Chapter 2

Software Metrics In Project Management

2.1 Historical Overview

In this chapter, we first trace the history of software metrics and related research,
and then analyze their impact and acceptance by the software industry. We then present
the test and evaluation metrics set, that provides the core set of metrics which can be used
for monitoring and managing large software projects. Software metrics are used to
measure and reduce software project costs, improve software productivity, and most
importantly, improve the quality of products. The attributes that are generally monitored
include the following:

* Project: Project costs, manpower, resource utilization, personnel productivity,
estimation of completion time, perceived risk due to development delays, etc.

* Process: Process size, performance complexity, reusability performance
characteristics, etc.

e Product: Quality, estimated residual errors still undetected, reliability, maintainability,
enhancibility, etc.

The applicability of metrics span far beyond the restrictive boundaries portrayed
above. One can ha;/e enterprise-wide or industry-wide metrics, as well as metrics that
indicate the user's satisfaction, with regard to the software product [ROY87]. The science
and engineering of metrics thus include measurements on processes, projects, products; as
well as their analysis and evaluation. Metrics data capture and encapsulate the previous
experiences, help develop models and theories of the observed phenomena, and thereby

support prediction of project, product and resource requirements.

The concept of instituting discipline into the software development and the

emphasis on the use of metrics are not new. Considerable research has been conducted in

software engineering in the past two decades, especially on reliability models, cost

estimation, and application of software metrics.

Hewlett-Packard (HP) in the late sixties also emphasized process improvement.

HP emphasized process improvement via process instrumentation and metrics as opposed

to purely software testing [GRA87]. The historical sequence of metrics development is as

follows:

1.

Project management based metrics started in the early 1970s.
Metrics based on system evolution started around the mid 1970s.
Software science (product) based metrics started around the mid 1970s.
Reliability and quality based metrics started around the late 1970s and early 1980s.
Complexity (product) based metrics started around the late [970s and early 1980s.
Cohesion-coupling metrics started in the late 1970s.
Requirements and design stability metrics started in the middle and late 1980s.
Integrated process based comprehensive metrics started in the early 1990s.

The above classifications reflect:
The immediate concerns of the time. For example, project metrics were important to
aid cost estimation and control.
The evolution of software technology, and
The increased awareness and insight into the problems of software quality, reliability,

complexity and maintenance.

2-2

2.1.1 Cost and Effort Estimation Models

The earliest application of metrics was concemed with project costs and efforts.
Pioneering work at IBM [WAL77], US Army [PUT92], and TRW [BOE78] emphasize
monitoring cost-effort data obtained in similar software projects and using them to predict
cost and effort estimates on new projects. Many of the studies modeled the cost-effort
characteristics as a statistical distribution [VOS87], and the predictions were derived
from measured information. A similar but more parameterized and practical approach
was [ater used in the Function Point Analysis [ALB83]. The main drawbacks of these
approaches are that they do not take into account the product life cycle costs and efforts.
Because of their primitive nature, they are not effective in newer, more advanced
development environments like the current PC-based client server collaborative
configurations. They also depended upon a questionable unvalidated assumptions about
statistical distributions.

2.1.2 Metrics Based on System Evolution

Belady and Lehman [BEL79a] studied the evolution of the large software system
IBM OS/360. This large operating system vertically integrated several architectural
models of IBM System 360. It involved thousands of software professionals working at
different locations. Hardware and software were co-designed and co-evolved, even
though it started out with the "hardware-first" rule, ie. hardware architecture is specified
and frozen first, and its software is designed and developed next. Software development
for OS/360 faced several problems such as:

» changing requirements during product development

2-3

e numerous modifications to design

e continuous improvements and hence changes to the programming language

s incomplete prototyping and testing because of product release deadlines, that is, no
alpha or beta testing.

Based on the software metrics gathered over six years, Belady and Lehman
postulated three major "laws" of software evolution [BEL79a]:

1. The Law of Continuous Change. This postulated that software systems are
continuously modified because of their ease of change.

2. The Law of Increasing Entropy. This implies that "change over change" induces
unstructuredness, which in turn leads to irreparable or unmaintainable products.

3. The Law of Statistical Stability. This implies that under proper control, the software
product may ultimately sustain a period of stability, i.e. no more changes. Belady and
Lehman called this the state of statistical equilibrium.

The first two laws, while empirical, appear to hold both intuitively and in
actuality. The third law appears to be questionable since there is no substantiating data.

Belady and lLehman recognized the effect of requirements and design
perturbations in their study of the OS/360 system. They noted that changes impacted
several modules u;; and down the design stream. Metrics data identified the effects of
unstructuredness in the code due to repeated changes. It showed the importance of
partitioning and modularization to contain the adverse effects of unstructuredness. It
helped to propel structured design and structured programming into general use.

Yau and Collefello [YAUS8S] studied the code changes made during debugging

and maintenance and the ripple effects they caused in the development cycle. Using

24

dependency arguments, they identified code sectors that need to be evaluated or modified
using stability criteria (program dissection or program slicing). Kafra and Reddy
[KAF87] used similar arguments to develop techniques to assess the code stability in
order to contain the adverse effects of requirement and design changes.

2.1.3 Software Science (Product) Metrics

Software science metrics evaluate the gross characteristics of the software such as
size (number of executable lines of code), program volume, etc. It is due to Halstead who
theorized that computer programs can be represented by a sequence of tokens consisting
of operands and operators [HAL75,HAL79]. He considered it a science, because it
depended on measurements based on visible product characteristics. He hypothesized that
when comparing the same function programmed in two different computer ianguages, the
operator-operand ratios or densities in the program will be approximately the same, i.e.
the information content, in the information theory sense, will be the same. The basic
metrics of software sciences are:

n;: Number of unique operators in the program
ny: Number of unique operands in the program
Nj: Total number of operators in the program
N,: Total number of operands in the program
The basic measures of program complexity are:
Program Length: N = N; + N,

Program Effort: E=V /L

where

2-5

v (Program Volume) = N logy n

n (Program Vocabulary) = n; + n,

L (Program Level) = V*/V

where V* = volume of the most compact design implementation
The estimated length of the prograrn is:
n’=mn; logan +nylogn,

Software science metrics are product based metrics which are easy to calculate.
They are applicable to all Ianguages but could be language sensitive. It is based partly on
the information theoretic viewpoint and not practiced extensively.

2.2 Test and Evaluation Metric Set

In this thesis, we propose a set of test and evaluation metrics
[PAUS3,HEN92,PAU94D] that deals with various management, requirement, and quality
attributes of computer system software. These metrics serve as measures and indicators
that critical technical characteristics and operational issues of both software and the
integrated system have been achieved. Collection of additional metrics of specific
interest will also be useful in monitoring or supporting a particular agency’s needs, and
will also aid in more accurate advice generation.

2.2.1 Objectives

The objective of the test and evaluation metrics is to integrate test and evaluation
into the software engineering development process to ensure that:
¢ the software process is kept under control, so that software progress can be

demonstrated at specified intervals; and

2-6

e immature software is prevented from entering the user system tests or being deployed.

In particular, measurement enables engineers to
o quantify product reliability and performance,

e to isolate development process and product attributes that impact reliability and
performance, and

* to demonstrate how process and product changes impact these attributes.
Measurement also lets development teams:

» set achievable goals

e demonstrate their potential to\meet these goals

¢ track their progress

* adjust processes to correct out-of-bounds conditions, and

* demonstrate the impacts of these adjustments on meeting goals.

The metric values identify high risk values in software development and
maintenance, notifying management to allocate attention and resources required for
control of these items. Data collected for the test and evaluation metrics should be
presented at major system milestone reviews. The selected metrics set allows software
engineers and managers to identify the level of risk associated with each significant issue
in the software life cycle. When properly used and adequately analyzed, it can provide a
continuous measurement process for:
¢ the management process for software development;

e requirements definition and formal specification; and

o the quality of software products.

2.2.2 Selection Criteria

The minimum level of information which is required for a software risk

management program is:

1. Understanding of the risk factors and the system user's requirement for risk control;

2. Measures (software metrics and measurable management issues) to identify and
measure risk factors and to specify users' risk requirements;

3. Test resources to derive risk measurements;

4. Tools to extrapolate raw measurement data into useful management information.

The test and evaluation metrics set was developed to provide information which
would allow managers to manage the most common risks which are encountered in
software development programs. Review of the literature identifies the following
common risk issues in software development [PAU94b,RAMS5,BOET7S8]:

1. Inadequate statement of user requirements

2. Operational failures of system software

3. Change of software user requirements

4. Inadequate software test and evaluation

5. Excessive changes to software design

6. Cost overrun

7. Schedule slip

8. Incomplete software problem resolution during development
9. Overrun of physical computer resources

10. Inadequate capability of the software developer.

The test and evaluation metric set is selected to address the entire software
development and test and evaluation process by providing both process and product
measures. Selection criteria for the metric set include the following [BAS84]:

e Is unambiguous;

¢ Has methods for data collection and evaluation described;

¢ Has non-labor-intensive data collection and evaluation methods;

e s capable of consistent interpretation and is in formats that are objective, timely, and
finite

* Has intrinsic worth and demonstrate added value to the software development process

Supports risk management for one of the common risk areas listed above.

2.2.3 Customer Satisfaction Measures

The selection of the core set of test and evaluation metrics is based aimed at
measures that achieve customer satisfaction. The product of the software development
process must be of high quality and must satisfy the customer. "Quality" in this sense can
be further divided into:

s in-process quality, which refers to quality control during the software development
process before product shipment;

e release quality,- which refers to defects discovered between functional tests and
shipment;

* service quality, which refers to the servicing of defects for the first six months after
product release. This often-overlooked type of quality of one component of customer

satisfaction.

2-9

Despite this popular definition of quality, it is well known that the absence of
defects does not necessarily build business. Customers are not only interested in products
that have no defects; they are interested in products that fulfill their requirements and
improve their productivity. The developer must therefore not only be aware of customers'
requirements and expectations but also show constant improvement, especially to take
advantage of new technology to make the job easier [HAM®90]. The ultimate aim of the
development system is therefore to provide products that satisfy the customer.

Furthermore, it is not simply sufficient to have happy and loyal customers. The
developer must constantly keep up-to-date with changing customer requirements as well
as the competition. The customer expects only what the producer has led him to expect.
Modern-day customers have a tendency to compare products and sources. Even satisfied
customers will switch if they can find alternative products that are better suited to their
particular requirements.

Users want applications that:

* can be implemented quickly

e function at a level that they need and understand

* require little maintenance effort

¢ require little tral;slation between the languages of programmers and users
* are responsive to changes in their needs.

2.2.3.1 Meeting Customers' Requirements,

If the aim of the development system is to products quality products that meet
customers' requirements, then it is not only sufficient to follow quality procedures and

develop quality products; the system must support managers and developers with quality

2-10

procedures to develop quality products that meet customers' expectations. This objective
must be clear to both management and development personnel, not only for the current
product being developed but also for the development of future products. The
components of the system must cooperate and must be managed. The objective of the
system is to produce something of value, that is, it must produce results within current
cost constraints. Objectives are therefore defined in terms of results rather than in terms
of a specific activity or method. Collecting software metrics of a project and designing a
decision analyzes support system to access and analyze the metrics in the database
provides a quantifiable means of measuring results which is superior to conventional
qualitative ad-hoc measures [PAU93].

Requirements must be:
* Viable with today's technology
* Credible
¢ DBased on an understandirig of the needs of the application
» Competitive with those of products they are up against
» Have synergy between the provided functions.
Furthermore, individuals and groups developing requirements must:
¢ Understand the ;pplication needs
* Have knowledge of the solution technologies
¢ Be respected for knowledge of requirements
¢ Communicate effectively

e Successfully lead the implementation effort.

2-11

The development process is not static but can instead benefit from customer and
management feedback, as well as from the lessons of other related projects [PAU92Z].
The system should therefore also include a feedback loop for continual improvement of
product or service, and continual learning. Again, identification and collection of a core
set of useful metrics and their analysis constitute an invaluable form of feedback.
Management and developers can make use of such information to observe the effect of
redesign on cost, sales, and evaluation by customers . Based on such feedback, the
system can also predict what components of the system will be affected and by how much
as a result of proposed changes in one or more components.

2.2.4 (lassification

Based on the above discussion, therefore, the set of test and evaluation metrics
thus identified can be divided into 3 categories, namely management metrics,
requirements metrics and quality metrics. This set of metrics comprise a minimum set for
information gathering over the entire system software life cycle. The justification for the
classification is based on the differing views and needs of four important components of
the system procurement: management, users, developers and maintainers.
2.2.4.1 Management Metrics

These metrics are used to support management in the control the software
development, by the selection of high quality development personnel, setting realistic
schedules and providing adequate computer and other resources within budgeted costs.
2.2.4.2 Requirements Metrics

As described in the previous section, one of the ultimate measures of the success

of a software product is customer satisfaction: the product must meet customer

2-12

requirements. This set of requirement metrics is therefore designed not only to ensure
that the products thus developed meet customers' initial requirements, but how well the
software development process can respond to continual change in customer requirements
during the software development process. Excessive changes in requirements may
indicate the inability on the part of management to use their foresight to predict
customers' new requirements. Management works directly with customers to determine
their needs, and must look ahead and use their foresight to design products that meet
customer requirements. Requirements definition and refinement occurs over the entire
development cycle, and must be integrated into the development process to ensure that
customers' needs are met.

2.2.4.3 Quality Metrics

These metrics are required to ensure the development of a quality product with a
minimum of bugs that meet customers' requirements. They are mainly intended to meet
the developer's needs. Software developers typically have little knowledge of the end user
and are out of contact with real application users. A common reason for failures of large
software projects is that developers misinterpret management communication of users'
requirements or other subsystem interfaces and develop products that do not meet end
users needs. It is also a habit of developers to treat requirements as being explicit and
complete rather than as examples of a more general need. If an application solution is
designed for specific requirements, the resultant product will be very specific and
inflexible. To minimize this possibility, quantitative measures must be in place to ensure
that end user needs are constantly taken into account during the software development

process. In addition, since large software products have a long life-span due to their high

costs, measures must also be in place to ensure that the product is easy to maintain and
enhance even after it is released to customers. Complexity metrics that measure the
degree of complexity of the product as well as the interactions between modules of a
product are useful in this respect in ensuring that the software is not unnecessarily
difficult to maintain.

As a result of the above discussion, we conclude that some of the predictors of
customer satisfaction which should be incorporated as part of our test and evaluation
metric set are as follows:

» Schedule requirements

¢ Requirements complexity

¢ Existence of implementation technology

¢ Marketplace and knowledge of intended customer
» Projected product size and defect density

* Management maturity

¢ Level of innovation required

e Culture of user/customer

¢ User/customer vision

The mctrics- database is constantly evolving and is expected to change as
organization needs change. In addition to the three classes of software metrics identified
above, the collection of additional metrics of specific interest will also be useful in
monitoring or supporting a particular agency’s needs, and will also aid in more accurate

advice generation,

2.2.5 Formal Notation for Metrics Domains

For the purpose of formal specification for the remainder of this report, we use the

abbreviations illustrated in Figure 2.1 to denote the metrics that fall under the various

categories.

Each of the test and evaluation metrics discussed consist of several measures or

data elements. Each data element characterizes some attribute of the overall metric. More

formally, a metric can be defined as a relation R with several attributes A i=1,...,n. Each

attribute comprises a domain D, i=1,..,n, as follows:

RcDixDyx..xD,

Abbreviation | Metric

Management Metrics

Co Cost

Sc Schedule

Cr Computer Resource Utilization
Se Software Engineering Environment
Requirements Metrics

Rt Requirements Traceability

Rs Requirements Stability
Quality Metrics

Ds Design Stability

Cm Complexity

Bt Breadth of Testing

Dt Depth of Testing

Fp Fault Profiles

Re Reliability

Figure 2.1: Metrics Classification and Abbreviations

Metrics databases are not static but are evolutionary in nature. As the organization

evolves, management needs change, and new metrics may be collected or new attributes

may be added to existing metrics. In general, adding an attribute to an existing metric

2-15

results in adding a new domain to our relation R. Denote the existing domains D; x D; X
... X By by C. Then, suppose we define an operator & such that a new domain is added:

O s C—= CxDny
We can then rename Ry = ¢ x D 44 — C, which the current state of our metrics database
with the new attribute added. We will use this notation throughout this chapter to
formally represent domains for various metrics.

2.3 Related Work on Metrics Databases

In this section we survey more recent advances in software muetrics, theories,
measurements, tools and methodology. Jablonowski [JAB94] explored the use of fuzzy
set theory to express the element of vagueness embodied in the intuitive definition of risk.
Grey [GRE92] discussed the benefits of quantitative modeling techniques, including
probabilistic models for software cost and schedule risk analysis.

Software metrics have also been used as an aid to management decisions in large
corporations. Hewlett-Packard [GRA94] uses four classes of software metrics to aid in
management decision making;
® project estimation and progress monitoring
¢ evaluation of work products
® process improve;ment through failure analysis
» experimental validation of best practices.

Grady also recommended that project managers collect the following data;
e engineering effort by activity

e size data

2-16

» defects counted and classified in multiple ways
e relevant product metrics

» complexity, and

e testing code coverage.,

These data are collected in support of the Functionality, Usability, Reliability,
Performance and Supportability (FURPS) criteria: functionality, usability, reliability,
performance, and supportability. Managers should then understand how each of these
relates to their successes, and perform timely analyses to optimize future projects.

The crucial dependency of NASA’s spacecraft and ground systems on software to
meet mission objectives resulted in the initiation of a software metrics program in 1990
by NASA’s Mission Operations Dircctorate (MOD) [STA94]. The metrics toolkit helped
MOD to determine whether a project was on schedule and within budget, when
subsystems were ready to be integrated, and whether a particular test schedule made
sense. The toolkit helped ensure consistent data collection across projects and increased
the number and types of analysis operations available to project personnel. The toolkit
also helped engineers and managers make decisions about project and mission readiness
by removing the inherent optimism of engineering judgment.

Defect data 1'°rorn inspections and test were key elements of process improvement
initiatives that Bull HN Information System’s Enterprise Servers Operation in Phoenix,
Arizona, started in 1989 [WEL93]. By examining data from several projects, project
members sec how data is used to better understand a development project’s dynamics.
Feedback from the project metrics is used to improve processes. Feedforward of data

enables mid-course analysis and schedule adjustments in a planned manner, rather than in

2-17

a reactive, fire fighting mode. Data collected over a four-year period enabled those
managing similar projects to estimate from previous project history and to compare
current performance to past experience. By recognizing the pervasiveness of defects in
software development and taking steps to count and measure the impacts of defects on
schedules and productivity, project managers gained a better understanding of their
projects and ultimately manufactured a better product in less time.

RiskExpert is a client/server expert systems tool being developed by the
University of California, Berkeley to analyze the metrics [CHE94]. The METRIX tool
developed by Gayet [GAY94] uses the optimized set reduction modeling technique to
predict various phases of the software development process and improve software quality.

In the rest of this chapter, we describe our selected set of test and evaluation

metrics in detail, and provide examples on how they can be utilized for various

management level decisions.

2.4 Management Metrics

Management metrics are required by management to control the costs and
schedules of a project. We identify and describe the following management metrics in
this section:
¢ Cost metric
e Schedule metric
e Computer Resource Utilization metric

¢ Software Engineering Environment metric

2-18

2.4.1 Cost Metric

The cost metric tracks software development expenditures, and provides insight into the

cost of the software development. Both estimated and actual costs are tracked for the

following life cycle phases and categories of expenditures:

¢ requirement analysis

e design

* coding

* unit testing

e integration and testing

e formal qualification testing

e software problem/change resolution
e software engineering management
o software quality assurance

s software configuration management
e verification and validation

e tools

¢ new equipment.

The cost metric is the sum of all the above costs.

2-19

Data Elements | Domains (D;) Description

/ Attributes (A)

Data_Date <Year>/<Montf=/<Day> The date the data elements were
Subdomains: collected.

<Year-:0000..1999
<Month>:01..12
<Day>:01..31

Systern_Name

Character

Name of the Computer Software
Configuration ltem

Activity_Type “Requirements Analysis", ‘“Design®, | This is the service or product
“‘Code and Unit Testing", "CSC | associated with the collected data.
Integration and Testing", "Formal | The Activity_Type varies depending
Qualification Testing”, “Software | upon whether the data is coflected at
Problern Change Report Resolution”, | CSCI or System.
"C8Cl Integration and Testing",
“Software Engineering Management”,
"Software Quality Assurance”,
"Software Configuration
Management”, "Verification and

Validation", "Tools, "New Equipment
and Facilities”, "Software Data and
Project Totals".

Budgeted Cost of Work Scheduled

BCWS 0..999999990.99
BCWP 0..999999999.99 Budgeted Cost of Work Performed
ACWP 0..999999999.99 Actual Cost of Work Performed

Table 2.1: Elements of the Cost Metric

The aitributes for the Cost metric as illustrated in Table 2.1 are <Data_Date,

System_Name, Activity_Type, BWCS, BWCP, AWCP>. To illustrate the evolutionary

nature of software metrics, suppose as part of the cost metric, we may want to collect

metrics denoting the cost of manpower for each activity in addition to software costs, so

we add a new attribute as follows:

<Data_Date, System_Name, Activity_Type, BWCS, BWCP, AWCP, Manpower>

An additional domain Dy will also be added to the Manpower attribute of the cost

metric consisting of the value range 0..999999999.99. Since we have

Ox: G CxDpu

2-20

where DD ;¢ is the new domain for the Manpower attribute, the current state of the metrics
database will include the new Manpower attribute for the cost metric, i.e.

Ry=CxXD k¢
2.4.2 Schedule Metric

The schedule metric tracks projected versus actual progress, and indicates changes
and adherence to the planned schedules. The schedule is measured in terms of periodic
and cumulative delays over the milestones of the software development. Both planned
and actual schedules for major milestones as well as key software deliverables should be
tracked as they change over time.

The schedule metrics, when plotted for both planned and actual schedules as they
change over time, provide indications of problems in meeting key events of deliverables.
The higher the slope of the trend line for each event, the more problems are being
encountered. Milestone slippages should be investigated. Potential clustering of key
events should be guarded against.

The schedule metric can be used in conjunction with other metrics to judge
program risk. For example, it can be used with the test coverage metrics to determine if
there is enough time remaining on the current schedule to allow for the completion of all
testing.

The Schedule metric can be hierarchically classified into two attribute levels. At the top
level, the Schedule metric comprises of a set of Activities, each of which has a defined

milestone. Thus:

Sc : <Activity>

2-21

LRI}

where Activity is in the domain {"CSCI Integration and Testing”, "Software Engineering
Management", “Software Quality Assurance”, "Software Configuration Management",
"Verification and Validation", "Tools", "New Equipment and Facilities", "Software
Data"}. New values may be added to the Activity domain or existing domain values may
be modified according to the needs of different organizations. The Activity attribute
comprises further attributes each of which have different domains. The attributes for the
each of the activities of the Schedule metric as illustrated in Table 2.2 are
<Data_Date, System_Name, Event_Name, Plan_Start_Date, Plan_End_Date,

Actual_Start_Date, Actual_End_Date>

Data Elements /| Domains (D) Description
Attributes {A;)
Data_Date YYYY/MM/DD The date the data elements were
< Year>/<Month=/<Day> collected.
Subdomains:
<Year>:0000..198%
<Month=>:01..12
<Day>:01.31
System_Name Character Name of the Computer Software
Configuration Item
Event_Name "Formal System Review", *Tesling | This is the name of the milestone,
Events", “Software Data Preoduct | deliverable, event or activity this
Deliveries" {dependent on | record describes
organization)
Plan_Start_Date As for Data_Date The date on which the event is
planned o stan
Plan_End_Pate As for Data_Date - The date on which the event is
_ planned to be completed
Actual_Start_Date | As for Data_Date The date on which the event actually
starts
Actual_End_Date | As for Data_Date The date on which the event actually
ends

Table 2.2: Elements of the Schedule Metric
Again, to illustrate the evolutionary nature of software metrics, suppose as part of

the schedule metric, we may want to collect metrics denoting the percentage of task

estimated to be completed for each activity at the current time. This will give us an

2-22

indication as to whether we can realistically expect to meet the planned schedule. We
therefore add a new attribute Percent_Complete to the Activity domain as follows:
<Data_Date, System_Name, Event_Name, Plan_Start_Date, Plan_End_Date,
Actual Start_Date, Actual _FEnd_Date, Percent_Complete>.

An additional second-level domain Dy, will also be added to the Activity domain

of the Schedule metric consisting of the domain 0..99. Since we have
Ok ! C— CxDnu
where D .4 is the new domain for the Percent_Complete attribute for the Activity
attribute of the Schedule metric, the current state of the metrics database will include the
new attribute, i.e.
Re=CxDp—C

In general, we can further subdivide attributes to comprise non-terminal upper-
level attributes (which have no domains) and terminal upper-level attributes (which have
associated domains). Non-terminal upper-level attributes comprise a set of lower-level
attributes, and alternatively represent the attribute A; with domains D; with

D; =D x D XDis.... XDy

where Dj is the upper-level attribute and Dy, j=1,..k are the lower-level attributes.
2.43 Computer Iiesourcé Utilization Metric

The computer resource utilization metric tracks projected versus actual computer
resource usage. It shows the degree to which estimates and measurements of the target
computer resources such as CPU, memory, VO, disk, and network bandwidth used are
changing or approaching the limits of resource availability and specified constraints.

Ovwer-utilization of the resources has an impact on the cost and schedule, so this metric is

2-23

in some sense correlated with the cost and schedule metrics. The quantitative
measurements of CPU utilization, memory utilization, O bandwidth utilization, disk
utilization, network bandwidth utilization are easily achievable through known
performance analysis tools. Approaching resource capacity may necessitate hardware
change or software redesign. Exceeding specified reserve requirements can have similar
impacts in the post-deployment phase. Proper use of this metric can also assure that each
processor in the system has adequate reserve to allow for future growth due to changing
or additional requirements without requiring re-design.

Early in the design phase, CPU utilization budgets should be established for each
processor in the system. I/O utilization and throughput budgets should be allocated to
each IO channel in the system. Actual memory and IO usage should be measured
monthly during coding, unit testing, integration testing, and system-level testing.
Measurements of CPU usage should also be made at regular intervals after the beginning
| of unit testing. Actual utilization should be formally demonstrated at the system level for
each resource under peak loading conditions.

Figure 2.2 illustrates a sample CPU utilization graph for the Computer Resource
Utilization metric over time. The illustration shows the target upper bound utilization as a
straight line. In rediity, the target upper bound utilization can change over time. The
allocation for each resource type should not exceed the target upper bound utilization for
any category. The figure shows zero CPU resource utilization in the first three months of
the project, possibly due to the fact that such resources are seldom used in the
requirements and design phases of the project. CPU utilization in the initial phases is well

below the projected utilization. As the project progresses to the coding phases, more CPU

2-24

resources are utilized. This gradually increases in the testing and subsequent phases until

it is close to the projected utilization.

100 ,,,,,,,,,,,, ,,,,,,,,,,,, :

75Target.UppepBbund.,.‘E.......U...f L

hressss | (ol mwme e mmae GVEEE e SR e e

% Used 50 |- PFO]eCth ,,,,,,,,,,,, ,,,,,,,,,,

25 | Bl

2 4 6 3 10 12 14

Figure 2.2: Sample CPU Utilization Graph for Computer Resource Utilization Metric

Resource utilization tends to increase over the development of a project.
Therefore, adequate planning must be done up front to ensure that the software’s
operation does not put undue demands on the target hardware’s capabilities. This measure
allows one to track utilization over time to make sure that target upper bound utilization
is not exceeded and that sufficient excess capacity remains for future growth and for
periods of high stress loading. In instances where the development and target
environments differ in types and/or capacities, caution must be taken in computing and
analyzing the measures. Translations are acceptable up to a certain point, but testing on
the target hardware must take place as early as possible. Initial estimates should be
retained for comparison with what is finally achieved in order to aid in scoping future

programs.

2-25

During development, it is important to look at both actual and projected values in
relation to the target upper bound values. If either exceeds the target values, extra
attention should be paid to assure that the i)rojections drop to below the target upper
bound value by project completion. If it is apparent from the projections that the target
upper bound limits will be exceeded, action must be taken to either optimize the software
or upgrade the capability of the target configuration.

Sudden drops in utilization may reflect either new systems capacity of new and
more efficient software. The computer resource utilization metrics should be used in
conjunction with the test coverage/success metrics (breadth and depth of testing) to
ensure that measures of the actual usage are representative and portray the entire system
under realistic stress loads.

2.44 Software Engineering Environment Metric

The Software Engineering Environment metric is used to assess developer’s
process maturity. It rates the developer's applied software engineering principles.
Examples of these principles are structured design, usage of software tools, use of the
program design language, etc.

The Software Engineering Environment rating provides a consistent measure of
the capability of a contractor to use modern software engineering techniques in his
development process, and therefore his capability to instill such principles and
characteristics in a product. The basic assumption to this approach is that a quality
process results in a quality product. The other test and evaluation metrics discussed in this

chapter should be used to examine the quality of the product.

2-26

The Software Engineering Environment rating should be used during the source
selection process. Besides the use as a tool with which to compare relatively the ability of
contractors, the use of the Software Engineering Enrvironment rating may encourage
contractors to improve their software development process in order to increase their
rating. A higher rating will increase the contractor’s chance of being selected for future
software development projects.

2.5 Requirements Metrics

Requirements and specifications change several times during product
development. These changes may be due to new application demands, technology
changes and/or errors in assumptions or interpretations. These changes are made when
the history of previous design decisions are forgotten or missing. The requirement
changes could be quite sophisticated and they may require more effort to figure out the
types of repairs that need to be made. Often, such changes provoke new errors because
designers may not be fully aware of the early assumptions made on the code.

2.5.1 Reqﬁirement Traceability Metric

The Regquirements Traceability metric measures variance from system
specifications. Tt measures the adherence of the software products (including design and
code) to the requirements specifications. It helps the user of the software 1o estimate the
operational impact of the software problems.

Analysis of the requirements traceability metric is performed by the development
of a software requirements traceability matrix (SRTM). The SRTM is the product of a
structured, top-down hierarchical analysis that traces the software requirements through

the design to the code and test documentation. The SRTM will be completed to various

2-27

degrees depending on the current stage of the software life cycle. From the SRTM,
various statistics can be calculated indicating the percentage of tracing to various levels,
such as:

» the percentage of software requirements in unit-level design

s the percentage of software requirements in system-level design

= the percentage of software requirements in code

e the percentage of software requirements having test cases for all of its modules

and so on.

The requirements traceability metric should be collected starting from the
requirernents definition phase of the software life cycle. By the nature of the software
development process, especially in conjunction with an evolutionary development
strategy, the tracing of requirements will be an iterative process. Therefore, as new
software releases add more functionality to the system, the trace of requirements will

have to be revisited and augmented.

Those modules which appear most often in the matrix are most crucial in that they
are required for multiple functions or requirements, can be highlighted for earlier
development and increased test scrutiny.

The requirer'nentS traceability metrics should be used in conjunction with the test
coverage metrics (depth and breadth of testing) to verify if sufficient functionality has
been demonstrated to warrant proceeding to the next stage of development or testing.

They should also be used in conjunction with the design stability and requirements

stability metrics.

2-28

2.5.2 Requirement Stability Metric

The requirements stability metric measures requirement changes over time, It indicates
the degree to which changes in software requirements affects the development effort of
the software, It also allows for determining the cause of requirements changes. The metric
is computed depending on two factors:

e the number of requirement changes on a periodic and cumulative basis, and

e the number of modules and lines of codes changed due to these requirement changes.
When a program is begun, the details of its operation and design are rarely complete, 50 it
is normal to experience changes in the specifications as the requirements become better
defined over time. When design reviews reveal inconsistencies, a discrepancy report is
generated. Closure is accomplished by modifying the design or the requirements. The
plot of open discrepancies can be expected to spike upward at each review and to
diminish thereafter as the discrepancies are closed out. Good requirements stability is
indicated by a leveling off of the cumulative discrepancies curve with most discrepancies
having reached closure. A sample graphical display of the design stability metric is
illustrated in Figure 2.3.

Causes of program turbulence can be investigated by looking at requirements
stability and design stability together. If design stability is low and requirements stability
is high, the designer/coder interface is suspect. If design stability is high and
requirements stability is low, the interface between the user and the design activity is
suspect. If both design stability and requirements stability are low, both the interfaces

between the design activity and the code activity and between the user and the design

2-29

activity is suspect. The metrics for requirements stability should also be used in

conjunction with those for requirements traceability and fault profiles.

FO e e R
N S S S S
50
40] : : . _ : ;
0 | "
20 o ¥ o N\

Requirements
Discrepancies

(WS]

10 [" Biscrepancies closed

12 4 6 8 0 12 14

Figure 2.3: Graphical Display of Design Stability Metric

Allowance should be made for higher instability in the case where rapid
prototyping is utilized. At some point in the development effort, the requirement should
firm so that only design and implementation issues will cause further changes to the
specification.
2.6 Quality Metrics
The quality of software products cannot be measured quantitatively or objectively.
Factors that define quality include availability, dependability, user friendliness, and
maintainability. In this section, we discuss the use of the following software metrics to
measure software quality:

¢ Design Stability metric

2-30

¢ Complexity metric

¢ Breadth of Testing metric
s Depth of Testing metric
¢ Fault Profiles metric

s Reliability metric.

2.6.1 Design Stability Metric

The design stability metric illustrates software design changes over time. Design
stability is used to indicate the amount of changes made to the design of the software. The
design progress ratio show how the completeness of the design is advancing over time
and helps give an indication of how to view the stability in relation to the total projected
design.

Design stability should be monitored to determine the number and potential
impact of design changes, additions, and deletions on the software configuration. The
trend of design stability over time and releases provides an indication of whether the
software design is approaching a stable state, that is, a leveling off of the curve at a value
close to or equal to one. In addition to a high value and level curve the following other
characteristics of the software should be exhibited:

* requirements stability is high

e depth of testing is high

+ the fault profile curve has leveled off and most software trouble reports have been
closed.

The higher the stability, the better the chances of a stable software configuration.

Allowances for exceptional behavior of this metric should be made for the use of rapid

2-31

prototyping. It is thought that rapid prototyping, while possibly causing lower stability
numbers (ie higher instability) early in the program, will positively affect the stability
metric during later stages of development.

The design stability metric can be used in conjunction with the complexity metric
to highlight changes to the most complex modules. It can also be used with the

requirements metrics to highlight changes to modules which support the most critical user

requirements.

2.6.2 Complexity Metric

The complexity metric evaluates and measures the structure of modules. Complexity
measures give an indication of the structure of the software and provide a means to
measure, quantify and/or evaluate the structure of Soffware modules. They also indicate
the degree of unit testing which needs to be performed. This metric also indicates the
degree of unit testing which needs to be performed. It is commonly believed that the
more complex a piece of software is, the harder it is to test and maintain the software.
Additionally, lower complexity ratings reflect software that is easier to test and maintain,
thus logically resulting in fewer errors and lower life cycle costs.

The control flow of a program can be represented by a directed graph. The
complexity of the p}ogram can then be computed from the cyclomatic number. Although
the concept of cyclomatic numbers has been used in graph theory, it became a useful
metric after McCabe applied it to compute a program's complexity. McCabe’s cyclomatic
complexity metric measures the number of decision statements in a program: Given any
piece of software, a control flow graph can be drawn wherein each node comresponds to a

block of sequential code and each arc corresponds to a branch or decision point.

2-32

A sample graphical display for the McCabe’s cyclomatic complexity metric is

illustrated in Figure 2.4. McCabe’s cyclomatic complexity metric is described here:

Let

E = # of edges (program flows between nodes)

N = # of nodes (sequential groups of program statements)

P =# of connected components (on a flow graph, it is the number of

disconnected parts)

Compute:

Cyclomatic Complexity: C =E - N + 2P

100 —
-

80— :

60—

401

20T

INDEX
200 Modules

0-5 610 11.15

Figure 2.4: McCabe Cyclomatic Complexity Metric Example

1620 21-25 26-30 31-35 3640

The cyclomatic complexity has been related to programming effort, debugging

performance, and maintenance effort. As a guideline, any module with cyclomatic

2-33

complexity greater than 10 is considered complex, and may need to be restructured, if
feasible, into several less complex ones. It may also be advisable to limit the cyclomatic
factor to 7 in the design phase to allow for expected growth to a value of 10 during
implementation to code. McCabe's approach is appealing because it is simple to apply
and can be computed for proérams written in any programming language. The main
drawbacks of the concept is that it only gives a somewhat superficial view of complexity
since it does not give us measures such as the number of strongly connected subgraphs,
their nestedness or loop structures, etc. While other loop estimation measures exist, they
have not been as popular as the cyclomatic number based measures.

Halstead’s metrics estimate a program’s length and volume based on its
vocabulary (operators and operands). Other simpler complexity metrics are control flow,
the number of executable lines of code per module (which relates to the understandability
of the module), and the percent of comment lines. There are additional ways of
computing complexity. One such way is to calculate the number of control tokens + 1.
Control tokens are programming language staternents which in some way provide
decision points which modify the top-down flow of the program. In other words,
statements such as IF, GOTO, CASE, etc. are considered to be control tokens since they
base program flow upon a Jogical decision thereby creating alternative paths which
program execution may follow. A CASE statement would contribute (N-1) to complexity,
where N is the number of conditions or cases associated with the statement.

Halstead’s metric can be computed as follows:

Let ny = # distinct operators

2-34

n; = # distinct operands
N, = total # occurrences of the operators

N, = total # occurrences of the operands

Compute:
Vocabulary: V=N + N2
Program Length: L=N/+N;
Volume: V =L (log, v)

Some simpler complexity metrics are control flow, the number of executable lines of
code per module (which relates to the understandability of the module), and the percent of
comment lines. The executable lines of code metric can be computed by simply counting
the number of executable lines of code in each module. Also, the percent comment lines
mefric can be calculated as follows:

Percent comment lines = (C/T) * 100

where

C =# comment lines in module

T =total # lines in module

The complexity metric is used throughout the software life cycle for each module
in the system. Examination at various levels can provide indications of potential problem
areas. Contractually limiting the complexity limit will simulate structured programming
techniques, thereby impacting design by limiting the number of basis paths in a program
at the design and coding étages. It is used during software testing to identify basis paths,
to define and prioritize the testing effort, and to assess the completeness of module

testing. During the maintenance phases, a proposed change should not be allowed to

2-35

substantially increase the complexity, thereby increasing the testing effort and decreasing
maintainability.

Examination of complexity trends over time can also provide useful insights,
especially when combined with other metrics such as design stability. For example, late
software code “patches” may cause the complexity of the patched module to exceed an
acceptable limit, indicating that the design rather than the code should have been
changed. It is noted that the amount of testing is typically better judged by the relative
structural complexity of the modules tested rather than by the sheer number of lines of
code tested.

2.6.3 Breadth Of Testing Metric

This metric measures the degree of demonstrated functionality. Breadth of testing
addresses the degree to which required functionality has been successfully demonstrated
as well as the amount of testing that has been performed. This testing can be called black
box testing. This metric is divided into three parts:

* coverage, representing the total number of requirements tested

¢ test success, representing the percentage of requirements passed, and

e overall success, representing the number of requirements passed with respect to the
total number of requirements.

This is calculated as follows:

requirements tested # requirements passed # requirements passed

total # requirements # requirements tested total # requirements

2-36

The coverage portion of breadth of testing indicates the amount of testing performed
without regard to success. By observing the trend of coverage over time, one gets an idea
of the extent of full testing that has been performed. The success portion of breadth of
testing provides indications about requirements that have been successfully demonstrated
during testing. By observing the trend of the overall success portion of breadth of testing
over time, one gets an idea of the growth in successfully demonstrated functionality.

The breadth of testing metrics for coverage and overall success should be used
together and in conjunction with the requirements traceability metrics, and fault profiles
so that potential problem areas can be identified. The breadth of testing metric must be
used in conjunction with the metrics for depth of testing, requirements stability, and
design stability.

2.6.4 Depth Of Testing Metric

The Depth of Testing metric provide indications of the extent and success of
white box testing. Depth of testing consists of four separate measures, each of which is
comprised of one coverage and two success sub-elements.

The Depth of Testing metrics should be used in conjunction with requirements
traceability, fault profiles, and complexity. For example, with complexity, the modules of
highest complexity ;could be highlighted for testing. They must be used with the breadth
of testing metrics to ensure that all aspects of testing are approaching an acceptable state
for the user.

2.6.5 Fault Profiles Metric

The Fault Profiles metric tracks open and closed software trouble reports. Fault

profiles provide insight into the quality of the software, as well as the engineer’s ability to

2-37

fix known faults. These insights actually come from measuring the lack of quality (i.e.
faults) in the software. Early in the development process, fault profiles can be used to
measure the quality of the translation of the software requirerments into the design. Later,
they can be used to measure the quality of the implementation of the software
requirements into design and then code.

There are various aspects of fault profiles that can be examined for insights into
quality problems. The most popular type of graphical representation displays detected
faults and closed (corrected and verified) faults on the same scale. These types of graphs
should be examined for each priority level, and for each major module in the project.
Applied during the early stages of development, fault profiles measure the quality of the
translation of the software requirements into the design. Bugs reported during this phase
suggest that requirements are not being defined correctly, completely, or at all. Applied
later in the development process, assuming adequate testing, fault profiles measure the
implementation of the requirements and design into code. Bugs reported during this stage
could be the result of having incorrect requirements or an inadequate design to implement
those requirements.

Fault profiles can alse be used to show open and/or closed defects by type, by
priority, by open age, by development phase, etc. Caution must be used in interpreting the
fault profiles, as the detection of errors is closely tied to the quality of the development
and testing process. That is, 2 low number of detected faults could indicate a good
product from a good process or simply a bad process to start with, such as one with
inadequate testing. A large number of bugs reported in a particular month may be the

result of errors detected during a review of the specifications, audit, test, or from use of

2-38

the software in the field. Thus, the measures cannot be assessed without also considering
the measures on breadth and depth of testing. The fault profiles should also be used in
conjunction with the metrics for complexity, design stability, and requirements stability.

If the cumulative number of closed software bug reports remains constant over
time and a number of software bug reports remain open, this may indicate a lack of
problem resolution. The age of the open software bug reports should be checked to see if
they have been open for an unreasonable period of time. If so, these software bug reports
represent areas of increased risk. The cause for lack of resolution need to be identified
and corrective action taken. Furthermore, once the average age of a software bug report
has been established, large individual deviations should be investigated. There are several
reasons why software bug reports may remain open for a lengthy period of time. One
could be that the software bug report is a result of identification of an inadequate
requirement which needs to be refined and is undergoing review. It could also mean that
the responsible engineer has failed to take corrective action on the problem. Again, the
reasons for lack of problem resolution need to be identified and corrective action taken.
2.6.6 Reliability Metric

The Reliability metric assesses the degree of completeness of development efforts.
It is an indicator of continuous operation and how many faults there are in the software as
well as the number of faults expected when the software is used in its most stressful
intended environment.

This metric is the most controversial measure within this set, primarily because of
the lack of a consensus opinion about what constitutes software reliability. Measuring the

reliability of software is universally embraced as being important, but there are numerous

2-39

software reliability models, many of them very complex. There are also techniques such
as fault seeding, which attempts to identify latent software bugs, and mutation testing,
which attempts to assess the sufficiency of test cases. These techniques are not used in
our work, primarily due to the labor intensive effort they require. -

The algorithm proposed for the reliability metric uses fault profile metrics
throughout development. The fault profile metrics indicates the rate at which faults are
being reduced and thus reliability increased. The test coverage metrics should also be
simultaneously considered. The Mean Time Between Failure (MTBF) measure estimates
how often one can expect the sof-twarc to “fail” in a field environment as long as inputs
are of the type and in relative proportion to what will be encountered in field use and
modules are exercised with the relative frequency expected during field use.

2.7 Relationships Among Metrics

The test and evaluation metrics thus identified can be used on their own with
regard to other metrics to analyze their behavior over time. In addition, interrelated
metrics can be more usefully analyzed with each other to determine the effect that one
metric has on another metric. Relationships between metrics can be viewed more easily
in the form of a two-dimensional matrix, with each row and each column representing
one metric. This is illustrated in Figure 2.5. The matrix is symmetric: an ‘X' in the row or
column between two metrics indicates that the two metrics are typically used together
under some situations as illustrated later in this chapter and also in subsequent chapters.
For example, the X' in the row and column between the Schedule and Depth of Testing
metrc indicates that the Schedule metric can be used together with the Depth of Testing

metric to determine if there is enough time remaining on the current schedule to allow for

2-40

completion of all testing. A 'X'in more than one row of a metric indicates that the metric

is used together with several other metrics.

Co Sc Cr | Se | Rt Rs { Ds | Cm | Bt | Dt | Fp | Re

Co X X

Sc | X | X | X | X

Cr X

Se X X X X X X
Rt X X X X

Rs X X X

Ds X X X X X X X
Cm X X X X X
Bt X X X X X X X X
Dt X X X X X X X X
Fp X X X X X X X X
Re X X X X X

Figure 2.5: Relationships Among Test and Evaluation Metrics
Note that the diagonal matrix elements are invalid as both row and column refer to
the same metric. The matrix is not static; Figure 2.5 only illustrates the relationships
currently identified among various metrics at this time. Additional relationships identifed

at a later time or by different organizations can easily be added to the matrix as the metric

2-41

database evolves. A brief explanation of each of the elements of the matrix is given

below:

o the Cost metric may be used in conjunction with the Schedule metric and the
Computer Resource Utilization metric. Using the cost metric with the schedule metric
can determine how much of the budgeted amount has been spent relative to the
milestone reached, and can provide an indication as to whether project costs may be
underbudgeted relative to schedule. When used with the Computer Resource
Utilization metric, the Cost metric can provide an indication as to whether there is
sufficient money in the budget to purchase additional hardware resources as needs
rise. Since resource utilization tends to increase over the development of a project,
high computer resource utilizations midway through a project may imply the need for
a budget to purchase additional hardware.

e in addition to being used in conjunction with the Cost metric, the Schedule metric is
used together not only with the Depth of Testing metric, but also with the Breadth of
Testing and Fault Profiles metrics (collectively referred to as the test coverage
metrics) to determine if there is enough time on the schedulq to allow for completion
of all testing,

¢ the Software Engineering Environment metric should be used together with the
Quality metrics to encourage contractors to improve their software development
process in order to increase their rating, thus increasing their chances of being
selected for future projects. For example, a high rating for the Software Engineering
Environment metric would imply low complexity, high reliability, and more

comprehensive coverage for the Breadth of Testing and Depth of Testing metrics.

2-42

s the Requirements Traceability metrics should be used in conjunction with the Depth

of Testing and Breadth of Testing metrics to verify that sufficient functionality has
been demonstrated. They should also be used in conjunction with the design stability
and requirements traceability metrics.

the Requirements Stability metric should be used in conjunction with those for
requirements traceability and fault profiles. Unstable and constantly changing
requirements signal potential problems for the project and can result in a high number
of faults. Furthermore, it will be difficult to project managers to trace design and code
to requirements if the project requirements constantly change.

similar arguments hold for the other metrics, as discussed in the previous section.

2.8 Conceptual Modeling of Software Metrics

The relationship among the different software metrics and the management

process in general and the use of metrics in software development can also be illustrated

by a conceptual model such as that given in Figure 2.6 [MER96]. An explanation of the

terminology used in the conceptual model is as follows:

1.

Project is decomposed into Phases. Each Phase has an expected start date, expected
end date, actual start date and actual end date. Phases may overlap in time.

Phases are decc;mposed into level 1 Activities. If necessary, level 1 Activities can
decomposed into level 2 Activities, etc. Like Phases, each Activity has an expected
start date, expected end date, actual start date and actual end date. Activities can

overlap in time.

. Phases and Activities have Inputs and Deliverables. Inputs are documents or other

material that are required by a Phase/Activity. Deliverables are outputs produced by

2-43

10.

Phase/Activity. An Input and Deliverable may be a Document, Iﬁformation,
Experience, etc.

Dependencies and relationships of various nature exist between Phases and
Activities. Many of them are of vital interest to project managers and developers. For
example, time dependencies (we cannot start Activity Al before we completed
Activity A2); input-output dependency (Activity Al produces a Delivarable that is
an Input to Activity A2); all Activities that have to do with a given Requirement or
DesignDecision or Module.

Execution of Phases and Activifies is governed by Rules. Rules reflect timing and
other dependencies between Phases/Activities and take into account Decisions made
by managers in various points of the project.

A Milestone is an important point in development. Milestones mark completion of
important Phases. Each Milestone has a date when we expect to reach a Milestone
and a list of things to be done when a Milestone is reached.

Project Schedule assigns expected start and end dates for Phases and Activities.
Project Budget is estimated Cost of Phases and Activities.

Resources are human Effort (measured in man-months), Computer resources
(computer time + new equipment), investment in Software purchased for the Project,
etc. Cost is atotal cost of various Resources allocated to Project. Estimated Cost for -.
the Project is computed based on estimated Cost for Phases/Activities.

A software Project consists of one or more Modules, each of which may comprise

one or more Routines. A software Product is the final Deliverable from software

2-44

Project. Bugs occurring in a given Module are identified in a given

DevelopmentTask and documented in a specified Document.

Resource } AllocatedTo

[(

ControMasH

\

evelopmen GSkGovems

Project

Delijers Projectvigrt /_\ FhangeResolition
Phase CxplodesTo SQA, Chnfigurationigront
Prodiuct
Milestona Rasource
CongstsOf

Neeod *
Pelivers
& .
Occuradi
evelopmenilask
Manpowe CPU IHOChanng! | MassStoroge

Module Bug
Figure 2.6: Conceptual Model of Use of Metrics In Software Development

piscoveredin

Our notation is based on OMT [RUMS91]. In the conceptual model, modeling
concepts, called project entities, are in boxes. Triangle is ZsA relationship, bold dot is
‘many’ connector, circle is optional connector. Relationships for parent entities apply to
derived entities. Derived entities inherit attributes from parents.

The conceptual model of the use of metrics at different phases of the project is
given in Figure 2.7. In the model, a Phase of the project can be subdivided into
Planning, Requirements Analysis, Preliminary Design, Detail Design, Coding,
Software Integration, and Releasing. The Requirements Analysis phase can be further

subdivided into User Requirements Specification, Software Requirements

2-45

Specification, and Software Systems Specification. The remaining parts of the

conceptual model follow the same principles.

Fhase

Shftwarelntegrafion Relacsing

Planning | pedrernants andiyss Hreliminary Desfin DatailDesign Codng

//l\ o

UserReqSpeci JottwaraReaSppc SofiSystSpec

[pegrationTestipd SystemTesting UnifTesting

- . A

Documeant

WD sns s TestPlans DedgnSpec Cods }s!ockBoxTesﬂm; IWhitoBoxTestin
Contbins Confiains Conpins
\

UserFunciion

[

SpstemRequremint

TraceatyleTo

Requirement RequirementChdras

&

Usarfunction frwareRequirehent SfstemRequirempnt

Figure 2.7; Conceptual Model of Components of Software Life Cycle
When applied to the entire organization, the collection of test and evaluation
metric data will result in consistent data collection across all projects, providing a

common base for measurement for related projects, Expert systems can then be used to

2-46

analyze the test and evaluation metrics for the current project and provide a decision aid
to management. Advice and predictions can be given based on data from current project
metrics and knowledge accumulated for previous projects in the metrics database. Based
on this advice, management can assess the quality of the product and process by
comparing expected project performance against the project plan, and revise plans
accordingly and adjust expectations. The judicious use of the test and evaluation metrics

can therefore aid in the management of software development. This process is illustrated

in Figure 2.8.

Current Project
Metrics

Assess Process
and Product

Quality

Compare With
Project Plan

Metrics
Database

Revise Plan and
Project/Adjustments
Expectations

Historical Project
Performance

Figure 2.8: Management Through Measurement

In summary, the test and evaluation metrics, when properly used, will address the
following:
¢ Identification of common risks associated with development
» Identification of questions or queries that can characterize these common risks

e Isolation of the risks thus identified

2-47

e Provision of opportunities for the manager to identify his own risks.

2.9 Sample Data for Software Metrics

We have just discussed the type of metrics to be collected and input to the metrics
database. In Appendix A we provide sample data for several metrics. In the next chapter,

we shall discuss some sample queries that can be made on these metrics, as well as more

sophisticated metrics analysis techniques.

2-48

