Chapter 5

Metrics Classification Techniques and an Integrated

Framework for Risk Management

5.1 Introduction

In the previous chapters, we described some simple queries that can be answered
directly from retrieving pertinent raw metrics data stored in the metrics database, as well
as more complex queries requiring analytical techniques. As argued in Chapter 4, for
some complex queries, more sophisticated metrics classification and analysis techniques
may be required to aid in obtaining the query results. In this chapter, we describe two
metrics classification techniques, namely classification trees and neural networks, that
can be used to determine the level of risk of software components based on knowledge of
past historical data. We describe how the techniques can be used to determine historical
project trends and provide indications of potential problem areas that aid in management
decision making. Finally, at the end of this chapter we present a framework where all the
techniques of chapters 4 and 5 are integrated to provide a unique environment for
software risk management.

An important objective of software test programs is to identify high-risk
components. If 'such components can be identified early in a software development
program, the manager can redirect resources to support preventive actions. Metrics
classification techniques are used to determine the level of risk associated with
management objectives by analyzing past project trends. Questions that may be asked by

management include:

5-1

¢ Which components in the software development process are error-prone?
e Which components in the software development process require high development

effort?

Classification .
Input (metrics) Model QOutput (target classes)

Figure 5.1: Black Box of Classification Model

‘Answcring these queries can be regarded as a metrics-based classification
problem. A black box model for such a classification problem s shown in Figure 5.1.
The inputs to the model are the metrics and the associated empirical data, while the
outputs are the target classes. Based on these target classes, the model uses several
different software metrics to categorize past components as being within or outside a
target class. The model is then applied to a project for which information about the
desired property is unknown, and based on the past data, it identifies the component as
being in the target class or not.

The application of such a classification technique using target classes is a three
step process:

i. Initially, a target class is defined which is a binary membership function on the
objects or components being classified.

2. The model is then trained to accurately classify a set of training objects, depending on
whether or not they are in the target class. These training objects need to be

representative of the population from which future objects will be selected, in order

that those objects, whose target classes membership is unknown, will be predicted by
the model.
3. Lastly, the model is applied to previously unseen objects and predicts whether or not
they belong to the target class.
52 Classification Trees
In this section, we introduce the use of classification trees to evaluate two factors
of risk in a software development environment:
e software reliability
» software development productivity.

52.1 Whatis a Classification Tree?

A classification tree is essentially a decision tree in which each internal node
represents a partitioning function for a metric [PAU94d]. Each link which emanates from
an internal node represents a partition of a metric value of the node. The leaf nodes do not
partition objects, they label the objects they encounter as members or non-members of the
target class. Each path from the root node to a leaf node, therefore, represents a unique
vector whose elements correspond to the partitioned values associated with each link in
that path.

The classification tree has a functional architecture which resembles a tree. The
top branches represent the input statements, each of which defines a software module
with specific characteristics. The trunk represents a series of decision nodes which
perform further classification of the software modules using the metrics data which is
reported for each module. The roots of the tree represent the subsequent classification of

the software modules according to the level of risk associated with the management

objectives. Software components are input through the top of the classification tree,
classified at each inner node by the metrics values, and identified by level of risk at the
bottom nodes. Because classification trees allow managers to orchestrate the use of
several metrics, the trees also serve as one type of metrics integration framework.

The target class in a classification tree define the conditions which the manager
wants to identify in software components. In order to identify which software components
are within the target class, a series of metrics must be applied which measure those
characteristics which are related to the target class. These characteristics are defined as
the contributing factors (metrics). Once the target class and the contributing factors have
been identified, a corresponding classification tree can be generated.

The training set is a baseline of historic data which has been collected on the
contributing factors and the target classes. The training set provides an empirical basis to
infer rules on the dependencies of contributing factors and target classes. The
classification tree algorithm implements an evaluation function to build a tree in which
every path from the root node leading to a leaf is a rule. Each node in the tree is a
contributing factor (software metric) and each branch of that node represents a value or
possible range of values for the metric. Therefore, a path represents a condition, or a
Boolean conjunction, of the values of the metrics at each node which the path may take.
The conjunction is expressed in the form "metric X falls in range BX1 and metric Y falls
in range RY2 and ...". The leaf node represents the classification when the condition is
satisfied. If the metric values of a new component satisfy the condition of any rule, the
leaf classifies whether or not the component falls in the target class. In this way, once the

tree has been generated from historic data, it can be used during the development program

5-4-

to identify components which may be error-prone. Based on such predictions, appropriate
corrective measures can be taken well in advance. Similarly, knowing the development
risks in advance can support a decision to change the project schedule to more efficiently
achieve the project goals.

5.2.2 Constructing a Classification Tree

We now describe the method for constructing a classification tree. For the purpose
of this description, we assume that the training set of components and a given set of
contributing factors have already been determined.

5.2.2.1 Choosing the Training Set

An evaluation is performed on the cémplete set of software components for which
historic data exists, The objective is to identify and eliminate those components that do
not belong to a meaningful representative sample. For example, if two different
components have the same metric values, but belong to opposite target classes, one or
both of the components may be discarded. The resulting subset of components is the
baseline training set.

5.2.2.2 Partitioning into Ranges

The possible range of metric values for the training set of components is
partitioned into a set of ranges. Partitioning can be done in different ways. One way is to
first sort the values of a metric, then partition the metric into contiguous ranges in such a
way that each partition covers an approximately equal number of components. For
example, the Size metric (number of lines of code) is partitioned into ranges: (27,500),

(501,1500), (1501,2147) such that each range consists of approximately equal number of

components.

5.2.2.3 Choosing a Metric at a Node

As the tree is built, at each node of the tree, a metric is selected from the given set
of metrics and assigned to the node. The metric which is selected is that metric
(contributing factor) which incurs the minimum "cost”. Cost is a measure of the
homogeneity of the range of metric values within the component partitions. The cost
factor measures the homogeneity of the different range values of the metrics between the
components. Values of cost are computed by an evaluation function that measures the
value of the "partial tree" formed when a metric is assigned, and each partition of its
values as branches of the node. This process of choosing the metric with minimum cost is
repeated for every node. The set of metrics at a node is obtained by discarding the metric
that was assigned to the parent from the set of metrics that were available at the parent.
5.2.2.4 Partial Tree Construction

Beginning with the root node, a partial tree is constructed for each metric. The
partial tree construction procedures are the same for every metric. All the components
are separated according to the partitions of a metric's range of values, each of which
denotes a branch. The selection criteria is whether or not the corresponding metric value
of the component falls within the range of a pattition. The next step is to derive the
values of "P" and "N" for each set of components corresponding to the branch. The value
of P is the number of components which belong to the target class (positive class) and N

is the number of components that do not belong.

5-6

5.2.2.5 Recursive Metric Assignment
Assign the metric with the least value of E (the feast cost) to the current node.

Once a metric is selected at a node, discard it from further consideration for all the

children of the node. This process is applied recursively untii at least one of the

“termination criteria” is satisfied. Termination criteria for the recursion may be divided

into three cases which assist in deciding leaf nodes:

1. The primary termination case occurs when all the compaonents at a node belong to the
same target class. The node is marked as a leaf node. The leaf node is also marked as
having either a positive or a negative target class.

2. Termination occurs if there are no components that can be filtered into a particular
branch. This occurs when no components fall within a particular partition of a metric's
range. The child node in that branch is marked as a leaf node with negative target
class.

3. Termination also occurs if all components do not fall under the same target class,
even though some components filter through a branch. In this termination case, all the
metrics may have been assigned before arriving at the child node and there are no
metrics which can be assigned to the child node. The child node is marked as a leaf
node with negafive target class.

In cases (2) and (3), the leaf nodes are assigned a negative target class because

nothing can be said in such a situation. An alternative may be to assign a new target class

labeled “Unknown”.

5.2.3 AnExample of Classification Tree

In this section, we present an example of how classification trees can be
constructed and used for analysis of software metrics based on the methodology described
in the previous section. Consider a situation where a user wants the classification tree to
predict whether a component might require extensive labor effort during development.
Available metrics for this example include [POR90]:
e the size of the component
¢ the number of decisions

o the number of input/output variables.

For these selected metrics, a typical classification tree is constructed as illustrated
in Figure 5.2 with L (Lines of Code or Size) as the root node. The figure illustrates a
classification tree constructed with the metrics of Size, Number of Decisions, and
Number of Input-Output Variables. These metrics are respectively partitioned into the
ranges (RX1, RX2, RX3), (RY1, RY2, RY3), and (RZ1, RZ2, RZ3). The "+" and "-"
symbols at the leaf nodes indicate whether or not the component is expected to require a
high level of effort during development. The tree can also be used for predicting trends of
new components. For example, if a new component has a size (number of lines) of 300,
number of dccision:&; of 100, and the number of input/output variables is 130, then that
component will require a high level of effort during development, according to the tree.
This is shown by the path traced by broken lines in Figure 3.2. Similarly, other

components fall under the categories which are showr in Table 5.1.

5-8

R

D I +
oy e Ry /[\
RY2 R_,‘__. RZI ' RZ3
- RZ2
I [oo
R{l RZ3 Rmza
Trzz 7T Rrz2 T

L. = size of component + high effort in development

D = number of decisions - low effort in development

I =number of VO variables

RX1: 27<L.<500 RY: 0<D<50 RZ1: 0<I<£100

RX2:501<L.<1500 RY2: 51<D<90 RZ2: 101<I<120

RX3: 1501<L22147 RY3:91<D<162 RZ3: 121<«1<238

Figure 5.2: A Simple Classification Tree
Component LINES DECISIONS o High
VARIABLES | Development
Effor{?

1 2000 20 35 Yes

2 1000 65 150 Yes

3 100 65 110 No

Table 5.1: Categories of Components In Classification Tree

5-9

Component | Number of /O Lines Effort Class
Number Decisions Variables
92 20 8 121 45 0
93 15 15 148 87 0
94 9 it 9s 162 !
95 11 7 90 160 0
96 34 31 229 313 i
97 8 14 150 115 0
98 7 5 86 62 0
101 Il 21 108 145 1
102 12 11 124 162 1
Table 5.2: Data for Construction of Classification Tree
I/O VARIABLES LINES DECISIONS Target Class
Range Range Range

l T

2 lor3 "

2 2 oLt

3 1 "+

3 2 '+

3 3 lor3 "+

3 3 2 "

Table 5.3: Determining If A Component Is Within A Target Class

5-10

524 Advantages and Drawbacks of Classification Trees

Classification trees are considered superior to other classification methods
because the resulting models are straightforward to build and interpret. The generation
process i extensible and new metrics can be added during construction of the tree.
Classification trees can afso be customized by using various metrics to classify different
types of components in multiple development environments. Classification trees serve as
metric integration frameworks and can be used to relate various high-risk properties of
components to different software metrics. Classification trees can also be used for inter-
project evaluation. One of the most significant advantages of classification trees is that
the tree-generation algorithm can be applied to large systems.

Classification trees suffer from one major drawback: the target classes must be
linearly separable, that is, the software components must fall into one of the defined
target classes. An advantage of the neural network-based classification technique as
described in the next section is that target classes do not have to be linearly separable.

5.3 Neural Networks

Neural networks can also be used to classify high-risk software components
[MERY6,PAU%4c). Using historical data, the neural network leamns the relationship
between certain metrics and a particular classification. A neural network can select the
classification which best fits the input metrics. A neural network represents a series of
relationships between the values of the metrics data and the desired classification. The
neural network relationships can be learned through the correlation’s of metric values to

result in classes which are demonstrated through operation of the classification tree.

o BINARY
METRIC MAPPING

Component
Function

Dala
Bindings

>
»

OUTPUT LAYER

Design
Revisions

EDDEN
LAYER

Figure 5.3: Schematic of Neural Network-Based Classification Model

The principle underlying neural network-based models is pattern matching similar
to that for linear networks. These models treat the training objects as sets of paired input-
output patterns. The model contains links that map part of the input pattern to part of the
output pattern. Based on past metrics data, the network is trained to learn a set of link
"weights" which are used to predict user-specifiable properties of software components.
Examples of user-specified properties are components that are likely to be fault prone,
units that have high development effort, or software functions that have faults in a certain
clags. These weights are "learned" by iteratively modifying their empirical mapping of

input patterns to output patterns during their classification of a set of training data.

The schematic of the neural network-based classification model is shown in
Figure 5.3. The model's structure and function is described in two phases. The first phase
is the leamiﬂg phase and the second is the output phase. The basic structure of the model
consists of an input layer, an outpul layer and a number of hidden layers. The number of

hidden layers is dependent on the user.

INPUT FORM
COMPONENT
Metric | Metric 2 Metric n
{No. Lines) {(Function Calls) {Design Effort)

I<n<20 20<n<50 50£n <108 100 s 0 <200

I

(1600 {0100} (CO10) (GO01)

ORTHOGONAL BASIS VECTORS

Figure 5.4: Input Form for Neural Network-Based Classification Model

To understand its function, consider the input to the model. The raw training-set
data is re-coded into relatively small groups of discrete values. The re-coding process
maps metrics values into mutually exclusive, and collectively exhaustive, ranges by
transforming all data into nominal values. This grouping into discrete ranges can be done
using non-parametric methods such as guartiles, distribution-sensitive Jeast-weight-
subsequent functions, or clustering methods. We now describe a three layer, error back-

propagation neural network for classifying software metrics using this schematic.

53.1 [Input Phase

Figure 5.4 shows the input form for the network model in Figure 5.3. Each of the
software components used from the past metrics data has information about several
different metrics, such as number of lines of code, function calls, design effort, etc.
Consider a single such metric, the number of lines of code. Different software
components have different values for this metric. Rather than handle with a large number
of different values, the entire set of possible values is partitioned into discrete ranges and
the value of the metric is quantified as falling into a certain range of values. For example,

Figure 5.3 shows the following partitions:

e 1<n<20
o 20<n< 50
e S0<n< 100

100 <n <200

where n is the number-of-lines of code metric. A component which has 43 lines would
fall into the second range. This pre-proccssing is uniform for all metrics considered. The
key difference is that the number of such partitions for a given metric can be specified by
the user. Furiht‘:rmc-re, the partitions are mutually exclusive. This provides the basis for
generating orthogonal basis vectors for each partition. In this example, the orthogonal
basis vectors for the number-of-lines of code metric are (1,0,0,0), (0,1,0,0), (0,0,1,0) and
(0,0,0,1). Since the particular component has 43 lines, it would fall into partition block 2
and the basis vector is (0,1,0,0). These basis vectors, which are formed for each of the

metrics, are the input to the network. The next stage in the network is a set of "weights”

which have to be learned using the past metric data. At the start, these weights are
initialized to be 0. A weighted sum 1s obtained and a bias is added, giving the output
value. The bias is set to O inttially. Note that the chosen initial weights is 0. However, any
other random weight can be used asa starting weight.
5.3.2 Learning Phase

This phase nvolves training the network using past metric data to learn the set of
weights. For each set of past metric data of a component, a "target class"” is specified that
reflects the goals and circumstances of a particular project. These user-specifiable target
classes define the properties that developers want to predict about the system and its
components, Examples of these properties are components likely to have a high number
of faults, high development effort, or faults in a certain class. The model building process
characterizes software artifacts from previous systems (components, subsystems, or

processes) which meet the target class criteria,

The orthogonal basis vectors generated for a component are input to the network
model and the output value is obtained. This output value is compared with the target
class specification. A positive instance 1s
 if the output value is greater than 0.9, and if the component is in the target class, or
» if the output value is less than 0.1, and if the component is not in the target class.
Otherwise, there is a negative instance. In a negative instance, the set of weights, along
with the bias, have to be corrected. In case of a positive instance, the weights rermain the
same.

The predicted mapping is comect if the calculation made on the network's current

set of link weights (w;) classifies the component correctly. In this case, the ink weights

5-15

are not modified. The predicted mapping is incorrect if the calculation based on the
network's current set of link weights {wy) classifies the component incorrectly. In this
case the link weights are modified. In general, a link weight contributes to a miss-
classification if it maps a 1 in the input pattern to an incorrect | (in the target class) or
not in the target class) in the cutput. This weight change is in increments of +8 or -9,
corresponding respectively to whether the network incorrectly classified a component as 0
(the component is predicted as not in the target class but actually 15}, or 1 (the component
is predicted as in the target class but actually 1s not). The bias is considered as a weight
whose input is alwaysa .

This process is repeated for each iteration through the training data. The training
ends when the network can correctly classify 100% of the components in the training set
or no further improvement is achieved.

5.3.3 Output Phase

Once the learning phase is complete, a set of weights exists for the network. The
basis vectors are generated for a new component and its target class predicted using the
learned weights. The re-coded data is given as input to train the model to learn the link
weights.

534 Experienceé with Neura! Network-Based Classification Methodelogy

The capability of neural networks to classify non-linearly separable problem
spaces gives neural networks an advantage over tree-based and linear network-based
classification methods [PAU94c). Linearly separable means that there is a straight line

that separates the two pattern classes as being in the target class and not in the target

5-16

class. Figure 5.5 shows palterns that are linearly separable while Figure 5.6 shows

patterns that are not linearly separable.

E-N
A
\\ X
.
w\‘- X
N
. e %
-] T
L4 So
. X
o T
o > .
N
>

S °
~ X

w

Figure 5.6: Patterns That Are Not Linearly Separable

In an our recent study {MER96] we have reported several important findings
about our experience with neural network for their use in software development process.
In particular, the following factors stand out clearly in this study:

k. Preproceésing is important. It can remove scaling effect of the projects by
transforming the metrics into normalized or percentage data whenever possible. This can
improve the similarity of projects of the same type with different scale.

2. Using similar or comparable projects for training data is important. This can
help the accuracy of the prediction process. In [MER96] although the concept of metric

analysis has been shown, the efficacy of the system in a real data environment has not

5-17

been evaluated. Training of the neural network on past projects does not guarantee good
generalizations of future performance., At worst, there can no correlation in the training
sets used, and so by definition no valid projections can be made. In that case, even though
the network can be trained to correctly project the historical data, the output will exhibit
only random performance on new data. However, this 1s not expected, since the goal of
metrics is to provide information for prediction that can be usefully correlated with
project status. In particular, the software metrics set was carefully evaluated and was
chosen to include metrics that have descriptive utility. The only critical requirement for
the system proposed in [MER96] and is not already in place is the recording of project
milestone dates. This is a recommended addition to the software metrics, and is required
to perform the functions described above on any other metric set.

3. The Neural network evaluation cannot be trusted blindly. The framework
proposed in [MER96] suggests that a combination of neural nets and Fuzzy-based expert
system would be desirable since it can allow re-evaluation of the metrics analysis and
prediction by embedding the human knowledge in the expert system.

5.4 An Integrated Software Project Management Framework

Impressive gains have been made in having a multitude of techniques and tools
work together towards a common goal of optimal software production processes.
However, the state of the art tools still seem to be ad hoc by today's standards of full
integration. Such integration should include the levels of presentation, data, control, and
process. Presentation level integration concerns itself with how an end-user interacts
with the target system. This would include such things as the GUIL ease of use of the

products by the intended market, transparent resource impact, and reducing usage non-

uniformities among different tools and techniques. This can have a significant impact on
the learning curve of users, a topic discussed in the following chapter.

Another level of integration concerns data itself. Hence the techaiques, when
faced with different types or formats of data should still use same segments of data to
derive the results. If inter-utilization of data among independent tools involves a lot of
work, then integration at the data level is weak. Similarly, it should be easy for well-
integrated technigues to cooperate in performing and maintaining integrity checks on
data. Contro! integration refers to how easily functionalities of one technique are
available from within another technique. This would also mean one technique is able to
easily employ services it uses or requires from another technique in the environment.

Process integration ensures that different techniques interact to support processes,
including different units of work, incident conditions that may arise, as well as the
management of different types of constraints on the processes.

The variance in software environments can be large, and it may not be appropriate
to impose the same detailed procedures upon all of them. Irrespective of the environment,
a suite of comprehensive analytic techniques is needed to help in making important
quality control decisions. The primary objective is to extract knowledge and gain
meaningful insights into the development process based on raw metrics data. Such
insight is essential to identify problematic components or processes during all phases of
project development and provide answers to complex queries regarding dara probing,
current assessment, and predictions about the quality of the product. Possible cormrective

actions must also be assessed in terms of their cost, benefits, and consequences bearing

upon the quality of the product.

5-19

With the above facets of integration in view, we present an mtegration framework

of analytical techniques and elaborate how these techniques can be coupled with software

metrics to provide a comprehensive and efficient management environment for the entire

life-cycle of a software project [PAUIGH PAUIGC].

In Table 5.4, we first summarize the objective of all the techniques presented in

Chapters 4 and 5. The environment depicted in Figure 5.7 shows the overall integration

of the above techniques in the big picture. The overall process, from the beginning of the

software metrics collection, data analysis, rule-based decision analysis and process

improvement via feedback, is depicted both in Figure 4.6 and 5.7. Most of the current

CASE tools such as 001/DBTF (HAM90] and LOGICASE can be enhanced by using

such integration to provides a framework to overcome inherent himitation discussed

before.
Tool Objective
Multivariate Statistics * Data Screening
e Qutlier Analysis
¢ Dependency Relationship
» Regression
* Reduce Dimensionality
¢ Principal Component Analysis
‘ » Reduce Dimensionality of Reduction
s Principal Component Regression
Classification Trees » Reliability Identify Error Prone Components

» Metric [ntegration Framework
¢ Interproject Evaluation

* Training Set

Identify High Development Efforts
Productivity

Classify high risk components

5-20

MultiResolution Analysis
o Convolution Computation with the scaling

Function

Problem Detect via fluctuations of data at
deferent scales data resolution analysis for

diagnosis of problem

Neural Networks
s Learning Set

» Pattern Matching

Predict and classify high risk fault
Components

Predict and classify Development Efforts
Predict and classify Unstability
Requirements

Predict and classify Unstability Design

Predict Reliability

[nfluence Diagrams
» Model Relationships among metrics, risk items

and Decision Alternative

Singularity-Based Analysis

Predict and estimate Productivity

Time Series Analysis
» Graphical Technigues

Diagnose for Understanding Data Classifying

and Cross Relating Exceptions

Table 5. 4 Analytical Techniques For Software Metrics Data

Queries

Formuiate

Complex Logical -3

o Crueties Sumrnary
Range :
i"& T Tcmapomﬁ l
L
S ingularity-based Influence Diagram Multi-resolution Neural Classification
A nalysis Expert System Anaiysis Melworks Trees
¥ ' Y Y
i e (‘“‘““*“'“‘ "““““"'“-\ T ,/—————-—--——-H,..__\\
Quality prediction Linked-up attribuiss Detect problems Ciassify and identify cror-prone)
and enutics to controd through predict high-risk COMponents
. fisks fluctuations of fauit componeals
Edentification of data atdifferent Estimate
high-risk areas Resolution of scales Classify apd cehability
Reduction for high predict
o risk tmes identified Data resolution davelopment Identify high
Estimation of analysis for efforts developrnent
productivity Cause & effect diagnostis effory
analysis of eatities assessment of Classify unstable
;\\-#_—'/ the problem requUiraments Estirnate
Display and solve productivity
decision problems Problem Predict duration
definition and of unstable \\ -_———/}
Model statistical identification reCjUErE Mments
dependencies among __/
metrics & nsk items B S Classify design
instability
Maodel inferential
activities, decisions, Pradict duration
& relationships of design
berween variables instabifity
Risk identification Predict fault
profile
Decision-driver |
analysis Predict
reliability
Assumption N /
analysis
Decomposition
A 4
____M,<C0Hecﬂve Action)w‘ ~
o

Figure 5.7 The Integrated Framework for Corrective Actions and Decision Making

5.5 Conclusion

Current techniques and CASE tools do not employ environments that provide
sufficiently automated means to solve the problem at hand. In the context of software

project management, this includes the recognition of the root problems and determination

of procedures 1o fix themn now and prevent them in the future. A proper choice of basic
software metrics combined with a selection of powerful techniques, and true integration
of these metrics and technigues forms the foundation of efficient and robust software
project management, In this chapter, we have presented an integrated framework needed
for current CASE environments to achieve these goals.

We have demonstrated that software metrics along with appropriate analytical
tools can be an effective aid for CASE envirenments at all levels. Cumulatively, these
techniques can help autornate detection and correction of problems in a project. Besides
automated trouble shooting, this framework also provides opportunities for further
automation of processes in current CASE environments via tighter integration of
techniques, tools and metrics. Other advantages include the control of risks via
identification and removal of feedback loops. The comprehension of a project 15 aiso
enhanced which helps modularization and component reuse. Such a framework can assist
in optimizing management of large software projects by reducing low-level human
intervention. [t can thus reduce risk and increase quality of the final product, without
mcreased cost. It can also increase reliability and greatly reduce the occurrence of costly
mistakes in the future.

In conclusion, software engineering today, unlike other engineering sciences,
lacks rigerous mathematical foundations and there are few experimental results available
to form any concrete basis. The mathematical framework presented in this and previous
chapters along with the proposed software metrics can lead to mature software science for
the research and development community. In essence, our framework can be applied to

any software development process once the appropriate metrics data 1s available.

