Chapter 6
Decision Making Framework For Project Management Using A Value
Based Software Engineering Approach

6.1 Introduction

Our discussion in the previous two chapters has been aimed at using statistical and
analytical techniques for risk management in software engineering. In this chapter we
focus our attention on the modeling aspect of software development process, with a
special emphasis on cstimating schedule, total cost, and total manpower or labor
requirement. We analyze the impacts of corrective actions and decision making on the
quality of the software product. Such actions or decisions can be airned at changing the
“values, productivity, and learning ability” of the software development team or the
effectiveness of CASE tools deployed during the development process.

The estirmation models to study the impacts on the guality of the software product
should be as realistic as possible to real life situations. Productivity, although defined
differently by software engineers, is considered an important attribute in a software
development project. Norden [NORS0] defines a development project as a finite
sequence of purposeful, temporally ordered activities, operating on a homogenous set of
problem elements, to meet a specified set of objectives representing an increment of a
technological advance.” 1If we consider each new software system as a fechnological
advance, then the people or team members play a major role in this advancement.

In a cost model proposed in {MIZ93b), costis directly proportional to productivity
and project engineering software system. Productivity can be based on a number of

factors such as the effectiveness of software development CASE tools, change in the

6-1

stability of specification and the frequency of such change, design configuration stability,
and quality requircmeats. Productivity, as defined by Mizuno in {MIZ93b], can be
improved by the software management team who can select factors to improve
productivity. Productivity as defined in [HAMBS6] can be viewed as a function of future
concerns such as remalning tasks to be captured or the and remaining project time.

In this chapter we propose two models that combine the flexibility of mode!
proposed by Mizuno in [MIZ93b} and a more realistic time varying productivity
phenomena. In our models we consider the following cases of learning or productivity in
a software development project:

e arapidlearning/productivity environment
¢ an average learning/productivity environment

The objective of these new models is not only 1o accurately analyze the man
power and cost entities but also help us in improving the decision making process by
providing corrective alternatives. In order to facilitate this process we need to develop a
powerful estimation mechanism that is as realistic as possible for the life cycle of a
project, accurately predicts the maximum manpower required, and the time at which the
maximum manpower requirement occurs. By proposing such a technique, we can find
answers (o some critical management issues such as:

* How tomeet the completion deadiine by choosing appropriate team members.

* Whether or not the current team satisfies the desired time requirements or not at any
time in the project life.

* How to make corrective actions at any point of the project due to changes in time

requirements or quality of the project.

A
v

o How to predict the cost and quality based on the present and past data.
Corrective actions may imply replacing old team members by more advanced/skilied
personnel, or bringing few expert software developers into the process. The proposed
models are not only appreciable to the productivity aspects of the development team, they
can also be used to study the effect of evolving CASE technology on the development
process of the software project. They can be used for changing cost assignments to
control the quatity of the project.

We use our analysis for three major software metrics, namely, design stabtlity,
fault profiles, and requirement stability data by treating them as quality indicators.
6.2 Background

In a study about predicting software productivity {HUMS1], it i3 indicated that
companies measure software development progress by the lines of code developed by
programmers. The study suggests that coding is only a part of many activities that a
software development engineer has to perform such as attending meetings, taking
courses, and calling out detailed planning. An experimental approach is instead
proposed. Based on pre-existing productivity data recorded about a specific programmer
or teamn, predictions can be made about the same programmer of team, [t has been noted
in [LONS7} that dﬁring the life cycle of a project, the productivity of team members
increases progressively. Such productivity can be the result of formal experience or
increased learning capability. Human productivity as a result is the increasing capability
to solve invisibility, conformity and complexity problems. All these definitions of
productivity can be transformed into the notion of quality, since ail such factors effect the
ultimate quality of the product.

6-3

There have been different practical and theoretical paradigms to developing
software systems. To minimize delivery time, sorne companies use software analyzers
during the coding phase. The purpose is to detect interface errors which contribute to
about 75% of all errors v a system. These erors are found in the testing phase of
traditional systems. Furthermore, in some software environments additional 10% errors
are detected by test cases which are automatically generated by special software testing
tools. By automatically delecting up to 85% of all the errors in a software system,
delivery time can be reduced. In this regard, the integrated framework proposed in
Chapter 5 with many CASE tools can help in increasing productivity and reducing errors
as well and hence improving the gualty.

As mentioned above the estimation models must be as realistic as possible to real
life situation. An estimation model is defined as a scheme that predicts computer
software data required by project planning steps, using empirically derived formulae. Due
to limited number of samples that provide empirical data, no estimation model can be
used for all types of software and development environments. Therefore, estimation
models must be used cautiously. These models are categorized into two main categories:
static and dynamic. Static models take a unique variable, such as size, as a starting point
and use that to calculate other variables such as the cost. In dynamic models, on the other
hand, multiple inter-dependent variables are used and notion of basic variable is not valid.
Two well-known models each fall into one of these two categories: The COCOMO,

abbreviated for the Constructive Cost Model, is a static model [BOE81a]. On the other

hand, Putnam/Norden is a dynamic model [PUT76,PUTTS].

6-4

Estimation maodels can be further divided into two groups: single-variable and
multivariable. Single-variable methods make use of a single basic variable to estimate
other desired values. A typical equation that formulates this type of models is:

C o aSb
where C'is the cost and 5 1s the size of the code, and «a and b are constants.

Static, multivariable models are generally based on the same principle, except that
the parameters depend on more than one variable such as methods used, user
participation, memory consiraints, etc. Among the numerous models in the literature
which fall into this category, COCOMO is the most widely accepted model, and is
elaborated in the next section.

COCOMO is a bierarchy of software estimation models [BOE78 BOE81a). This
hierarchy consists of three sub-models, iliustrated below:

Basic Sub-Model: This is a static single-valued model that relates the effort (cost) of the
software development to the size of the code.

Intermediate Sub-Model: This sub-model uses a set of “cost drivers” in addition to
program size to compute the cost of the projects.

Advanced Sub-Model: This sub-model takes the effect of cost drivers on each
development step of the development process into account.

The basic COCOMO model is used for a quick and efficient cost estimation in
most of the small- to medium-sized software projects. Three modes of software
development are considered in this model, namely: the organic mode, the embedded
mode, and the semi-detached mode. The organic mode deals with simple projects in
which a team of experienced programmers work in smail group, called the embedded

6-5

mode. In embedded mode, @ project is assumed to have tight hardware, software, and
operational constraints. The semi-detached mode 15 an intermediate mode between the
organic mode and cmbedded mode. The rnathernatical models for determining the
manpower, cost, and the development time for the organic, semi-detached and embedded
modes, respectively, are as follows:

Co=248"", 1y=25C""

Co=308"", =25C7
C.=36 81.201 =25 C.Co,:sz
These formula provide an estimate for the approximate development time in terms
of the cost and the projected program size. We use the relationship between the
completion tirme and cost to determine the performance profile of projects for ditferent
costlevels. The same is done for varying manpower levels (team sizes), using a dynamic
estimation model, which is discussed next.
6.3 The Putnan/Norden Model
The objective of this model is to progressively reduce the number of problems
(tasks) or faults in a project at a constant rate and hence model productivity as a linear

learning curve [PUT76,PUT78). The following assumptions are made in this model:

1. The number of problems to be solved 1S unknown a prior but finite,

2. The problem-solving effort does make an impact on the unsolved problem set.

6-6

3, A decision rermoves one unsolved problem from the set.
4. The staff size 15 proportional to the number of problems seeking solution.

The above assumptions lead to a Rayleigh distribution of manpower over the
course of project development. Thisis due to the assumption that the number of problems
to be solved is unknown and finite, and the total manpower effort, K, is an indicator of

the number of probiems. The rate of variation for the cumulative manpower cost, 4C
dr

signifies the number of people involved 1n the project, mi(t). The cumulative cost Cf1) can

then be expressed as:

T

c) = [meryds (6.1)

0

According to the fourth assumption given above, the number of people involved 1s
proportional to the effort remaining to be employed. Therefore,

O e o
== pOIK = C(0))

where K is the total manpower effort and p{1) is the proportionality factor, which is a
function of titme, and takes the effect of learming/productivity into account. By integrating

this equation, one obtains:

~

C() = K{1-exp(~ | p(1)d1)) (62)

Another assumption that is made in this model is that the most representative leaming
curve is linear. This lincarity is expressed as:

Pty = 2at

6-7

where a is a positive constant. By carrying out the integration in Equation 6.2, one obtains
the expression of the cumulative manpower cost as:

C(r) = K[1—exp(—at®)] (6.3)

The manning of the project can easily be obtained by differentiating the above

equation:

m(t) = 2Katexp(~at*?) (6.4)
which represents a Rayleigh distribution. m(t) is zero at the beginning of the project, has a
single peak at a time value which is a function of the constant 4, and then asymptotically
decreases towards zero. By deriving the function m(t) and finding its zero point, i.e. the

peak time, we can find the so called, development time, which is given below:

L (6.5)

By substituting the values of tg in the cumulative cost equation (6.3), the cost at

£, can be found in terms of the total effort spent, K :
1
C(t,) = K(l--=)= 039K 6.6
(t,) = K(JZ) (6.6)

This representation, which has frequently been verified in industry on large-scale project
developments involving high technology has an important implication. It allows us to
carry out the scalability of the software development profile. According to the
Putnam/Norden model, states that the completion of intermediate software problems must
be proportional to the completion of the entire project. For example, if a project is to be

completed in half the time, each step must be completed in half the time. This is due to

the fact that the titne variable ¢ appears in the cost equation in a simple form and can be
easily proven.

COCOMO has its limitations as it does not allow factors to be introduced other
than those given in the model. This model considers variations other than those caused
by the specified factors of this mode! to be errors [MIZ93b]. An extension to COCOMO
has been proposed in {MIZ93b]. The extension allows users to select factors according to
actual data.- A data set of software metrics collected from 71 software development
projects has been used to derive the cost model. Statistical techniques such as regression
analysis and principal component analysis form the basis of this extension. The fact that
users can select factors is advantageous, although the representation means of these
factors are limited. Team ability, for example, is represented as a set of four values (-2, -
I, +1, and +2) where -2 represents the lowest ability level while +2 is for the highest
level.

In order to provide a more comprehensive model we need a representation that is
time changing or temporal. The reason is that in reality, changing team sizes, mobility of
developers, and changing CASE technology have significant impact on the development
of a software product and the time-changing parameter must be captured in a succinct
manner. Although the Putnam/Norden model deals with a time varying productivity or
learning capability, its modeling of human productivity doesn’t represent real life
situations. For example according to this model during the life cycle of a project, team
members acquire more knowledge about the problems of the project. Productivity, or
capability to solve problems, continues to increase indefinitely albeit in progressively

decreasing increments. There are two reasons that invalidate the linear productivity rate:

6-9

» The Jearning process of human beings about a specific problem tend to saturate.
e Problemns in a software development project are finite.

The level of full-time-equivalent software personnel active on a project tends to
follow a continuous curve where the instantancous full-time commitment of a large
number of people 15 an unlikely event (BOE&Ia]. As mentioned above, the model
suggested in (BOESa] indicates that the labor or manpower distribution for a number of
software projects can be approximated by the Rayleigh distribution. From this
distribution various important parameters can be obtained including the development
time of a project, the peak manpower required, and the project finishing time. The
development time, as mentioned in {BOEBla], is the time at which peak manpower
occurs. It 35 the delivery time before which effort is spent on specification, design,
coding, testing, and qualification [BOES8la]. Manpower requirements drop after the
delivery time since most of the effort from that point on is spent on maintenance and
madifications. At the delivery time, the product is considered operational
[PUT76,PUT78). It has frequently been verified in industry on large-scale project
developments involving high technology that 39% of a software development project cost
is consumed by the delivery time.

6.4 The Proposed Models for Metric-Based Decision/Quality Tradeofts

As mentioned earlier, we propese two new models for estimating the impact of
team productivity and, in general, the impact of the software environment such as the use
of CASE technology on the product cost and project quality. Specifically, we illustrate the

effects of varying team size and costs on the progress of software projects. We use the

6-10

following three software metrics for the measurement of progress, The following metrics

identify the quality of the product:

o Design Stability.

o Fault Profiles

» Requirement Stability

6.4.1 The Rapid Learning Model:

In the rapid learning model, productivity 1s assumed to grow exponentially. In
other words, the model emphasizes the fact that during the life cycle of a project, team
members’ capability to solve problems increases until a final saturation level is reached.
When this final level is reached, team’s productivity is maintained. Following are the
reasons for choosing such an exponentially saturating productivity model:

1. The saturation of the learning process indicates that the team cannot continue to
acquire knowledge about the project indefinitely.

2. Since productivity represents the ability to solve problems, and because problems are
resolved with the passage of time and thus decrease in number; increase in
productivity also decreases with time.

3. When team members have an extensive experience in software development, they
may require a small duration to leam about the project. In other words, they start with
a high impact on the productivity during the development process. This impact
decreases as the project phase approaches towards completion.

A similar impact on the software development process can be extended (o
arguments about the use of CASE technology. In other words, the rapid learning model

represents a nonlinear leaming model whose learning rate decreases with time. The lincar

6-11

learning rate decreases until it becomes negligible that marks the saturation level. A
feasible curve that describes such an environment of productivity, would be an
exponential curve, plr), defined as:
p(t)=a - bexp(—ci) (6.7)
where a, b, and ¢ are positive constants, It can be noticed that in this case we have three
parameters to deal with in contrast to the linear learning curve, where only one parameter
controls the goal function, namely the cumulative manpower costs with respect to time.
The parameters a and b in our model can be set to be equal to each otherin case we need
to model the situation where we assume that the team at the beginning of the project has
no knowledge about the work to be accomplished. Parameter ¢ indicates the productivity
characteristics of the teamn. The larger the value of ¢ is, the faster is the learning curve.

Using the productivity characteristics model of the team, following the same
procedure as adopted in the Putnam/Norden model, we can find cost, manpower, and
development time. The four assumptions made in the Putnarn/Norden model still hold.
The representation of curmulative manpower cost, Cf1)expressed inman years, in terms of
manpower and the learning rate is given in Equation (6.1).

It is worthwhile to mention that the cumulative manpower cost effort, C(1),
is null at the beginﬁing of the project and grows towards the total effort, K. Using the
new model (Equation 6.7) with Equation (6.1) and carrying out the integration we find

the cumulative manpower cost as follows:

Clty = K[i - cxp(w ar - EI—exg}(mcr) + %)J (6.8)
C

In this case the manning of the project would be:

6-12

)= Ka(l — exp(~ct)) X exp(— ar— %exp(—ct) + %) {6.9)

As mentioned earlier, m(t) is zero at the beginning of the project (when ¢ = 0), and
it has a single peak at the time, whose value depends on the constants ¢ and c¢. m(z) then
asymptotically decreases towards zero. Deriving m(} and finding its zero point, we get a
quadratic equation of the form:

a? exp(=2ct) — (2a* +ac) xexp(—ct) +a’ =0
The solutions to this equation, each representing the peak time which is referred to

as the development time, are obtained as:

1] 2a
r, =|— X (6.10)
“ [c [Za-f-ci\/cz +4ac]

By substituting these values of #; into Equation (6.8), the cumulative cost in terms

of the total effort spent, X, can be given as:

2
C(t”:K{I—exp[—inIn(2 J—(za“iz“: +4ac]+%} (6.11)

c 2a -i-ci\/cz +4ac

We need to set C(¢,) = 039K, in order to rationalize the industrially verified fact that for
large-scale project developments, 39% of the cost occur sat the development time. In
other words we must validate our cumulative manpower cost for whole, we can use
iterative numerical analysis. The analysis is aimed at finding the list of all possible

CoOmbinations of @ and ¢ that satisfy the Equation (6.11). In other words;

a 2a 2a+ctNct +dac | a
1-exp| =< |xin - +2 1030k (6.12)
¢ 2a+ctc? +4dac 2¢ ¢

6-13

man power

16 T T T T ¥ T ¥ T Y

141

12r

time

Figure (6.1): Rayleigh Distribution on manpower

The result of the numerical analysis provides a list of possible solution sets for
parameter a and ¢. Figure (6.1) shows plots of manpower with respect to time as
parameter ¢ increases. It is important to remember that the total manpower effort, K, is
assumed to be constant, It can be observed from this figure that ¢ affects the overall
distribution of manpower over time. It affects the development time as well as the peak
manpower at development time. For example, for ¢=0.1 {a=h=5) the development time
is as high as 1.5 years, and the maximum required team size is 4 persons. For the other
extreme case, among the ones showed in the figure, when ¢ = 1.9 (a=b=5) the

development time is as low as 0.3 years and the maximum manpower required is 15

6-14

persons. Notice that the assumpuon that Kis constant justifies the reason that the peak
manpower increases with an increase in the learning rate ¢. This might not seem obvious,
because we can think that the same peak team size, 1.e; constant peak manpower, can
reduce the development time when the team members are more productive resulting in a
large value of ¢. The assumption that K is constant requires a constant area under each
manpower curve, which when changing ¢ changes both the peak manpower and the
development time. Figure (6.2) shows that changing a, while keeping ¢ constant, has
little impact on the development time and has a more obvious impact on the maximum
manpower required.

The above discussion suggests that ¢ is the dorninating factor for controlling two
important project parameters; development time and peak manpower. The cumulative
manpower cost function then should be determined in terms of ¢. So far in our analysis,
the new parameter, K, the total effort cost in man years, has been assumed to be a
constant. In the following discussion we consider a more realistic representation of the
total effort K. The total cost, as defined by Mizuno in [MIZ93b] and called NEC cost
model expression, can depend on various factors such as program size etc. In (MIZ93b],

it has been analyzed that the new parameter ¥, in man-hour, can be given as

P
Y =(x I‘Iloﬁ(xx, % X 5 (6.13),

=1

where
x,. Value of factor i

X : Program size in kilo lines (KL)

6-15

C, 5 ,8,: Constants.

man power

o e T T

181

16

14

i2

10

0 0.2 0.4 0.6 08 1 12 14 16 18 2
time
Figure (6.2): Manpower Distribution Over Time When Changing Parameter

For aset of 71 software development projects, the following cost in terms of the

program size X has been reported as:

Y = 1074 x 1012 x 1(0%025%2 x99% (i1 Man Hours) (6.14)
The dominant factors in the above mentioned set of 71 projects include the
development tools and development techniques/methodologies [MIZ93b]. If we
substitute the total effort K by ¥, we can then introduce a new dimension to our cost
model. When replacing K, which is measured in man years, with ¥, which is measured in

man hours, we need to convert the unit of K from MH to MY (Man Years). Man month

6-16

consists of 152 hours of working time [BOE81a] which means that a man year is 1824

man hours. For the rapid learning model the extended cost expression is thus defined as:

390
1824

oy ,owﬁar e (_"_ _mfj 3) ibw MY
Clt)= P ¢ Li L—ka al Cpr r.'ff}-fc { (6.15)

As discussed before, we set g = b, and

2390 vomsl ol Care @ oo+ 4|y
Ct) = T824 x X -1 expl — at - expl--ct) + C MY, (6.16)
390 . a a
m(t)=ax x X 00 }[1 - cxp(—cr)]exp(— at ——exp(—ct)+ -—} (6.17)
£824) L ¢ ¢

It is important to indicate that the development time is not changed, and remains

as:

1 2a

fa = ;En[2a +ove? +4acJ ©19

Equations (6.16) and (6.17) provide analytical estimations for the cost and the
manpower required, both as a function of program size and the effectiveness of software
tool and team over a period of time.
6.4.2 The Effect of Rapid Productivity on the Quality

One of our research objectives is to determine how the change in various
parameters such as cost, time, and productivity (team/CASE technique) can affect the
quality of an ongoing development of a software product. For this purpose, we can use
the four software metrics mentioned above, namely; requirement stability, fault profile,
design stability, and reliability. As we collect metrics data, we can use this data for

evaluation the quality of the project under development.

In this scction we illustrate our approach using data from a NASA project
[BASE5c]. The sub-metric used in our stability is the percentage of requirements met as
we progress through the vartous development phases of the project, This sub-metric can
directly determine the quality of the product, as argued in the previous chapter. Using this
data from the design stability metrics, we have found the following relationship between
design stability and cost:

O =24093C° —34591C% +2.2411C-0.1192 (6.18)
where C is the cost that ranges between O and | of the final cost K, and J is the design
stability that ranges between O to 1 of the desired design requirement, §. For the cost
function in Equation (6.18) we assume that ¢ has a value of 1.3. Figure (6.3) shows the
above relationship . If we consider the development time, in this case £ = 1 year, we find
that the cost, from the cost function, is 0.85594K, and the quality, from the metric Q)
(E;c;uation 6.18), is 0.85135. If we wish to achieve better quality, say 0.9, to occur at the
same time ¢ = | year, we need to allow larger cost consuraption rate prior to that time. This
implies changes in cost assignments and thus a new set of changes toward improved use of
CASE tools and deployment of more expert personnel for the task. From the above
equation, we can find C=0.94K. Since, cost is a function of time and ¢, and time 18 known
(= 1 year) in this casc-, thus ¢ could be found to be 1.95. This result is intuitively expected,
if we want to achieve better quality, we must improve the effectiveness of our CASE tools
and team personnel. Similarly, we can predict quality using sub-metrics for the other two
metrics: Tequirements stability, the degree to which changes in the software requirements

affect the development effort; and fault profile, the number of known faults fixed. Using

6-18

the NASA data [BAS85c], we have found the following relation between the requirements

stability (R), and fault profile (£) in terms the cost, C.

R = 1000{45520C" —61759C" + 2.6081C - 00305
(6.19)

F = 1000{22699C* - 3.1848C" + 1.4565C - 0.0401) (6.20)

o7 2.8 g3 b

Figure (6.3): Quality as a Function of Cost

These relations have been plotted in Figures 6.4 and 6.5.

6-19

1 e T T i T i T

0.9 T

o
#a}
i

=
“
T

Requirement Stability
o o o '
A o
{ T
—

o
w

o
N

0.11

i

i

O 1 4 ! ! d 1 !
0 0.1 0.2 0.3 0.4 0.5 0.6 07

Cost

Figure (6.4): Requirement Stability as a Function of Cost

0.8

0.9

6-20

09r /

0.8

H

Fault Profile
o < ot)
> o » ~
1 T H

c
[
t

0.2r

0 J] 1 i 1 I i I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Cost

Figure (6.5): Fault Profile as a Function of Cost

6.4.3 Average Productivity Model

In this section we introduce the model to represent an environment that represents
the average cffectiv-cncss of CASE tools and performance of personnel. In this model, the
productivity is assumed to be considerably siow in the beginning of the development
process. After a slow start-up, the team members become more productive and their
effectiveness starts following the rapid productivity curve discussed in the previous
section. Such a model is quite common because it represents the following two phases in

the performance of a software development tearn:

6-21

I. During the first phase, team members try to get familiar with the overall requirements
and try to achieve proficiency tn using the CASE tools. However, the progress of the
overall process can be slow. In other words, once a software engineer is given the
definition of the overall project, he/she has to understand all the aspects of the given
project and gradually solve the problems associated with the project.

2. In the second phase, the team members becomne more effective in solving the
problems and using the CASE tools.

The foliowing function carn be chosen to represeat such phenomenon

mathermatically:

b
exp{ct)+exp(—ct)

(6.21)

plt)=a-

where @, b, and ¢ are positive constants. This function can approximate both the two
phases mentioned above. As mentioned earlier, the team size at the beginning of the
project should be zero. This requires:

p{0) = O = b =2a which reduces Equation (6.21)to:

Za
exp(ct) + exp{-cr)

p(r) =a

Here a is the final productivity level that an individual might attain. This parameter is
used to represent the concept of saturation in effectiveness. ¢ represents how slow the
team members are in the beginning of the project and how effective they become later.
Larger values of ¢ represent short duration for slow phase of préductivity and quality
shifting the productivity at a faster pace. Figure (6.6) shows different plots for p(t)asc

increase.

6-22

Pt
2.5 T T T T T T T T T

c=1.2

10

g
firme

Figure (6.6): Average Productivity Model Curves

The same steps are followed as in the previous section for obtaining C(z) and mft).

Ct)= K[l —exp(-at + 2—:— (tan" (expl(ct)) — 0.7854)] (6.22)
m(t)=-K| -a+2ax _explet) Xexp(-— at+ -z-g(tan “(exp(ct)) — 0 7854)) (6.23)
1+exp(2ct) ¢ ' '

Finding the derivative of m(t) and setting it to zero in order to find the
development time, we have the following equation:
a® exp(dct) + (— 2aec ~ 4a2)exp(3ct) + (Gaz)cxp(th) + (2ac - 4a2)exp(ct) +a*=0
(6.24)
It is obvious from Equation (6.24) that it is quite difficult to find the development
time in terms of a and ¢ analytically. We also have to keep in mind that the condition

C(t,)=039K must be satisfied. Having these two purposes in mind, we need to find a

relationship between parameters a and ¢ to simplify the above polynomial. Randomly

6-23

choosing & value for a in the above polynomial, we found that for a =8¢,

C(ry) = 0.3755K can be considered o be acceptable. Accordingly, the solution to the

polynomial is as [ollows:

1 E
explet,) =36707 = 1, = (;Jmc:&.@"f{}?}

Thus, C{1) = K[l —exp(—1.8ct + 3..6([:1{1"1 (cxp{cr))—0.7854)], (6.25)

mi(t) =~ K| - 18c+3.8c % expled) X ex (~18¢+36(tan"’(€x {ct))——()7854))(6 26)
' T L v exp(2c1) 4. ' AP ' '

The average rate of software team build up is defined as:

1
SBU = —>=1077 % K xc* x exp(~18¢ + 187) (6.27)

[d
where m, isthe peak manpower at delivery time and £, is the development time.
Figure (6.7) shows the Rayleigh distribution of manpower with respect to time. The total
effort K, as before, is assumed to be constant. Higher values of ¢, which correspond to
high productivity rate, result in a smaller development times.

The cost and manpower expressions when using the NEC cost model are given as follows:

390
C(r) = 1854 X”jg[l —exp(~18cr + 3.6 x (mn"* (exp(ct)} — O.?SS#)]) (6.28)
390 ; o exp(ct) .
m(e) = -———X """ - 18¢+ 3.6¢ it |x expl- L8c + 3.6{tan " (exp(ct)) -0.7854
1824 S Y exp2en) expl 18 3e{u expten))
(6.29)

6-24

Slow Learning Team Modei
10 7 g T T T 1 T T T

b=2a,a=18¢c

Man power

10

Figure (6.7): Rayleigh Distribution of Manpower based on the
Average Productivity Model

Table 6-1 shows how factor ¢ affects the finishing time (F7), the development
time (D), and the slow productivity time (ST) which is the period of time during which the
team’s productivity rate is slower. The percentage columns, following DT and §T columns,
represent the pcrcantz;gc of development time and slow time with respect to finishing time,
respectively.

We notice from Table 6-1 that percentage DT first increases and then decrease.
A slightly different increase followed by some decrease in percentage ST can be noticed as
well. For ¢ = 1.7 notice that DT is 21% and ST is 13.3%. We consider this as the best
representation of the average productivity model.

6-25

FT'(yrs) DI(yrs) %DT ST(yrs) %ST
0.5 9 2.6 28 1.7 18.9
0.7 6.5 1.857 28 1.5 23
09 5 1.445 29 1.25 25
1.1 4.2 1.18 28 0.7 16.67
1.3 4 1 25 0.5 12.5
1.5 3.5 0.8669 24 0.45 12.8
1.7 3 0.7649 21 04 133
1.9 2.5 0.6844 27 0.35 14
2.1 2.3 06192 27 0.3 134

Table 6-1: A Profile of the Average Productivity Curve

6.4.4 The Effect of Average Productivity Environment on The Quality

We now find the relationship between the metrics mentioned earlier and cost. For

the design stability metric, we find the following relationship between the design stability

(Q) and cost C:

0 =24428C* —38706C* + 27698C + 00706

(6.30)

Equation (6.30) represents the relationship between cost and design stability when

cost ranges between 0 and 1 of the final cost K, and Q ranges between 0 and 1 of the

desired design requirement. Figure (6.8) shows the above relationship between quality

and cost. This cost function assumes a value of 1.7 for c. If we consider the development

time in the latter case to be t,= 9 months, we find that the cost is 0.3614K, and the

6-26

quality, from the metric, 1s 0.6317. If we wish to achieve a better quality, 0.8, at the same
time t, =9 months, we need to allow larger cost consumption rate prior to that time.
This indirectly implies a new team with high productive personnel. From the above
equation, we can find C=0.555K. Since cost is a function of time and ¢ and in this case
time is known (=9 months), ¢ can be found to be equal to 2.15. This result is intuitively
expected; if we want to achieve better quality, we have to hire a more productive team or

use a more effective CASE teool environment,

[¢] i 1 1 L - I 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 .8
Cost

Figure (6.8): Quality as a Function of Cost
Similar predictions for the other two metrics namely: requirements stability and

fault profile can be made. As a case study, we use the NASA data [BAS85c¢] and find the

equations for R, requirements stability, and F, fault profile in terms the cost, C, as:

R=1000{2.2065C" — 3.1434C? + 14738 C+ 0.0484) (6.31)

6-27

F =1000(31112C° - 4.1855C* +2.039C +01284) (6.32)

These equations have been plotted in Figures 6.9 and 6.10.

0.9

08

0.7

o
o
T

Requirement Stability
o o
N (4]

o
w
T

o2r

L] |

0 | ! 1 1] 1
0 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.8

Cost

Figure (6.9): Requirement Stability as a Function of Cost

6-28

0.9

0.8

o o
(] -~

Fault Profile
(e
[83]

04
0.3
0.2
0.1
O 1 i 1 1 J A i]]
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Cost

Figure (6.10): Fault Profile as a Function of Cost

.5 Discussion

It is important to compare our two newly proposed models with the
Putnam/Norden model. Figure (6.11) shows the rapid learning/productivity model with

productivity rate ¢=1.3 and two linear models with productivity rates =5 and a=1.5.

6-29

14 T i : y y T
12F
a=5 linear
10F .
3
5 or -
G
.3
L
&
g of .
—d
c=1.3Rapid
&t -
ak .
0
¢l 1.4

Figure {6.11): Rapid Learning/Productivity Curve in Comparison to
Two Linear Learning/Productivity Curves
Figure (6.12) provides a similar comparison between the average
Leaming/productivity mode] with rate c=1.7 and two linear learning/productivity models
with same rates as mentioned above. The corresponding manpower distributions are
given in Figures (6.13) and (6.14). It is known that the coding activity phase typically
contributes to 42% of the overall project activities, and maintenance activities including

rewriting parts of the code contribute to 48% of the project activities [LON87].

6-30

teaming Curve

14

Figure (6.12): Average Learning Curve in Comparison to

L a=5 fingar i
| =17 Averags ;
L a=1.9 linear
el
/"‘ /.,-/
e
= H 1 i s
0z 0.4 0.6 08 1 1.2

Two linear Learning Curves

6-31

Marpower

Manpower

2 "'" T T T T
a=5lngar 7
c:-:\ 1.3 Rapid 1
\ |
|
i]
/\\ a=15Hnear]
Y i
\\
o] L \v'w \S\l“';—%\\“‘%* ! 1 i
4 0.5 1 15 2 25 3 35 4

Time

Figure (6.13): Manpower Distribution of Rapid Model in

Comparison to Two Linear models

2 T T T T T ¥
a=5 lingar
1.8

1.6

c=%.7 Avarags

1F =1.5 inear J

a6t

0.4

0.2

Figure (6.14): Manpower Distribution of Average model

in Comparison to Two Linear models.

6-32

In other words, the development time should typically be at about 42% of the
finishing time of the project which is observed in the rapid learning model. For a high
linear productivity rate ¢=5, the manpower distribution tends to be symmetric with
respect to development time which is not quite realistic for the reason given above.
Additionally, peak manpower is significantly high which is not desirable due to
communication and interaction problems among members of a large team. In Figure
(6.14), on the other hand, we can see that the development and finishing times of the
average model and the linear model with low productivity rate are close. For software
development projects having project duration in the range of one to two years, the rapid
productivity model represents a realistic representation of a highly qualified/productive
team and an effective use of the CASE environment. For larger software development
projects, the average productivity model is expected to behave better than the linear
productivity model with low learning rates due to the fact that average team personnel
improve their performance later in the project.

6.6 Experimental Validation of the Proposed Models

In this section, we analyze the relative merits of the Putnam-Norton’s linear
learning model and the newly proposed learning models, namely the average and the
rapid models, via éxpcn'mental best-fits on various sets of manpower data. A single
model cannot be expected to fit better under all circumstances, because of the nature of
generalized data fitting. For example, two sets of just 3 data points each {(0,1,2),(0,1,4)}
fit better under fix)=x and f{x)=x2, respectively. This is particularly true for the
calculation of Root-Mean Square (RMS) value which is generally used for such fitting.

Several experiments were performed to determine the relative efficacy of the two

6-33

proposed models (average and rapid learning) and the classical linear Putnam model. The
analysis was performed predominantly in Mathematica. The objective was to determine
the precise values of the parameters in manpower models so that the RMS value between
a sclected data set and the model was minimum. The equations for the manpower models
used for this analysis are 6.4 (Putnam-Norton's linear learning model), 6.9 (the rapid
learning model) and 6.26 (the average learning model).

Table 6.2a: NSDIR Manpower Data Set (Program month, A ctual Manpower)

{0,0},{27,665),{29,1649},{30,1205},{60,2849},{ 88,3591}, (90,3890}, {91,770},
{121,4361},{122,272),{152,5327},{173,0},{176,2800},{ 1 80,5842} {182,1537},
{183,812},{202,252},{211,25395},{213,1947},{229,363 },{ 244,2725),{247,30489},
{272,3322},{275,3126},{295,6500},{303,3973},{321,691},{333,4643},{334,4457},
{358,835),{364,5268},{387,53853},{394,5915},{395,6029},{419,1360}, {425,6857},
{430,196651},{456,64655},{487,77060},{511,279763 },{532,92290},(590,11153 1},
{665,43324},{681,129263},(682,139257),{701,139257),{713,147987). {738, 147987},
{817,191813},{897,244215},{924,244215},{938,259490},{987,300921},{999,300921},

{1023,315627}

For the first experiment, a manpower data set from the National Software Data
and Information Repository (NSDIR, URL:http:/nsdir.cards.com/NSDIR) was used. This
data set, as shown in Table 6.2a, provides the manpower distribution as a function of

program months. For this set the analysis demonstrated that a set of parameters values can

6-34

be found for the average model (Equation 6.26) that provided the best-fit over the other
two models in terms of the RMS value, and in fact 50% better than the linear model.

For the second experiment, a total of 11 manpower data sets were analyzed.
These data sets were provided by the Nippon Electric Company (NEC), and are listed in
Table 6.2b. Ten of these eleven sets exhibited better fits by the proposed average model
(equation 6.26). For the 11 NEC data sets, the analysis and parameters values that result
in the least RMS value are summarized in Table 6.3. One set (NEC-DS15) exhibited a
better fit for the linear model (equation 6.4). In this case, the linear model outclassed the
average model by a narrow margin of 0.04 percent. From a pragmatic point of view, the
difference in the RMS values of these two models is not significant and the average
model may be considered to have tied with the linear model even in this case.

Based on these data sets, overall, 75% of the cases were fit best by the proposed
average model, 17% by the proposed rapid model, and the remaining 8% by the Putnam’s
linear model. In other words, the experimental results show that the proposed models
perform better in about 92% of the cases, and in 8% of the cases, the proposed models
perfform almost as well as the classical Putnam linear model. These experiments
demonstrate the superiority and the validity of these two proposed models (the average

and the rapid) over the linear Putnam model.

The detailed analysis of NSDIR and NEC data sets is given in Appendix B.

6-35

Table 6.2b: NEC Data Sets (Actual Manpower)

Data Set Product Detail Programming Testing Conversion
Design Design
NEC-DS1 | 49181 108250 195735 156126 0
NEC-DS2 | 16507 42787 84383 55426 967
NEC-DS3 |314 476 666 877 173
NEC-DS4 [480 636 1000 500 145
NEC-DS5 |213 263 885 182 60
NEC-DS6 |[1330 1730 2580 1350 300
NEC-DS7 |833 1053 1587 784 0
NEC-DS8 |30 30 40 35 221
NEC-DS9 | 6004 7674 18879 6022 5
NEC-DS10 | 172 234 352 164 1573
NEC-DS11 | 975 535 511 534 5330

6-36

Table 6.3: RMS values for the linear model and two proposed models, along with

parameters which generated the best-fit for the manpower data sets.

Data Set | Linear: Average: Rapid: Optimal
RMS Value RMS Value RMS Value Model
K,a K,c K,ca

NSDIR 234655 157188 241595 Average
I.1e6, le-5 1.18e12,3.3e-5 le-14, 3.5e-4, le-3

DS1 110279 93726 141864 Average
1.9¢7,1e-7 3e6, 5e-3 2e8, 9e-3, 1.4¢-4

DS2 45903 37840 38141 Average
3e7, le-6 26, Se-3 2.09¢7,¢e-3,e-3

DS8 408 389 461 Average
3.07¢7,e-5 3e7,9%-6 3.18e5, 9e-2, 1.9e-2

DS9 331 324 397 Average
de5, e-5 3.9¢6, 1.6e-2 2.05e6, 8e-3, 8e-3

DS iO 525 488 646 Average
5e6, le-4 2¢e5, 9.5e-5 2¢7,0.9, le-7

DS11 836 851 523 Rapid
5e5,%-6 3eb, le-2 3e6, S5e-4, Se4

DS12 1673 627 1032 Average

6-37

Data Set | Linear: Average: Rapid: Optimal
RMS Value RMS Value RMS Value Model
K, a K,c K,ca
1e8, 1e-9 2e6, le-2 5e5, 1.9,2¢e-4

DS13 122 95 166 Average
de7, le-7 leg, le-4 S5e7, 1, 2e-6

DSi4 10039 9344 13760 Average
5e9, 9¢-5 1.5e6, 6e-3 3e8, 1, le-7

DS15 408 426 849 Linear
1e9, le-4 1.6e6,9.99¢-2 2.85e6, 4,9¢-4,4.98¢e-4

DS25 3339 2713 1242 Average
4e9, 1le-9 2.9¢12, 1.1e-5 2.7e6, 5.7e4, 5.7e-4

6.7 Conclusion

In summary, our main goal in this chapter was to represent accurately the human
productivity factor in the development of software projects. In previous sections this
factor historically was considered to be either indefinitely growing or was always
constant. Our propc;sed models introduce a time changing human productivity that grows
for some time and then saturates. It should also be noted that the final cost of a software
development project can be given in terms of program size derived from the NEC model.
Software development engineers using these proposed models can change quality
requirements as needed. The price is the extra cost for paying more experienced labor. In
this latter case new cost distribution and schedule can be determined a priori. The rapid

6-38

learning productivity model, as discussed above, is a more realistic representation of
manpower distribution than the linear model with high learning rate; whereas the average

learning model is comparable to the linear model with low learning rate in representing

the manpower distribution.

6-39

