Chapter 4

Analytical Techniques for Metrics Guided Risk Management

4.1 Introduction
Risk management of a software project is concerned with identifying the project's high-

risk items as early as possible and resolving them. It can reduce long term costs and help prevent
software disasters. Some of the important risk factors include excessive delays in schedule,
unrealistically high development cost, inconsistencies in requirements, unreliability of a product,
non-upgradability of a product and its non-reusability, product not conforming to standards,
failure to meet real-time requirements, susceptibility of a product to security breach, using non-
standard technologies and unproven environments, difficulty in maintenance, user unfriendliness,
etc. Unless identified and controlled early, these risks can create serious problems. As mentioned
in earlier chapter major steps in risk management consist of risk assessment and control
[BOES89]. In the risk assessment step, loss probability and loss magnitude for each risk item are
assessed and risk items are prioritized according to their expected loss. In the risk control step,
the plans to resolve the risk items are generated and executed. These two steps are applied
repeatedly throughout the life-cycle of the software development process in the form of the
following queries:
1. What is the normal outcome of a software production process so that they can predict future

outcomes?
2. When a process has resulted in an unusual outcome, what factors may impact the quality of

the final product and when is their impact significant?

3. How can we diagnose the causes and predict consequences of such abnormal results?

Answer to these queries requires extensive knowledge that can be obtained by combining
the information contained in software metrics data collected from the project with the manager’s
experience and knowledge of the organizational resources. Data from past projects can also
enhance the effectiveness of the management process.

Considerable research has been conducted in software engineering in the past two
decades. especially on the modeling aspects of the software development process, and
accordingly building increasingly powerful analytical techniques for risk management. Major
emphasis has been placed on developing suitable cost estimation and reliability models, and
direct application of software metrics [FEN91,PAU93,BAS84c]. During this decade, there has
been an increasing awareness about using an integrated process-based approach to manage
software quality. We have seen the emergence of such metrics in the form of the integrated
process-based approach. This evolution reflects the growing concern of the software
engineering community of developing project metrics which can aid in cost estimation and
product quality control. During the past few decades, there has been an increase in the awareness
about collecting software metrics which can impact quality, reliability, complexity and
maintenance.

Most of the existing tools for software metrics merely collect and display simple
abstractions of the raw metrics data. However, software metrics data tend to be of high
dimensionality, highly correlated, and often exhibit non-linear distributions. Simple examination
of metrics data, as discussed in chapter 3, generally does not provide enough information to
identify problem areas in the project. Accordingly, powerful modern analytical techniques need
to be employed to process the metrics data in order to gain knowledge and detailed insights into

the software development process. The objective is to assess the quality of the product and the

42

risk involved in the completion of the project. In this and the following chapters we discuss a
number of techniques for analysis and to depict inter-dependency of metrics data, We then
propose a multi-faceted approach for risk management based on using a variety of the approaches
along with the set formal software metrics presented in Chapter 2.

Such approach can provide answer to the complex queries in Table 3.1. These queries can
span a broad spectrum of risks and quality management aspects of the product. As discussed in
Chapter 2, simple examination of metrics data cannot not provide answer to most of these
queries. Techniques are needed to identify inter-relationships among the metrics data sets prior
to providing answers to these queries. Such identification is an essential component of the
decision-making processes. For this purpose various quantitative and knowledge-based
approaches can be utilized. For example, an influence diagram based approach can capture the
statistical dependence and independence among the metrics data in the temporal domain, over the
whole life-cycle of the software development process, and can also provide a powerful
mechanisms for probing and screening information embedded within the metrics data.

Additional approaches such as classification trees and neural networks may be needed to
obtain a wide variety of analytical results, providing more complementary information. For
example, probing may be targeted on finding the cause for certain problematic outcomes and
isolating abnormal data.points. For such purposes, multiresolution and singularity based analyses
can provide powerful methodologies over other approaches due to its capability to carry out low
level resolution analysis which is based on its dynamic threshold control features. This
methodology allows powerful noise reduction capabilities in the metrics data and can provide
smoothened data even at very low levels of resolution. On the other hand, if one needs to devise

an appropriate corrective action, based on some findings, influence-diagram based expert system

4-3

methodology can readily provide decision altematives. Similarly, for processing those queries
which are focused on predictive assessment of corrective actions, techniques based on neural
networks or classification trees can be quite suitable.

It is important to note that a single technique may not be able to provide answers to all the
aspects related to risk and quality management. We need a comprehensive set of techniques,
where each technique has its own characteristics and capabilities. In this and the following
chapters we discuss seven such techniques and present an integrated approach that can provide
answer to the kind of queries listed in Table 3.1. The approach leads to a framework for risk and
quality management of large software projects. The techniques to be discussed include: Entity-
Relationship (E-R) modeling; Influence Diagrams; Principal Component Analysis;
Multiresolution Analysis; Singularity Theory Analysis; Classification Trees, and Neural
Networks approach. Both E-R modeling and Influence Diagrams techniques emphasize the
inter-dependency and correlation aspects of metrics data.

4.2 Data Dependency Techniques for Software Metrics Data
4.2.1 E-R Modeling Technique and an E-R Model for T&E Metrics

One of the primary requirements for a software metrics system is to manage metrics data
in a manner that ensures referential integrity and consistency of the data. The important step to
achieve this goal is to find suitable logical data models for software metrics. Although a number
of approaches can be utilized for such purpose, the E-R model provides a natural representation

of the relationships between the different metrics and is simple to understand and interpret.

44

Soft. Engr.
Environ.

Milestones

S

Overall Req,
Tracibility

>

Design
Stabilit

Storage Usage
N

Figure 4.1: Entity-Relationship Diagram for the Propesed T&E Metrics Database

In Figure 4.1 we present an E-R diagram partially for the T&E metrics at the system and
CSCllevels. As can be noticed from this figure, the system has one or more reliability tests, each
of which has a distinct test identifier and is required to report test results. In addition, there are
one or more Contractors assigned to one or more projects. The system also has a set of
Deliverables as defined by management, which are accomplished by engaging in various
Activities. Although not illustrated in figure , these activities may correspond to different phases
of the software life cycle such as requirements specification, design, coding, testing, and
maintenance. Each activity has a name and a set of metrics associated with it which has to be
collected at regular intervals, as discussed in earlier. In addition, a set of schedules may be
associated with each activity, and possibly an overall schedule encompassing the start and end
date of all activities. Data for the schedule metric as discussed above is expected to be collected
via schedule reporting at regular intervals. Furthermore, management may also associate one or
more cost activities for the system, and prepare budgets for each cost item [CON85]. Examples
of cost items would include the cost of manpower and computer resources allocated to each
phrase of the software life cycle, as well as other overhead costs. Each cost activity is expected
to have regular cost reporting in order to track actual versus budgeted costs. The system also has
anumber of milestones, each of which is associated with different activities; only regular overall
requirements traceability reporting, which tracks the conformance of various milestones to
system requiremnents is illustrated in the figure.

Figure 4.1 also describes the E-R model for the metric data associated with CSCIof a
system. The E-R model has an obvious utility for some tasks, in particular performing logical

database design. Many commercial database design tools allow the input of database constraints

via the E-R model. Such tools include capabilities for adding, deleting, and modifying the
resulting E-R diagrams, and the generation of appropriate schema.
4.2.2 Influence Diagrams

Influence diagrams have been used to model a variety of situations, ranging from medical
diagnosis [HENO91] to risk analysis of semiconductor manufacturing {AGO87 NAD91]. In such
applications, influence diagrams have proven successful in combining the qualitative knowledge
of human experts captured in the form of influence diagrams, and deriving models with less error
compared to the use of first principles or statistical regression analysis. The combination of
influence diagrams and neural networks has also resulted in new solutions to existing problems.
Research on influence diagrams has also shown the advantages of reusing the same influence
diagram in different inference phases [BEL94] due to the modularity requirements of keeping
knowledge sources separated. Egar [SHA88] has also demonstrated the feasibility of generating
influence diagrams automatically using a graph-grammar production system, easing the task of
modifying them. Other work on influence diagrams includes the introduction of an arbitrary non-
negative function (called a potential) instead of a conditional probability table to remove chance
nodes directly without reversing arcs [NDI94], and the concept of stepwise decomposable
influence diagrams to correspond to stepwise solvability.

An influence diagram is a network for probabilistic and decision analysis models. The
nodes correspond to variables which can be constants, uncertain quantities, decisions, or
objectives. The arcs reveal the probabilistic dependence of the uncertain guantities and the
information available at the time of the decisions. Detailed data about the variables are stored
within the nodes, so the program graph is compact and focuses attention on the relationships

among the variables. Influence diagrams are effective communication tools and recent

4-7

developments allow them to be used for analysis. They have a graphical structure which makes
them easy to understand and model the relationships in a complex system. They rest on the
traditional Bayesian inference engine. Traditional techniques of analysis have been used to
address questions of inference. We use the conditional independence implied by the diagram's
structure to determine the information needed to solve a given problem. When there is enough
information, we can solve it, exploiting that conditional independence. The same results are
applied to problems of decision analysis. This methodology allows the construction of computer
tools to maintain and evaluate complex models. Hence the major benefits of influence diagrams
are that they are flexible, tractable, graphic and intuitive. They have a wide scope and enable
reasoning at a purely quantitative level first, Using them, we can also do sensitivity analysis,
model decision making, and flow of information in a complex system.

4.2.2.1 Characteristics of Influence Diagrams

An influence diagram is a network consisting of a directed graph with no directed cycles
and detailed data stored within the nodes of the graph. Each node in the graph represents a
variable in the model. This variable can be a constant, an uncertain quantity, a decision to be
made, or an objective.

We call an influence diagram probabilistic if all of its nodes represent constants or
uncertain quantities. Each variable in a probabilistic influence diagram has a data frame within its
associated node, in which there is a finite set of outcomes (the values that the variables may
take) and a conditional probability distribution over those outcomes. The conditioning
variables for its distribution are indicated in the graph by arcs from (the nodes corresponding to)
its conditioning variables into (the node corresponding to) it. If there are no arcs going into the
node, then it contains a marginal (unconditional) probability distribution.

4-8

There are two types of variables in a probabilistic influence diagram. A deterministic
variable has a degenerate conditional distribution and is drawn as a double oval(or circle);
otherwise, it is called probabilistic and drawn as a single oval. We might be uncertain about the
value of a probabilistic variable even after observing the values of its conditioning variables. In
the case of a deterministic variable, we are certain of its value given the value of its conditioning
variables, although we might be uncertain about its value if we could not observe their values.
4.2.2.2 Influence Diagram for the Software Metrics Data

In order to find an inﬂuenéc diagram for the software metric data we need to aggregate
low level metrics into more abstract quantities which denote certain high level attributes. These
attributes can further be abstracted into more high level aggregates which may denote “risk
factors”. There may be several cost nodes in the influence diagram representation of the complex
systern. There may be other deterministic nodes as well. There may be multiple decision nodes
which represent risk management actions. In order to generate an influence diagram for the
software metric data, we should take into account a number of factors. It is known that the use of
“software metrics” is a phase independent technique that can be applied at each phase of the
software life cycle. Using the waterfall model of software development, metrics can be collected
at the requirement, design, implementation, testing, and maintenance stages to provide guidelines
for decision making at each stage and to determine whether each stage has been satisfactorily
completed. As discussed in Chapter 2, at the requirement phase, we can use metrics to assess the
time and effort needed at the later stages of the software life cycle. For example, requirement
metrics can be used for project cost estimation and manpower allocation, and they can also be
used to reduce the complexity of the requirement specification. At the design phase, metrics can

be used to compare the quality of different design alternatives. Such metrics can serve as an

4-9

evaluation function for an automated system to choose between different design alternatives in its
repository. Metrics collected at the coding stage determines the quality, maintainability, and
understandability of the code. In addition, requirement, design, and code metrics should be used
to guide the development at each stage for possible reusability.

The most useful metrics to be collected are during the requirement phase. This is because
reducing the complexity and detecting errors at an early stage reduces the difficulties at later
stages. Also, requirernent metrics can aid project managers to schedule tasks, partition the work,
and enforce certain performance standards for the software. Here, we suggest some of the
characteristics that should be considered for metrics selection in the requirement stage. The
dependency between software modules can lead to unexpected bugs if a module is modified,
therefore dependency metrics need to be collected. At the requirement phase, we would also like
to be able to predict the complexity of testing. Since local errors require less testing effort than
errors involving many modules, requirement complexity metrics can be used to measure the
amount of control flows between modules to predict testing complexity. The number of paths in
a requiremnent control flow graph is an example of such a metric. Measurements of complexity
due to concurrency, and structural and semantic understandability are other types of metrics that
should be considered.

Based on this discussion, in Figure 4.2 we propose an influence diagram for the software
metrics proposed in Chapter 2. The diagram can serve as a road map for diagnosis and probing of
any issue related to quality and risk management.

As mentioned earlier, the use of influence diagram is tightly related to data analysis and
correlation. For the purpose of completeness, we now discuss various analysis techniques and
their potential role in risk and quality management.

4-10

Breadth

Testing
Staff
- =" \
Test ‘
B Coverage L~ -
Depth -
== v
- -
- -
— - -
Manpower
Increase
-
-
-
B e
Resources Scheduled
Value
Delay
Budget
Requirement
Stability
Requirement Requirement . Requirement
Complexity Refinement
Requirement ' Legend
Traceability © State Node

' Schedule [IDecision Node

@ Value Nod

Figure 4.2: Influence Diagram for the Proposed Software Metrics

4.3 Analytical Techniques for Software Metrics Data

Various metrics data analysis techniques can be used for risk and quality management.

There are a number of reasons for using these techniques. Some of them are listed below:

I.

Effective graphical data presentation techniques can be used with the analytical techniques
which can allow the manager to concentrate more on understanding what the data is telling
them and less on simply endeavoring to grasp the data values and their inter-relationships.
Statistical techniques can help the eye to recognize and calculate trends, and exceptions to
trends, in the data,

Expertise in managing software development consists in part of knowing what exceptions to
look for, how to diagnose them, and what factors to consider in choosing an appropriate
response. By classifying and cross-relating different kinds of exceptions, diagnoses and
responses, it is possible to simplify the task of reaching a preliminary interpretation of the
data, leaving the manager free to concentrate on modifying this interpretation in the light of

his knowledge of the particular project concerned.

’ .
™
Number of 10 L] oo L ®
eITors per i .o.: °
program ..’0‘
o 22— : i f
0 100 200

Size of program (lines of code)
Figure 4.3: Scatterplot: Program Size versus Number of Errors

4-12

As an example, consider the scatterplot in Figure 4.3. This figure displays module size
against the number of faults found during unit testing for a group of modules. When the size is
small, we can observe that other factors outweigh it in determining how many faults a module
has, producing the spread in the lower left quadrant of the graph. Larger modules show a strong
relation between size and faults, and an exception to it is indicated by the circled point.
Statistical techniques exist that can help the eye in calculating the exact relationship and
measuring the degree to which exceptional points diverge from it. Formal statistical analysis is
especially useful in more than two dimensions, and these techniques will be discussed in this
chapter.

Possible causes of a module being large but with few detected errors include good coding,
poor testing, simple control flow procedure, etc. By preparing tables cross-referencing each
diagnosis to the results of other analyses that confirm or contradict it, a shortlist of plausible
causes can be quickly obtained.

4.3.1 Criteria for Selecting Metrics Software Data Analysis Techniques

We first need to establish some criteria for selecting metrics software data analysis
techniques. If an analysis technique is to be applied to software data, the result that the technique
gives must be trustworfhy. The technique must not be dangerously affected by a few erroneous
or widely atypiéal values in the data. It must also not make assumptions about the data
distribution. Classical statistical methods tend to assume that whatever data set one is working
with was drawn from some underlying distribution of data commonly found in nature such as the

Gaussian distribution; when this assumption is true, classical techniques are very efficient but

when it is untrue, the results can be dangerously misleading. Hence, it is very important to first fit

a good distribution to the data before moving forward with the analysis.

4.3.2 Metrics Data Analysis Techniques
Some of the statistical and analytical techniques that can be used for analyzing software

metrics data are the following:

» Univariate techniques

* Bivariate Techniques

s Multivariate Techniques

¢ Multiresolution Techniques
Each of these are discussed in greater detail in the rest of this chapter.

4.3.2.1 Univariate Techniques
Some univariate techniques include:

1. Distribution plot (or frequency histogram). This shows the values of a number of items
such as the sizes of a number of modules plotted against an axis. An example of 2
distribution plot is illustrated in Figure 4.4(a).

2. Boxplot. A boxplot is a diagram that displays the lower, lower middle, upper middle and
upper quarters of a one-dimensional distribution of data values. It surnmarizes the data
without distortin'g it by oversimplification. The small amount of effort needed to become

familiar with it is outweighed by its usefulness. An example of a boxplot is illustrated in

Figure 4.4(b).

4-14

Effort to:
Design 12 hours
Document 8 hours
Code 25 hours

Test 9 hours

[A N X R N J
I E R XN RN N

SOV CITRCOIOONINGOGIGBOIIDORS
LA AL A A Xl XA I R N N R N Y Y RN Y X] LA X]

5 10 15 20 25 30 35 40

effort to design

Figure 4.4(a): Distribution Plot of Effort to Design

S *__{ x * XX

Figure 4.4(b): Boxplot of Effort to Design

3. Transformation. Common transformation are: natural logarithm, square root, square of
cube root, etc. There do not appear to be transformations which are optimal for all datasets, so

the following strategy is (cautiously) suggested for selecting transformations:

4-15

b)

for duration, effort and cost data use the natural logarithm transformation which
has been used extensively for software cost models and conforms to general

econometrics practice;

for counts based on incidents, failures and faults, two different transformations are

particularly appropriate:

i} the square root to stabilize the variance and so permit the accurate
identification of outiiers;

if) the square of the cube root to approximate normality and so permit
cautious use of classical techniques.

No single transformation can achieve both objectives.

for size metrics related to code or design, use the natural log transformation for

metrics which do not take the value zero (or very rarely take the value), and the

square root transformation otherwise.

Classification (often shown as a histogram). Often the data is naturally divided into value

relating to a small number of items or categories. Where this is not so, it may be convenient to
impose a classification scheme on a dataset (this is discussed in the next chapter) and count the
number of items in each category. A bar histogram is an effective way of displaying such data.
An example of a bar chart is illustrated in Chapter 3, (Figure 3.9 about the cyclomatic complexity
of modules for a given project).

4.3.2.2 Bivariate Techniques

Bivariate techniques include the following:

Scatterplot or Time-varying Plot. A scatterplot or time-varying plot is the most common way

of displaying software data for monitoring purposes. It can help comprehension if the axes of

4-16

a scatterplot also display the boxplot (or frequency histogram) showing the spread of data
along that axis. An example of a scatterplot is illustrated in Figure 4.5 Visual examination of
the plot will indicate whether techniques for investigating relationships, such as regression,
curve fitting or smoothing, could be profitably applied. Alternatively, the data may be
classified into groups with respect to one axis. The boxplot for each group, seen as a one-
dimensional dataset along the other axis, can then be drawn above its interval on the first
axis. The result can simplify a complex scatterplot.

Regression. Many relationships can be usefully approximated by a linear equation.
However, the need to protect analyses from being distorted by the presence of exceptional
points means that it would be desirable, in the calculation of such equations, to use special
robust algorithms such as multiresolution analysis. Once an equation has been obtained, the
differences between it and the data values (called residuals) should be examined. Points
which deviate grossly from it should be removed from the dataset and the equation
recalculated. Comparison of the first and second equations will reveal something of the
effect of the exceptional points, and so indicate the trustworthiness of the equations. No
regression should be relied on further than visual examination suggests is reasonable.

Curve fitting. Non-linear equations may appropriately be fitted to some time-varying graphs,
especially those involved in measuring reliability. Outside a limited range of software
applications, lack of robustness makes it essential to use these techniques cautiously.
Smoothing. Some relationships do not resemble any mathematical function and are best
described by an approximation technique.

Residual analysis. If regression, curve fitting, smoothing or some other method of obtaining

a predictive line has been applied to the data for a scatterplot or time-varying plot, then a

4-17

scatterplot of the differences between the data and the predicted line (called a residual plor) is
often useful.

6. Classification tables. An ordinary two-dimensional histogram uses one dimension to show
the classifications and one to show the histogram bars. Three-dimensional histograms use
two dimensions to show the classification table categories and one dimension for the
histogram bars.

7. Tradeoff Surfaces. These are three-dimensional plots to show either the relationship between
three software metric components or two software metric components as a function of time.

Three-dimensional histograms and tradeoff surfaces are ideal for emphasizing gross
trends in two-way classification tables, but, unlike ordinary histograms and charts, cannot have
values easily read from them. Hence a table showing the numerical values should always be
shown beside it. It helps to show, for each axis of the base of a three-dimensional histogram or
tradeoff surface, an associated pie chart showing the total number in the table in each of the
classes of that axis as a proportion of that total number in the entire table. This serves the same
function as displaying a boxplot against an axis of a scatterplot.

4.3.2.3 Multivariate Techniques

These include the following:

1. Scatterplot matrix. A group of scatterplots of three or more variables against one another can
be arranged in a matrix format to show multi-dimensional effects. The clarity with which
such an effect is revealed can be enhanced by brushing (i.e. distinguishing by coloring or
shading) a subset of the points on all the diagrams. The clarity of the resulting matrix, and
whether it shows any multivariate effect, will determine whether to plot a group of variables

as a scatterplot matrix or simply as a succession of individual scatterplots. Often it will be

4-18

best to combine the two styles of presentation by showing, first, a scatterplot matrix (reduced
in size) and second, the scatterplots of which it is made up (each shown at full size). The
scatterplot matrix acts as a contents list for the succeeding plots and emphasizes major
effects.

Profiles. When the form of the relationship between a number of variables is unclear, they
may be plotted against a common axis, or on radial axes of a circular graph. Studying the
“shapes produced for a number of cases may suggest patterns which can guide further analysis.
Principal components and Multivariate regression. The basic idea in this approach is to
transform the metrics into an orthogonal system in such a way that the first principle
component represents the largest variation. The second principal component represents the

;

second largest variation, and so on. We now apply the same idea to regression analysis. In
the outlier detection, we encounter all of the metrics in the analysis. Thus, the resulting
principal components are based on the complete set of metrics. In the regression analysis, we
consider some of the metrics as dependent variables and the remaining metrics as explanatory
variables. The principal components are obtained only through utilizing the explanatory
variables. For our situation, metrics x1 through x8 are considered to be dependent variables
and the 14 metrics x9 through x22 are the explanatory variables. The principal component
regression finds p o}thogonal linear combinations (in our case: p=14) y1,¥2, ..., y p of the
explanatory variables such that var (y1) >/= var (y2) >/=. . .>/= var (yp). Instead of using the
explanatory variables, the transformed variables (so called principal components) are used in
the regression model. The regression analysis is then performed. An attractive feature of the
principal component regression is that the exclusion of any principal component from the

model does not effect the contributions of the other components. In addition to making

4-19

predictions, the interpretation of these fitted models 1s easier than for the standard regression

models.

4.3.2.4 Multiresolution Analysis

Multiresolution analysis (MRA) can be used to extract fluctuations of the metric data at

different scales, that is, we can view the data with various resolutions. The Fourier transform:

1 (e
f(x) = — J F(we™? du
4x*
has been the traditional tool for viewing the data with multiple resolutions, but it loses
information on locations where big changes in the values occur. To remedy this drawback, we
use the scaling functions and the wavelets based on Mallat’s [MAI89] proposal for MRA. By

computing the convolution with the scaling function, we can have a coarser view of the data, and

the convolution with the wavelet detects the fluctuations in the data.

4-20

CPL sct
100 T i 1] T 1

8ar

80

70+

80

S0

40

30

20

10

0 ! 1 f
0 20 40 &0 80 100 120

Figure 4.5: CPU Activity

421

MRA of CPU act at level 1
100 ¢ T . i 7 .

g0t

60

40

20

{ i 1 |

-20 ' f
0 10 20 30 40 50 60 70

Figure 4.6: MRA of CPU Activity at Level 1

4-22

MRA of CPU act at level 2
100 . . r . T T

80 -

80 |

40+

I

20

20 ' '
0 5 10 15 20 25 30 35

Figure 4.7: MRA of CPU activity at Level 2

4-23

MRA of CPU act at level 4
gﬂ T T ¥ 3 ¥ T

O 1 ! 1 ! ! 1
1 2 3 4 5 8 7 8

Figure 4.8: Multiresolution Analysis of CPU Activity Metrics
Consider, for example, metrics data of the CPU activity given in Figure 4.5. Suppose
there is a sudden drop in the CPU activity in the middle of the software development life cycle.‘
This is an indication o-f potential problems, such as drastic changes in requirements, system
failures, sabotage, etc. We can then look at other metrics for possible causes:
o If there is a corresponding change in requirements during that period, then the drop in CPU
activity corresponds to the change in requirements, and the cost is spent in changing the

requirements.

4-24

¢ If the actual cost versus budgeted cost of various cost metrics is decreased according to CPU
activity, then the cause is probably due to budget cuts, resulting in lower manpower and less
resources available for the project.

In order to narrow down our our probing we must reduce the “noise” in the dark. This
process can be achieved by selecting appropriate threshold parameter in MRA computation.
Figures 4.6 - 4.8 depict the effect of removal of noise as we increase the threshold value and get
smoother and smoother result.

4.3.3 Summarizing the Overall Process of Metrics Data Analysis

Figure 4.9 describes the overall process of using the above mentioned techniques to
analyze the metrics data and extracting information useful for various decision making processes.
Subsequently, the data extracted after this analysis can be stored in a database and can help in

answering complex queries of the type depicted in Table 3.1. The detail about the handling of the

queries and decision making process is given in the next chapter.

4-25

E-R Modeling Technique

C Data collection, ih‘tegrity, and consistency check -)

C . Datascreening and outlier analysis)

CBasic_statiSti'cs and descriptive summaries of metrics .'da@

v

v

Results to be stored 1in a database

Figure 4.9: Overall Process for Metrics Data Analysis

4-26

