Chapter 1

Introduction

1.1 Research Objectives

The main objective of this research is to propose a comprehensive framework for quality
and risk management in software development process based on analysis and modeling of
software metrics data. Existing software metrics work has focused mainly on the type of metrics
to be collected and the analysis of metrics data, particularly with respect to complexity and
reliability analysis of large software programs. The underlying data model with which the
metrics data are stored has not been a consideration for software researchers to date, and
researchers have adopted various data models with little regard to their relative efficiency.
However, the underlying data model should not be taken for granted. The adoption of the
“correct" data model greatly improves the efficiency of queries and the maintainability of the
metrics database, if the type of queries that will most likely be posed can be predicted.

Figure 1.1 illustrates a high-level view of ail the important components of a software
metric database and data analysis system. The shaded areas of this figure highlight the research
issues to be addressed in this work. As illustrated in this figure software metrics data are
collected and input to the metrics database via the DBMS Application Interface. In the case of
relational databases, for instance, this can be via SQL. The DBMS Application Interface sends
the data down the data management layer to the Storage Management Layer, which then stores
the metrics data on disk. To analyze the metrics data, it must be retrieved from disk. This is
performed by the application via the DBMS Application Interface, which sends the request down

to the data management layer and then to the storage management layer, which then sends

1-1

metrics data up the same route to the metrics analysis software. QOur research is focusing on the

following three issues, which provide the major contribution of this dissertation:

e determining a core set of metrics, hereafter referred to as the Test and Evaluation metrics,
that can most effectively be used across various organizations for risk and quality
management,

s identifying which metrics data analysis techniques are best suited to the type of diagnostic
and prognostic analyses to be performed with the Test and Evaluation metrics thus identified.
Accordingly we present a framework that integrates a suite of analytical technique for
assisting in diagnostic and prognostic analysis.

» proposing a comprehensive data model for the metrics database, given the nature of temporal
characterization of the data and the type of complex queries to be performed on metrics data.
Subsequently we compare various data modeling approaches within the context of practical
implementation of a system.

The contributions are discussed in more detail in the following chapters. The remaining
sections of this chapter provide background in software metrics and notion of risk/quality
management with a software project. We also provide a classification of the proposed metrics

and provides a brief description of each metric. The detailed discussion of the metrics is given in

Chapter 2.

Software Metrics| | - Analysis of -
G Datace Metrics Data

DBMS Application Interface (e.g. SQL)

I

DBMS Storage Management Layer Hard disk

>

Figure 1.1: Areas of Research Focus

1.2 The Concept of Software Risk

From an engineering viewpoint, risk is “the combination of the probability of an
abnormal event or failure and the consequence(s) of that event or failure to a system’s operators,
users, or its environment” [BOE91]. Risk is present in every phase of the software life cycle. In
the requirements phase; for example, end-user requirements may change frequently, affecting the
coding of the software. Likewise, the software design may be faulty, either with respect to end-
user requirements or to system functionality. Hence the design may need to be modified. This
can result in substantial schedule delay. For the end user, such delay may result in lost business
opportunities. Therefore, scheduled delay is considered as a typical high risk element in software

development.

In order to deal with risks properly and effectively, a framework is needed for
identifying and analyzing potential risks and developing appropriate contingency plans [BOE89].
By dealing with risks quantitatively, risk analysis and management can be more proactive and
objective. Prioritizing high risk items then becomes easier and more accurate. Objective analysis
and contingencies help to promote effective management analysis techniques as standardized
engineering methods.

Risk analysis can be classified into three major phases: (1) risk identification and
assessment, which involves identifying the potential risks in the software life cycle and assessing
their impacts; (2) risk minimization/prevention, which involves taking steps to minimize or
prevent the risks identified during the early phase, and (3) risk compensation, which involves
taking appropriate steps to correct the risky behavior or characteristic after it has occurred.

1.3 Motivation for Metrics

Software is pervasive though largely unnoticed by the developers. One would be hard put
to name any industry in which software is not now a significant component. The software
systems being developed today are much more sophisticated than the simple payroll and
accounting systems of a few years ago. Today’s systems operate in real time and may be used by
many people simultaneously on networks. They launch space shuttles, command missile defense
systems and control billions of dollars through money transfer systems.

The economic potential and growing significance of software as an agent of productivity
is, howevér, not sufficiently appreciated. We might take as an example manufacturing. Fortune
magazine in November 1994 featured an article on this topic leading off with the statement:
“With speed and flexibility that leaves the Japanese agog, US. manufacturers have come roaring

back after years in eclipse. What is the secret? It’s in the software”. The use of software in

manufacturing is not just a help, it has become a key factor. “by the year 2000, well over 50 per
cent of the cost of producing manufactured goods will be the software necessary in that
manufacture” as mentioned in [GIB94]. Despite its emerging role as the critical technology for
various sectors of economy, software development is far from being a mature engineering
discipline it ought to be. Studies have shown that for every six new large-scale software systems
that are put into operation, two others are canceled. The average software development project
overshoots its schedule by half; larger projects generally do worse. And some three quarters of
all large systems are “operating failures” that either do not function as intended or are not used at
all.” Typically, the larger the system, the more difficult the problem.

The overall cost of producing and maintaining software are significant factors in a
country’s economy. The outlay for producing and maintaining software systems in the United
States is about $100 billion a year [KEY93]. These figures approximate 1% of GDP and,
although not mind-boggling, they are certainly significant. Costs range from $1,000 a line for
debugged “mission-critical” software [KEL90] to $50 to $100 a line for marketable
“shrink-wrapped” PC software. At the low end, that’s still more than $25 million for a
word-processing system [KEY93]. The cost of producing the initial software is not as major a
part of the cost as software maintenance is. Maintenance over the lifecycle of the software will
cost more than twice what it cost to produce the original software. The costs involved in
debugging, delays and project cancellations are enormous. They constitute as much as 90% of
the total cost of software. If those costs could be eliminated, the direct savings to the community
would be a real windfall - perhaps $90 billion a year for the United States.

One industry rule of thumb suggests that initially there may be as many as 25 errors for

each 1,000 lines of code. Review and testing soon remove most of the errors but “debugging”, as

it is called, is expensive, time-consuming and ultimately unsatisfactory because there can be no
certainty that all the bugs have been identified and removed. An IBM study [KEY93] revealed
that in well debugged programs, about a third of the remaining bugs are so deeply hidden that
they would probably cause only one failure in 5,000 years. There are likely to be errors in even
the best computer programs which in our opinion is OK, as long as we have some estimate of the
risk associated with having such errors in the software; also, one should not do a ‘worst-case
scenario’ analysis since that is unnecessarily alarmist.

In so-called “shrink-wrapped” software [KEY93], most of the tasks are not critical, so the
incidence of Bugs can be expected to be higher in PC software than in so-called mission-critical
applications such as the software used in “fly-by-wire” airliners like the Airbus A320 or the
Boeing 777, or, indeed the software used in a broker’s mainframe to process share transactions or
a payroll program. Mission critical software is very reliable indeed, and the reliability of
mainframe software is about four times better than PC software. As in other fields, the cost of
software reliability increases exponentially with the degree of reliability demanded by the user
[GOE79].

The traditional software development process bankrolled by billions of dollars, backed by
a myriad of methodologies, exotic programming methods, CASE (Computer Aided Software
Engineering) tools, and some of the brightest minds in the discipline, is still falling short of the
quality needs of software. In 1968, 25 years after the first computer programs were written, the
NATO Science Committee convened with some 50 top programmers, computer scientists and
industry leaders to chart a way out of the difficulties being experienced with large software
systems - the so-called “software crisis”. Not much was achieved but a new name was coined:

“software engineering”, defined as “the application of a systematic, disciplined, guantifiable

1-6

approach to the development, operation and maintenance of software. According to [GIB94]:
“After another 25 years software engineering remains a term of aspiration.” The vast majority of
computer code is still hand-crafted from raw programming languages by artisans using
techniques they neither measure nor are able to repeat consistently.” But, given the intractable
nature of the problem, encouraging progress has been made. Indeed the search for the Holy Grail
may be coming to a close.

The creation of software began as an art, not as a science with formal rules and physical
laws to govern it. The introduction of more rigorous and formal methodologies to keep out the
bugs, while preserving the essential creative component, is proving difficult. The acceptance of
new ideas has always been a fairly slow process. The U.S. National Institute of Standards and
Technology reports that it takes 55 years for 90% of US. manufacturers to adopt a technology. In
Japan the comparable figure18 is years [KEY92]. Acceptance of technology seems to depend on
four issues: Does it do something new or better than before? Are the results or effects
demonstrable? Does it provide sufficient added value for the money? Does it seriously impact
the status quo?

Early attempts to improve product quality and productivity depended to a considerable
extent on the 10% mle - that the best software will be produced by hiring within the top 10
percentile. But not ev.cry software developer can hire from the top echelon and how do you
decide who is in that group anyway? There are extraordinarily wide variations in programming
ability between individuals - up to a factor of 25. Obviously, choosing the best people helps but it
is not a sure-fire answer and does nothing to move software creation into a more disciplined
engineering environment {[BAS87b]. To this end the industry has seen the emergence of

standards, new languages, new tools and new programming methods, all intended to encourage

developers along the smooth paths of best practice and away from the rocky roads that
promulgate bugs and cost time and money.

As might be expected, computer software itself is being used to develop tools, ie. the
CASE tools, to help in the software development process. These tools cover all facets of the
software development cycle, and are commercially available. CASE tools can be classified into
two classes [HAMO90]: upper CASE tools for design, and lower CASE tools to automate code
production. But CASE tools, although useful, have been a disappointment. They are hard to fit
together and they leavc‘ gaps which have to be bridged using manual methods. The software
development process is one of the most complex processes a human can perform. CASE tools
help with this process but they do not appear to be the final answer.

Reuse of proven components helps some, but a new class of problems--interface
problems--can arise when the proven components are joined. A NASA study found that three
quarters of all software errors occur at the interfaces of program modules [CAR90, KEY93,
MCG93]. However, the potential benefits of reusability are so high that we ought to focus on
reducing interfacing errors rather than give up on reusability.

Serious attempts have been made to introduce software metrics to measure productivity

as a step toward better analysis of the software creation process. A multitude of tools have been

devised to help bridgé the very wide gap between the user requirements and the software

produced [HAMS0].

1.4 Motivation for Metrics Databases

Traditional project management has typically proceeded in an intuitive and ad-hoc
manner, with inconsistent collection of metrics data across different projects for different periods

of time [ABD89]. Several factors can cause inconsistent interpretation of these data. The leading

1-8

factors are: the lack of standard techniques for metrics data analysis; the large dimensionalities
and non-linearities; mixture of continuous and discrete, quantitative and qualitative data; highly
skewed distributions; and limited data points. Also, the metrics data are rarely validated, further
aggravating the potential inconsistencies in interpretation.

The management and analysis of metrics data for software engineering projects can
provide a consistent mechanism for risk identification and assessment. Integration of metrics
data of past projects into a metrics database enables us to use past experiences effectively for
current and future projects. Past experience is no guarantee of future performance and no two
projects are identical [WOV87]. However, metrics data analysis can provide a mechanism
through which an ongoing project can be compared, both quantitatively and qualitatively, with
previous similar projects. Such an approach can be a decision aid, allowing management to
revise project plans and adjust expectations. A detailed plan can be developed that will help
management evaluate project progress. Such a plan should be applicable at every stage of the
development cycle and should assist in monitoring and predicting potential risks associated with
the project. The Test and Evaluation metrics discussed in the next chapter provide the basic
framework for monitoring software engineering risks.

1.5 Research Issues

As indicated in Figure 1.1, we address three major research areas in this thesis. These
include:
¢ Software Metrics
s Software Metrics Analysis Techniques

¢ Data Modeling of Software Metrics

1-9

We now briefly elaborate these research areas.

1.5.1 Software Metrics

Software metrics are used for the measurement and prediction of progress of software
projects, in terms of resources, processes, and product attributes. The overall role of software
metrics in the development process is as follows:
¢ improve the current product

» improve the future process and products

The science and engineering of metrics thus include measurements on processes, projects,
products, their analysis, and evaluation. Metrics data capture and encapsulate the previous
experiences, help develop models and theories of the observed phenomena, and thereby support
prediction of project, product and resource requirements.

The metrics proposed in this thesis can be divided into three broad categories, namely
management, requirements, and quality. This is the core set of metrics that should be used in
tracking project progress and product maturity and quality. The set provides at least two means
which are applicable in each of the following phases of the software life cycle: Requirements
definition, design, coding, and maintenance. Management metrics are used to track project costs
and schedule and determine personnel and computer resources to be allocated to a project.
Requirements mem'cs; track changes from the original requirements and requirerents
implementation. Quality metrics track product quality. Figure 1.2 illustrates the classification of
software metrics that are addressed in our research. A detailed discussion of these metrics is

provided in Chapter 2.

1-10

Development

Manpower
Cost Comptter Resource
Utilization
—{ Management Software Engineer-
| Schedule ing Environment
Requirements
. Traceability
Requirements
Requirements
. Stabili
Design)
, Stability Depth of
o Quality Testing
| Complexity Fault Profiles
Reliability
Breadth of
Testing

Figure 1.2: Types of Software Metrics

1.5.2 Software Metrics Analysis Techniques

Figure 1.3 illustrates the techniques used to classify and analyze metrics data. Analysis of
metrics data implies the determination of two important pieces of information:
s recurring trends

* deviation from normal trends.

Metrics classification techniques are used to determine the level of risk associated with
development plans by analyzing past project trends. These techniques help in answering simple
queries such as:

* Which components in the software development process are error-prone?

* Which components in the software development process require high development effort?

1-11

_ Analysisof .-
 Mefrics Data

Jiagram

Figure 1.3: Metrics Data Classification and Analysis Techniques

Answering these queries can be regarded as a metric-based classification problem. For
example, we may choose to categorize components into classes based on different degrees of
risk, or different levels of reliability. Classification trees and neural networks are among the
techniques available for classification of metrics data as explained in Chapter 5.

Simple database: retrieval techniques may not be sufficient for complex queries; in which
cases more sophisticated analysis techniques are needed. There are several statistical techniques
available to analyze software metrics data, including multiresolution analysis and multivariate
analysis. Software metrics analysis techniques are discussed in Chapter 4.

Effects of CASE tools and productivity/learning ability of development team are

significant on the software project development process. Suitable mathematical models are

needed to study these effects. In Chapter6, we propose two such models based on realistic set of
assumptions. A thorough experimentation is described to validate these models.
1.5.3 Data Models for Software Metrics

DBMS data models discussed in the literature have relative advantages and drawbacks
with regard to storage and retrieval of metrics data. The effectiveness of the data model depends
on the nature of the queries to the metrics databases which, in tumn, vary according to the purpose
for which software metrics are used. One key aspect of software metrics data is its temporal
dimension which is fundamental to many important queries. Another key aspect is the semantics
related to quality and risk of a software project. Figure 1.4 illustrates the major DBMS data
models that will be analyzed to determine their effectiveness for specifying various types of

queries, and their semantic power to express various views of quality and risk. This discussion is

given in Chapters 7 and 8.

Figure 1.4: Data Models :for Metric Databases
1.6 Thesis Organization

This thesis is organized into nine chapters. We have just discussed the importance of
metric databases and presented an overview of the research issues involved in the collection,

classification, and analysis of software metrics, as well as the data models to be discussed for

metric databases. In Chapter 2 we propose the types of software metrics to be collected for
software engineering projects. Chapter 3 discusses typical queries that may be posed on the
metrics. Chapters4 and 5 discuss various analytical techniques. In Chapter 5, we then present a
framework for integrating these analytical techniques with software metrics to develop a
powerful environment for the management of software development process. In Chapter 6, we
propose two mathematical models to analyze the effect of productivity of software team and
CASE tools on the quality of software product. Furthermore, these models are used to estimate
cost and resource requirements of software engineering environment. Extensive experimentation
of these models validate them. Chapter 7 elaborates on various data modeling techniques. We
then propose a unique termporal data model framework using Petri Net for metric databases.
Based on this framework, in Chapter 8, we propose a unique methodology based on the theory of
recursive graphs (R-graphs) that can be used to model different levels of abstractions for risk and
quality management of software project in a systematic manner. Based on the research presented
in this thesis, we then propose a pragmatic architecture for software metrics database system.

Chapter 9 concludes by discussing the research contributions of this thesis and potential future

research.

1-14

