number of prom.inent data models,
namely, the relational data model, the object-oriented data model, and the graph data model. We
observe that each model has its associated advantages and drawbacks with respect to different
classes of metrics queries, and that no model is perfect. This can cause the designer of a metrics
database a great amount of mental calisthenics to model his database in terms of the model being
used. This can have the detrimental effect of detracting metrics analysts from the appropriate and
timely use of database technology. In our opinion, to ameliorate this situation what is needed is
the development of a data model suited to the needs of metrics queries, rather than trying to
force-fit metrics queries to the extant data models. However, rather than re-inventing the wheel,
the correct approach to this task is to take a combination of the best features of different data
models, and add what is still needed, to develop a suitable data model for a software database
management systemn. In the following, we first summarize the results of our findings and then

present a list of requirements for a software data model.

8-25

8.6.1 Summary of Findings

Both practitioners and researchers in the area of software metrics often take a certain data

model (say, the relational model) for granted and then try to phrase their queries to suit the

peculiarities of the model. More often than not, they try to limit their queries to what is

supported by the specific data model. Therefore, since the relational model in its pure form

handles recursion poorly, i.e. only by embedding it in a host programming language, both

practitioners and researchers attempt not to pose any queries that require recursion on the.

relational data model.

Our analysis of the suitability of some prominent data models for fulfilling the data

management needs of software metrics queries can be summarized as follows:

1.

2.

For the most straightforward queries, the relational data model is adequate;

Any query that results in trend analysis or is schedule-related will invariably involve a
temporal component; and currently we work around the deficiencies of the relational data
model which updateé data in place by adding a date field. A better solution would be to
use temporal data models;

The relational data model handles recursion and transitive closure poorly. A good
example discussed in this document are queries involving software modules. Since
software modules may also contain other software modules, any query involving software
modules would include some form of recursion, such as the following:

a) How completely is software module “XYZ” tested?

b) How many lines of code are there is software module “XYZ” and all its

constituent modules?

8-26

8.6.2

Both the graph data model and object-oriented model support recursive queries such as
the above; and in addition, handle regular queries well. However, they have steeper
learning curves and are less commercially available.

The object-oriented data model appears to support most of the features required of
MPMS, but query languages are complex, non-standard and difficult to learn;

Since each data model has its associated advantages and drawbacks with respect to its use
in MPMS, the future appears bright for an extension of the relational model to support
features such as recursion and téemporal data. There is already some work undertaken by
various researchers to incorporate extensions.to the relational model.

Requirements for a Software Metrics Data Model

Based on our analysis, we propose the following set of requirements for a software

metrics data model:

1.

the model should be able to support complex relationships between data elements, ¢.g.
compositions and hiérarchies;

the model should support a high-level, preferably declarative, query language;

the model should have built-in support for temporal concepts;

the model should support recursive query processing and graph traversal operations;

the model should provide built-in support for metrics concepts like ‘project’, * module’,
‘measurement’, etc., as well as querying on metrics concepts such as ‘critical path’,
‘project cost’, efc.;

the new model must be a synthesis of the useful features of existing models, with

additions where necessary. This ‘evolutionary’ approach, vs. a ‘revolutionary’ one where

8-27

everything is started from scratch, is more likely to be acceptable to the practicing
communnity;

7. the new data model must be easily integrated with a host programming language, i.e.
ideally the user should not have to change the mental model when moving from the
application code to DBMS access; and

S. the model should lend itself to an efficient implementation, especially since to the metrics
analyst a DBMS is but a tool, and an inefficient and poorly designed one is but a
hindrance to his overall goal, which is metrics analysis.

8.6.3 The Proposed Approach
From the summary and the list of requirements above, we can observe that existing data

models together can provide a number of features that are desired in an ideal software metrics

data model. Specifically, one can draw upon the declarative querying features of SQL, the
temporal component of temporal data models, recursion capability of GDL as demonstrated by
the RGF, and flexibility and support for complex relationships from object models. However,
two main requirements still remain. First is to allow a built-in support for metrics data and
associated analytical methodologies, and the second is to provide a seamless integration between
the host language needed to support database applications and metrics data models. The issue of
efficient implementation is a crucial requirement. Figure 8.18 shows the architecture of the
proposed approach, which we consider a ‘synthesize-and-extend’ approach.

The component labeled ‘Metrics Class Library” is a library of objects which provide
detailed analysis of metrics data for risk and quality assessment. A suite of analytical tools, such

as the ones discussed in chapters 4, 5 and 6 of this thesis, form the kemel of this library. Using

8-28

an object-oriented approach allows embedding of data and computation in form of objects and
can relieve users from knowing about the details of analysis, data forma, etc.

The ‘Temporal Class Library’ maintains user’s specified spatio-temporal semantics for
supporting various levels of abstractions about quality and risk assessment of the software
project. In particular, the semantics of SVI, SV2, ... etc,, in Figures 8.14 - 8.16 are formulated
and maintained in this library.

The component labeled ‘Graph Class Library’ is a library of objects which model high
level operations on R-graph based objects, which are designed especially to support metrics
analysis queries. Examples of such operations include breadth-first-traversal, depth-first-
traversal, find-shortest-path, find-critical-path, find-all-preceding-nodes, find-all-following-
nodes, etc. Having such graph analysis operations facilitate posing of above mentioned metrics
queries. The proposed approach for implementing the new graph-based operations as a library
enhances the existing capabilities of underlying DBMS rather than replacing the DBMS.

All the three librariés are integrated together to support complex queries. The degree of
interaction among these libraries depends on the complexity of the query and the level of
abstraction of information. For simple, queries each library can provide independent information.
For example, for queries shown in Figure 7.11, objects from Temporal Class Library only are
invoked. On the other hand, the generation of semantic view V2 of Figure 8.15 in response to a
user’s query requires interaction between both Temporal and Graph Class Libraries. Similarly, if
the generation of a spatial view, say SV6, requires some analysis of Cost metrics data, then the
appropriate analytical object from the Metrics Class Library is also invoked. We expect that a
visual query interface can be utilized for the proposed system in order to allow users to formulate

object-oriented semantic queries and access the proposed system. As mentioned in Sections

8-29

7.5.1.1 and 7.5.2.6, the proposed visual icons for spatial querying and SMPN provide an intuitive
and natural graphical interface for expressing complex object-oriented semantic queries

[PAU96a, PAU%6C].

Metries Applications
Z 3 L
, Temporal Graph
Metrics Class Class
Class Lib Lib
Library 4 rary rary
Object DBMS
Metrics
Database

Figure 8.18: Proposed Approach to Software Metrics Data Management.

We propose the use of a commercial object-oriented DBMS, preferably one that uses an
object data model standard such as ODMG93 [CAT94], as the base DBMS engine. The data
definition and manipulation capabilities of the ODMG93 model’s object query language (OQL)
will automatically provide all of the object capabilities needed for the MPMS data model. Next,
we propose to build a set of class libraries, as shown in Figure 8.18, that provide support for
various kinds of other concepts needed. Thus, we have a set of classes for handling temporal
objects and operations on them, and another for handling graph objects and their operations like

recursion and traversals. Similarly, we have a set of classes that provide concepts specific to

8-30

metrics analyses. Each of these class libraries is built using the underlying base object model.
The base classes provided by ODMG93’s object model, together with the class libraries for
temporal, graph, and metrics concepts, make up the MPMS data model. The metrics applications
now have a whole range of concepts to use for modeling metrics data.

There are several advantages of the proposed approach. First, it takes advantage of
commercial standards for object data models, which will be widely available and acceptable.
Second, the concepts needed to implement the temporal and graph class libraries have been quite
thoroughly investigated, and it is just a matter of implementing them in the base object model. It
is quite possible that these might start becoming available as specialized class libraries from third
party library developers. Third, the extensibility of the object model is a big benefit, especially if
future needs arise that are unanticipated today, and lead to an extension of the model by adding
new concepts. Finally, if the metrics applications are implemented in an object-oriented
programming language, for which we advocate C++, there is a seamless integration between the
application programming laﬁguage and the MPMS data model query language.

Despite the many advantages of the approach touted above, there is one crucial element
of Figure 8.18 that is not present today, and thus this system cannot be fully realized. This is the
metrics class library. So far no research effort has focused on examining the specific data
modeling needs of metrics databases, and thus there does not exist any literature on the data
model concepts needed to support the needs of metrics data modeling. This is today an open

research problem, and given its importance to achieving a full-fledged MPMS data model, we

believe it should be addressed immediately by the data modeling research commurnity.

8-31

8.6.4 Discussion

A metrics-based project management systern integrates software metrics data,
management queries based on the software metrics data, as well as their responses in a single
location. Given the variations in projects, queries, metrics and physical databases to be used, the
management system should be flexible from a user point of view, and also generic from a
designer point of view, Two important steps in the design of a software metrics management
system involve the determination of typical queries that may be posed by users, as well as the
selection of the physical database for storing metrics and other project-related knowledge. In this
paper we discussed the relative advantages and drawbacks of three selected physical database
models, namely the relational data model, object-oriented data model, and graph data model,
based on a variety of classes of metrics-based queries. We conclude that.the choice of the
appropriate data model varies according to the class of queries, and has strong implications on
the ease and efficiency with which metrics-based queries may be posed and executed. Further, we
observed that while none of the existing data models fulfills all the needs of software metrics,
together they have a number of concepts that are useful. Thus, we believe there is no need to
‘reinvent the wheel’ unnecessarily and one must use relevant concepts where available. Based on
our analysis, we proposed an approach to developing a data model for software metrics, which is
based on the synthesis of a number of useful concepts from extant data models, with extensions
where appropriate. Further, we advocate using a commercial standard object model, ie.

ODMG93, for the base DBMS, and a commercial standard object-oriented programming

language, i.e. C++, for writing metrics database applications.

8-32

8.7 Conclusions

In this chapter we addressed the problem of metrics database evolution and have
presented a framework for managing large software projects using a recursive graph (R-graph)
model. The principal issues in database evolution are encountered in handling schema evolution,
We modeled database schemas as R-graphs, and schema evolution as structural changes to an R-
graph caused by R-operators. The R-graph formalism is well understood and has been used for
modeling the top-down design process for domains as diverse as health informatics and petro-
chemical plant design. Furthermore, a design tool called system for interactive design (SID) has
been developed to facilitate the hierarchical design process using the R-graph formalism.

Kunii et al’s research [KUN80,KUNS0,BUC79] has shown that the R-graph formalism
can be mapped into the binary association model. It is known that the binary association model is
powerful enough to model the general relational model. Hence, by transitivity it follows that the
R-graph model can.be implemented on top of relational model. In the present work we have
added one more link to this.chain of argument. By introducing the mapping M, we have shown
the hierarchical E-R model of schemas can be mapped into R-graphs. Thus, by transitivity we can
argue that such schemas can be stored in relational databases. This makes their efficient
implementation possible.

For temporal modeling and to express complex views and singularity conditions spanning
various metrics, we have proposed a Petri net extension for the RGF. The extended RGF can
allow users identifying risks and evaluating the quality of the software project at various levels of
abstraction, It can allow representation of temporal views and singglarity condition along with a

graph-based representation of conventional database functionalities. In summary, the proposed

8-33

framework can provide a simple but comprehensive methodology for managing evolutionary
aspects of software projects.

We conclude this chapter, be proposing an architecture for a software metrics database
management system. The proposed architecture is built on the data analysis methodologies and

data models proposed in this thesis.

8-34

