Chapter 7

Sample Trace of the Three
Learners

7.1 RHB

This section illustrates a sample trace of RHB, Suppose that we have
the following examples and background knowledge.
Positive examples:

happy (mary) .
happy (john) .

Negative example:
happy (jack) .
Background knowledge:

id(pl,mary).
id(p2,john).
id{(p3, jack).

got(pl,money).
got(p2,job).
got(p3,debt).

mary < person,
john < person.
jack < person.

pl < code.
p2 < cods,
p3 < code,

- money < valuable,
job < valuable,
debt < non_valuable.

valuable < thing.
non_valuable < thing.

thing < everything.
person < everything.
code < everything.

First, RHB computes the lggs of positive examples. In this example,
happy(person) is the only lgg of pairs of positives, The head is set to

happy(person).

RHB then constructs the body. Predicates id/2 and got/2 are candi-
dates for the literal to be added. RHB tries all possible literals gen-
erated by combining the predicates, variables, and sorts of the head
and new variables and then adds the best literal in terms of the model
complexity to give

happy(P: person) :— id(X, P).
After the sort restriction, X is réstricted to the sort code:
happy(P:person) i~ id{X :code, P).

Since the current hypothesis covers a negative example, the construc-
tion of the clause continues. By finding the best literal to be added
again, RHB builds

happy(P :person) :— wd(X : code, P), got(X, Y).

66

After restricting the sorts, it obtains
happy(P person) :—
id(X : code, P), got(X,Y :valuable).

Since this clause covers no negative example, RHB finishes the learning
process and outputs the result.

7.2 RHBT*

RHB* learns logic programs with sorts in the same way as RHB buf
uses only positive examples. Using the same example in the previous
section, let us consider the sample trace of RHB™. First, it computes
the lggs of positive examples. In this example, happy(person) is the
only lgg of pairs of positives. The head is set to

happy(person).

RHB* then constructs the body. Predicates id/2 and gof/2 are can-
didates for the literal to be added. RHBT tries all possible literals
generated by combining the predicates, variables, and sorts of the head
and new variables and then adds the best literal in terms of the PWI
to give

happy(P: person) :— id(X, P).

After the sort restriction by only positives, X is restricted to the sort

code:
happy(P : person) :— id(X : code, P).

Since the current hypothesis does not satisfy the stopping condition
MCR, i.e., happy(jack) can be generated from the current hypothesis,
the construction of the clause continues, By finding the best literal to
be added again, RHB¥ builds

happy(P: person) :— id(X : code, P), got(X,Y).
After restricting the sorts, it obtains

heppy(P:person) :—

67

id(X : code, P), got(X,Y :valuable).

Since this clause coverage satisfies the stopping condition, RHB* fin-
ishes the learning process and outputs the result.

7.3 «-RHB*

~ 1p-RHB™ takes a very different approach: it computes rlggs from posi-
tives and background knowledge.

From happy(mary), it first selects id(pl,mary) since the literal
contains mary. Then, if the variable depth is two, ¥-RHB* selects
got(pl,money) from the background knowledge since the literal con-
tains pl which appears in got(pl,money). In the same way, 1-RHB*
selects 1d(p2, John) and got(p2, job) for happy(john). After linking the
same sorts. It then computes an lgg of the following two clauses:

happy(X : mary) i~ id(P : pl, X), got(P, money),

happy(Y : john) :— id(Q : p2,Y), got(Q, job).

As a result, the following clause is obtained:

happy(Z : person) :— id(R : code, Z), got(R, valuable).

68

