Chapter 5
RHB™: ILP System that

Learns Logic Programs with
Sorts from Positive Examples

This chapter describes the novel relational learner RHB* [56] which
generates sorted Prolog programs from just positive examples on the
basis of background knowledge which might include a large-scale sort
hierarchy.

5.1 Overview

The hypothems language of RHB™ is the Horn clause based on 7-terms,
same as RAB. The hierarchically sorted ILP system has the following
features that match the needs for learning IE rules,

o A hierarchically sorted ILP system can efficiently and effectively
handle sort (or semantic category) information in training data.
This feature is advantageous in controlling the generality and ac-
curacy of learned IE rules,

o It can directly use semantic representation of the text as back-
ground knowledge,

¢ It can learn from only positive examples,

45

¢ Predicates are allowed to have features (or keywords) for read-
ability and expressibility,

5.1.1 Framework

The framework of hierarchically sorted ILP based on 7-terms that learns
from only positive examples is defined as follows. In this chapter, we
~ call literals and clauses based on 7-terms just literals and clauses.

Let a signature be Losr = (P, S, =, M, L, L), where P is a finite set
of predicates, S is a finite set of sort symbols, and £ is a finite sef, of
feature symbols and V be a finite set of variables. Example language
Lg, background knowledge language Ly, and hypothesis language Ly
are defined as follows.

* Lg: the set of all ground atomic formulae whose predicate sym-
bols is an observation predicate symbol p.

 Lp: the set of all ground unit clauses without the predicate sym-
hol p. '

e Ly theset of all definite clauses whose heads are atomic formulae
with p and whose bodies consist of literals with predicates symbols
in background knowledge language L.

Let a finite set of positive examples be E* C Lz and a finjte set of
background knowledge be B C Ly, where the following conditions are
satisfied:

Vee E* B Ifogp e
Hierarchically sorted ILP based on 7-terms is defined as ¢ that
satisfies the following conditions with respect to hypotheses H.
H g LH st, H = QO(LE,LB,LH,B,E+).
B U H is consistent,
For mostof e € EY BUH Fogp e.
For most of e € Lg — EY BUH Vogpe.

46

Algorithm 2 outer_loop(EY, B)
1. Preserve original positive examples EY to Ef,
Hypo « {}.
H « inner_loop(E*, EF , B).
If H is empty, Hypo — HypoU Et and return Hypo.
Otherwise, Hypo «— Hypo U {H}.
Removed positives covered by H from E™,

If Bt is empty, return Hypo.

ST S T S < - B =

Goto Step 3.

Because our goal is to apply RHB™ to the learning from real-world
data with some noise, the second last condition is relaxed from “Ve &
Et” to “for most of e € ET”, The last condition states that H is
more preferable if it covers a smaller amount of examples in Lg other
than Et. We employ in this chapter the weighted informativity as a
heuristics to estimate the appropriateness of H,

5.2 -Algorithms of RHB™

RHB* employs a combination of bottom-up and top-down approaches,
following the result described in [65]. That is, first make the head in a
bottom-up manner then construct the body in a top-down manner.
The outer loop of RHB™ finds covers of the given positive exam-
ples Et in a greedy manner (Algorithm 2). It constructs clauses one
by one by calling inner_loop(Et, Ef, B) (Algorithm 3), where Ef is
original positive examples and B is background knowledge. Covered
examples are removed from Et in each cycle; Ef remains unchanged,
The inner_lodp calls make_body (Algorithm 4) which constructs the
body of a hypothesis clause. ' :

47

Algorithm 3 innerloop(E*, EF, B)

1. Randomly select N pairs of positives and compute lggs of the pairs.
Select one lgg that covers the most positives as Head. If there are
some candidates, select one lgg at random.

2. If StoppingCondition(EF, B, H ead) is satisfied, return Head.
3. Body « {}, NewBody~{}.

4. Callmake body(E*, Ef, B, Head, Body, NewBody). If the resull
is fail, return {}.

5. Otherwise, relurn. Head :~ NewBody.

We will now see how sorts are utilized in each component of the
RHB? algorithm in the following sections.

5.2.1 Dynamic Sort Restriction by Positive Exam-
ples

The special feature of RHB* is the dynamic sort restriction by positive
ezamples during clause construction. restrict(£+,B,(Head :—Body))
in Algorithm § does this part, where £ represents positives, B is back-
ground knowledge, and (Head:— Body) is a hypothetical clause. The
restriction uses positive examples currently covered in order to deter-
mine appropriate sorts. Informally, for each varjable X; appearing in
the clause, RHB* computes the {ub of all sorts bound to X; when
covered positive examples are unified with the current head in turn.
Formally, the dynamic sort restriction by positive examples is defined
as follows, -

Sort restriction replaces sorts of newly introduced variables in the
body. Without a sort restriction, newly introduced variables would
always have no sorts, and RHB* might produce over-general clauses,
Note that the result of the sort restriction operation by unification dy-
namically affects the sorts of all variables related to the unified variable.

48

Algorithm 4 make body(E+, Ef, B, Head, Body, N ew Body)

1.

Create a set of all possible literals L using variables in Head and
Body, predicates in B and new variables.

Remove literals already occurred in Body.

If L is empty or the number of lilerals in Body exceeds the limat
d, NewBody — {} and return fail.

Set top I literals Iy, € L to list BEAM , by evaluating weighted
informativity PWI(E*, BU{Head :— Body,Is}).

If BEAM is empty, goto Step 6; otherwise, pick oul the firs
element of BEAM and sel il to I. Do the following steps for
Body, « Body,l.

5-1. Restrict the sorts of variables in the curreni hypothesis by
resirict(EY, B, (Head:~ Body;)).

5-2. If StoppingCondition(Ef B,(H ead:— Body)] is salisfied,
NewBody — Body, and return true. :

5-8. Call make body(E+,Ef, B, Head, Body;, NewBody). If the
result is true, return irve; otherwise, golo Step §.

NewBody + {} and return fail.

This operation is directly implemented by using the sort unification
mechanism of LIFE.

It would rather not aggressively add sort to narrow the current
cover but it is interesting that the dynamic sort restriction significantly
contributes to narrowing the current cover and helping the learner to
find good hypotheses.

Example 6

When we have positive examples and background knowledge as given
in Example 1 and additional data about cat Socks.

49

Algorithm 5 (Dynamic sori- restriction by positive ezamples)

&

Given a hypothesis clause Hypo = (Head :— Body) and positives
Et

Collect all the terms Xy:sy in Hypo and put X, into a list VarSet.
Let B+ be czamples in B+ covered by Hypo,

For all elements p; of E+, unify Head and p;, then prove Body.
Make e list SortSet; of bound sorls in the proven Head and Body
so that the position of each sort in SortSel; correctly corresponds
to the position of the original variables in VarSet.

For all Xy in VarSet, compute lub 7. of all bound sorts of X}, in
SortSet;, '

For all k, replace Xy s, by X)o7y

50

o Additional positive ezample :
{ speak(Socks,cat-lang) }

o Additional background knowledge :
{grew.in(Socks,Japan), Socks < cat}.

Suppose that speak(agent,anything) is the current head. Adding
official_lang/2 , one of the candidates for additional literal, restricts
the sorts in the head as follows. The current clause before the sort
restriction is:’ |

speak(agent, Y:anything) :— official lang(X,Y).

The second argument of official.lang matches an official language.
This cause that covered positives are only examples relating to humans
because the positive related to Secks is no longer covered. Therefore,
the sort agent is restricted te humans and we obtain:

speak(human, Y:language) :— officiel lang(X,Y).

After that, the data unrelaied to humans will not affect the clause
construction. This illustrates how the typing contributes o restricting
sorts in forming sorted clauses,

5.2.2 Use of Sorts in Computing Informativity

Sort information is also used to compute positive weighted informativity

PWI(E* ,BU{Head :—Body}). Let T = B U {Head :~Body }.

’ 1 |E¥|+1
7 + PO i L B
PWI(E™T,T) .!En’f[xlogQ]Q’(T)HZ,

where |E+| denotes the number of positive examples covered by T.
In effect, this is weighted informativity employing the Laplace esti-
mate [11]. '

Sort information is very useful for computing Q(T). Let Hs be a
set of instances of Head generated by proving Body using backtracking.
We introduce the notation || which expresses the number of constants

51

that sort v represents. When 7 is a constant, |7| is defined as 1. Intu-
ittvely, |7| is the number of constants under 7 in the sort hierarchy.

QD= I

heHs T€Sorts(h)

where Soris(h) returns the set of sorts in k.
- Example 7

Positive examples E¥ and background knowledge are as given in Ex-
ample 5. T is the background knowledge and the following clause:

speak{human, Y: language) : — official lang(X|Y).

In this case, the set of instances Hs is {speak(human, Japanese),
speak(human, English)}. Caution is needed in that human is the sort
representing two constants: Jack and Jun.

|Q(T)| = |human| x |Japanese| + |human| x |English)|
=2x142x1=4.

Sort information drastically reduces the time to calculate informa-
tivity because it cuts the effort of generating huge numbers of combi-
nations of constants for computing the empirical content. In this case,
PWI(E*,T) is calculated as follows:

241

4+2=0.5.

PWI(E*T) = —% x log,

5.2.3 Use of Sorts in the Stopping Condition

This section describes how the stoppiﬁg condition works. When given
only positive examples, usual informativity cannot be applied. When T

is the current hypothesis and background knowledge, we use the Model
Covering Ratio (MCR):

| &5)
QT

The stopping condition is “Mi CR(T) 2 a” for a predefined constant
a {0 £ & £ 1). Note that |Eq| here denotes the original positive

MCR(T) =

52

examples covered by T. This is because |Q(T")| may include a lot of
examples removed from E* in earlier steps . Sort information plays
a key role in computing the stopping condition because it permits the
efficient calculation of |Q(T")| as described in the previous section.

5.3 Experiments and Results

In order to confirm that RHBT can efficiently handle a sort hierarchy,
two kinds of experiments were conducted with one part of 3000 is.a
relations. We selected more appropriate representation of is_a relations
for each learner: Progol incorporated is.a literals, which represent di-
rect links in a sort hierarchy, in background knowledge and FOIL used
sort literals.
‘ The first: experiment determined the effect of sort hierarchy size.

We tested FOIL, Progol ' and RHB™ on artificial data while changing
hierarchy size.

The second experiment measured the performance of those three

learners with real data extracted from newspaper articles. We used a
SparcStation 20 with 96 Mbyes of memory for the experiments.

5.3.1 Learning Time and Sort Hierarchy Size

In order to estimate the effect of sort hierarchy size on learning speed,
we randomly generated positive examples that satisfied the following
answer clause:

speak(A : person, B : language) :—

grewan(A,C couﬁtry),oﬁcial_lang(C,B).

Figure 5.1 shows that FOIL exponentially slows as the sort hierarchy
size increases. On the other hand, the learning speed of RHB* and
Progol were not affected so much by the number of is-a relations, MCRs
of the results from the artificial data should not be taken seriously.

! Progol4.2 with set (posonly) option.

53

@
o
-]

oll
rogol
HEB +

150 [- /

: g
i
™~

N

-
B
°

Learning Time (sec.)

\\

5= .
/B/ B- 1T =]
Jo]
° EE:—EE&-_ — o S L e e
o 200 400 600 aoo 1000 1200

Number of Types

Figure 5.1: Learning Time vs Sort Hierarchy Size

5.4 Related Work

Some previous learners, such as FOIL [46], Colem [35] and Progol [40),
use types or type declarations for curtailing the search space, Their
learning results, however, do not have type information linked to those
declarations. Simply including sorts and is_a relations in background
knowledge is not a solution to obtaining sorted clauses. The reason
is that the possibility of a long is_a or sort chain creates excessive
overhead; the learner must search for all is_a literals or sort literals.
For example, when the sort hierarchy is twelve levels deep, a chain of up
to twelve is_a literals should be checked. When is_a represents direct
links in a sort hierarchy, one possible chain might be:

ts.a(X,Y),is.a(Y, Z), .., is-a(W, V), is_agent(V), ..

When ¢s.a includes indirect links in a sort hierarchy, atoms to be
checked are: .

is.a{X,male),is.a(X, human), ..., ts_a(X, agent),
When sort literals represent sorts in a sort hierarchy, atoms to be
checked are:

54

male(X), human(X), ..., agent(X),

In those cases, top-down learners spend too much time trying to
construct those chains while bottom-up learners try to remove some of
18.a or sort atoms and to find good hypotheses.

Special treatment to sorts was presented in [64]. It requires both
positive and negative examples to efficiently decide one_isa atoms.

According to an input-output declaration, FOIDL [33] generates
implicit negatives by outpui gueries for input arguments of positive
examples in a normal ILP setting. RHB* utilizes sort information to
compute the number of covered examples including implicit negatives.

5.5 Summary

RHBT*, which learns sorted Prolog programs, was presented. lts perfor-
mance 1s not affected by the number of sorts or sort hierarchies size for
the sake of direct manipulation of sorts and utilization of sort informa-
tion in computing informativity heuristics and stopping conditions. It
also achieved appropriate generalization levels of hypotheses. At this
point, a full LIFE compiler is not available but the current interpretive
version of RHB* showed good performance. The execution speed will
markedly improved when a LIFE compiler becomes available.

55

