Chapter 6

-RHB*: TLP System that
Learns Logic Programs based
on 1-terms

6.1 Overview of ¢~-RHB*

6.1.1 Framework |

The framework of hierarchically sorted ILP based on t-terms that
learns from only positive examples is defined as follows. In this chapter,
we call literals and clauses based on y-terms just literals and claunses.

Let a signature be Togr = (P, S, 2,M,U, L), where P is a finite set
of predicates, S is a finite set of sort symbols, and £ is a finite set of
feature symbols and ¥ be a finite set of variables, Example language
Lz, background knowledge language Ly, and hypothesis language Ly
are defined as follows,

. o Lg: the set of all ground atomic formulae whose predicate sym-
bols is an observation predicate symbol p.

o Lg: theset of all ground unit clanses without the predicate sym-
bol p.

o Ly theset of all definite clauses whose heads are atomic formulae
with p and whose bodies consist of literals with predicates symbols

57

in background knowledge language Lg.

Let a finite set of positive examples be £t € L and a finite set of
background knowledge be B C L, where the following conditions are
satisfied:

Ye € E* BVOSF e

Hierarchically sorted ILP based on ¢-terms is defined as ¢ that
salisfies the following conditions with respect to hypotheses 4.

HC Ly st H=g(Lp Ls, Ly, B, EY)
B YU H is consistent.
For most of e€ EY BUH Fogpe.
For mostof ec Lg — EY BUH Hpsre.

Because our goal is to apply an ILP based on 1-terms to the learn-
ing from real-world daia with some noise, the second last condition is
relaxed from “Ve € E*” to “for most of e € E*”. The last condition
states that H is more preferable if it covers a smaller amount of ex-
amples in Lg other than E*. We employ in this chapter the weighted
informativity as a heuristics to estimate the appropriateness of H.

6.1.2 Characteristics of _w-tei‘ms

For the sake of introducing features (or attributes) and sorts, 1-terms
enable the following advantages.

partial descriptions For example, term name(first = peter) ex-
presses the information of a person whose first name is known,
This is equivalent to name(first=peter last=>T). In the pro-
cess of unification [4], possibly other features can be added to the
term,

dynamic generalization and specialization Sorts, placed at the po-
sitions of function symbols, can be dynamically generalized and
specialized. For example, person(id = name(first = person))
is a generalized form of man(id = name(first = Jack)).

68

abstract representation Abstract representations of examples using
sorts can reduce the amount of data. For example,

familiar(person(residence = France), French)
represents a number of ground instances, such as,

familiar(Serge(residence = France), French).

coreference Coreference enables the recursive representation of terms.
For example, X : person{spouse = person(spouse = X)) refers
to itself recursively ? .

natural language processing applicability w-terms have the same
representation power as feature structures [10] which are used for
formally representing the syntax and semantics of natural lan-
guage sentences,

6.1.3 Least General Generalization

In the definition of the least general generalization (Igg) [43), the part
that defines the term lgg should be extended to the lgg of ¢-terms.
The lgg of i-terms has already been described in [1]. The lgg of a
subset of description logics, called the least common subsumer (LCS},
can be found in {12]. The lgg of feature terms, which are equivalent to
1p-terms, can be found in [42]. We present a definition of a least general
generalization of two 1)-terms as an extension of Plotkin’s lgg described
in Section 2.2,

Now, we operationally define a least general generalization of two
1h-terms based on [55], using the following notations. e and b represent
untagged ¥-terms, s, t, and u represent ih-terms. f, g, and h represent
sorts. X, Y, and Z represent variables in V.

Definition 74 (lgg of ¢-terms) =
Llgg(X:a,X:a)= X :a.

! Variables are also used as coreference tags. This is one of the most elegant ways
to represent coreference. :

a9

2. lgg(s,t) = u, where s # 1 and the tuple (s,t,v) is already in the
history Hist,

3. If s = X:f(lf = 81, [= 8,) and i = Yig(lt = 4y, ., L = 4,),
then lgg(s,t)=u, where L = {If,...,2} n{& ..., ..} and for fea-
tures i € L, u=Z:h(l = lgg(s.ly, t.hh), ..., ly) = lgg(s.Yoy, t-4))
with h = fUg. Then, (s,1,u) is added to Hist.

For example, the lgg of
imjured(passenger{of = 10))

and
injured(men(of = 2))
is .
mjured(people(of = number)),

where passenger U men = people and 10 U 2 = number,

6.2 Algorithm of ¥~-RHB*

The positive examples are atomic formulae based on t-terms. The
hypothesis language is a set of Horn clauses based on t-terms. The
background knowledge also consists of atomic formulae. »-RHB+ 2,
a t-term capable ILP system, employs a bottom-up approacl, like

Golem {38). |

Learning Algorithm

The learning algorithm of our ILP system .is based on the Golem’s
algorithm extended for ¢-terms. The steps are shown in Algorithm 6.

In Step 2, we have to link sorts in the examples and the background
knowledge because the OSF formalism [4] which underlies the formal-
ism of)-terms is not formed under the unique name assumption. For

? In this thesis, y-RHB [66] is called ¥-RHB™ in order to emphasize that it learns
from only positive examples. 1t would he easy to modify ¢-RHB% so that it can
learn from both pesitive and negative examples; however, this modification has not
been investigated yet.

60

Algorithm 6 Learning algorithm
1. Given positive ezamples Et, background knowledge B,

2. Link sorts which have the same names in ET and B,

o

A sel of hypotheses H ={}.

-

Select K pairs of examples (A;,B;) as EP 0 <1< K).

O

Select sets of literals AR; and BR; as selecled background krnowl-
edge according to the variable depth D,

Compuie lggs of clavses Aii— A\ AR; and Bi:—A BR;.

=

7. S’impl;'fy the lggs by evaluating with weighled informativity PW I,
which is the informativity used in RHB*,

8. Select the best clause C, and add it to H if the score of C' is belter
than the threshold §.

9. Remove covered ezamples from E*.

10. If Bt is empiy then velurn H,; otherwise, goto Slep 4.

example, if we have two terms f{t) and ¢(¢), ¢t in f(i) and ¢ in g(t) are
not identical. The OSF formalism requires that they be represented as
f(X :t) and f(X :t),if ¢ is identical in both of two terms, Therefore,
the same sort symbols in the examples and in the background knowl-
edge arc linked and.will be treated as identical symbols in the later
steps. - B : ' ‘

In Step 5, to speed up the learning process, literals related to each
pair of examples are selected. At first, AR; and BR; are empty. Then,
(1) select the background knowledge literals A,y so that it has all lit-
erals whose sort symbols are identical to the sorts in A; or AR, and
select B,y in the same manner using B; or BR,. (2) Add literals Ag,
and B, to sets AR; and BR;, respectively. Repeat (1) and (2) n times
when the predefined variable depth is n, This iteration creates sets of

61

literals.

We use AR; as the selected background knowledge for A;, and BR;
for B; in Step 6. What is computed in Step 6 is the following lgg of
clauses. '

lgg((A; -~ /\ARi)> (Bi— /\BRJ):

where A S is a conjunction of all of the elements in S, The lggs of
clauses have the variable depth of at most n.

In Step 7, simplification of the lggs is achieved by checking all literals
in the body as to whether removal of literals makes the score of the
weighted informativity worse or not. For the purpose of informativity
estimation, we use the concept of ground instances of atomic formulae
based on ¢)-terms. We call atomic formula A ground instance if all of
the sorts appearing in A are constants. For example, '

familiar(Serge(residence = France), French).

Moreover, literals in the body are checked as to whether they satisfy
the input-output mode declarations of the predicates.

6.3 Discussion

¥-RHB* employs the lgg of clanses whose heads are positive exam-
ples and whose bodies are literals selected from background knowledge.
This approach is an extension of Golem’s approach which is based on
Muggleton’s relative least general generalization (rlgg). Our approach
and Muggleton’s approaches are not simple computation of Plotkin’s
rige. ' -

As an rlgg of two positive examples ¢ and e;, Golem computes
lgg(e; :— K, ey i~ K), where K is a conjunction of the literals in B,

However, Lemma 3 in [44] clearly states that lgg(ei,eq) is a least:
general generalization of ey and ey, relative to T'h. There is no need for
Golem to add K to the bodies when computing an rlgg in a mathemat-
ical sense.

This can be explained as follows. Let Cy = lggler i~ K, e 1~ K)
and Cp = lgg(er,es). Ci ~ Cy(Th) but €y # C,. Obviously, Cy <
1 when T'h is not empty, What Golem and oup algorithm mainly

62

computes is a variation of clauses that are relatively equivalent to the
lgg of two positives.

The reason why ¢¥-RHB™" employs the lgg of clauses based on -
terms is simply that Golem has successfully generalized positive ex-
amples In various test example sets. It is of very interest to inves-
tigate the theoretical background of finding a most useful clause in

{C1C ~ Cy(Th)}.

6.4 Summary

This chapter has described an algorithm of a)-term capable ILP and
its application to information extraction. The lgg of logic terms was
extended to the lgg of ¥-terms. The learning algorithm is based on the
lgg of clauses with #-terms. Natural language processing relies on a vast
variety of nouns relating to the sort hierarchy (or taxonomy) which
plays a crucial role in generalizing data generated from the natural
language. Therefore, the information extraction task will match the
requiremernts of the -term capable ILP.

63

