Chapter 4

RHB: ILP System that
Learns Logic Programs with
Sorts from Positive and
Negative Examples

4.1 Problems in Previous ILP

We will discuss the problems experienced when top-down and bottom-
up Jearners handle a large-scale sort hierarchy. Some previous learners
were able to use types or type declarations for curtailing the search
space. Their learning results, however, did not have sort information
linked to these declarations.

4.1.1 Problems in Top-Down Learners

Top-down Jearners, such as FOIL, generate a number of tuples during
clause construction when new variables are introduced, The more new
symbols appear in the is_a relations, the slower FOIL becomes. As
experimental results will show, FOIL is inherently slow when the back-
ground knowledge includes about 3000 is.e relations. Moreover, FOIL
fails to learn rules with is_a relations, because it can not estimate the
correct code length of clauses which is used as the stopping eriteria,

31

A long chain of is_a relations also causes a problem with respect to
the variable depth. If a sort hierarchy is 12 levels deep, the maximum
variable depth must be at least 12. This extension greatly increases the
search space for learning relations with sorts over those without sorts,

4.1.2 Problems in Bottom-Up Learners

. Bottom-up learners, such as Golem, share the same problem with the
variable depth as FOIL. When the variable depth is significant (e.g.,
12), Golem produces clauses that include a lot of literals by using Mug-
gleton’s relalive least generalization (lgg). Since the clauses include
irrelevant literals, Golem heuristically reduces the clauses. However,
this process often drops is_a relations and takes much time ' when
the background knowledge is large. Progol has the same problem as
Golein, although it can handle type declarations described in a clausal
form. As a result, Golem and Progol virtually fail to effectively produce
clauses that include the necessary is.a relations.

If is_e relations represent direct links in a sort hierarchy as well
as indirect general-specific relations of two sorts, they are no longer
determinate. Golem uses determinate literals to reduce the search
space and are literals whose terms are determinate terms. For exam-
ple, ts_a(X,male} is a deferminate lileral if the background knowledge
includes only {is.a(Peter,male), is_a(male, human)}; however, once
is-a(Jack,male) is added, is.a becomes a non-determinate literal be-
cause the varialbe X of a literal is_a(X, male) has possible bindings to
both Peter and Jack,

4.2 System Overview |

The Relational Learner with Hierarchical Background Knowledge (RHB)
[54] generates order-sorted Prolog programs that discriminate between
positive and negative examples on the basis of background knowledge
that includes a. large-scale sort hierarchy.

! Golem requires the input-output mode of is.a in order to reduce the clause
reduction time. However, the mode declaration of is.q is a big hint because the two
argumenis of {s.a can be both input and output,

32

RHB provides sorts with special operations. RHB is implemented
with a LIFE programming language ? , and it can efficiently learn re-
lations with the sort hierarchy through its sort handling mechanisms.

4.2.1 Framework

The framework of hierarchically sorted ILP based on 7-terms is defined
" as follows. In this chapter, we call literals and clauses based on 7-terms
just literals and clauses.

Let a signature be Yogr = (P, S, X,M,U, £}, where P is a finile set
of predicates, § is a finite set of sort symbols, and £ is a finite set of
feature symbols and V be a finite set of variables.

Example language Lg, background knowledge language Lg, and
hypothesis language Ly are defined as follows.

o Lg: the set of all ground atomic formulae whose predicate sym-
bols is an observation predicate symbol p.

o Lg: the set of all ground unit clauses without the predicate sym-
bol p.

o Ly: the set of all definite clauses whose heads are atomic formulae
with p and whose bodies consist of literals with predicates symbols
in background knowledge language Lg.

Let a finite set of positive examples be E¥ C Lg, a finite set of neg-
ative examples be B~ C Lg, and a finite set of background knowledge
be B C Lg, where the following conditions are satisfied:

Ve € ET Blosr €
Yee B~ B |7’OSF e
Hierarchically sorted ILP based on 7-terms is defined as ¢ that
satisfies the following conditions with respect to hypotheses H.

HC Ly st. H =g Le, Ly, B,ET,E7).

? wildlife. an implementation of LIFE, is available af
http://www.isg.sfu.ca/life. C

33

B U H 15 consistent,
Vec EY BUH f‘osp e.
Vece E- BUH Hosr e.

Because we apply RHB to experiments on the learning from real-
world data with some noise, the last two conditions should be relaxed
to “for most of e € E* and for most of e € E~". We employ the model
. complexity measure [13} as a heuristics to estimate the appropriateness

of H,

4.3 Model Complexity Measure

The proof complexity measure [37) is the total complexity of choice
points in an implementation of SLDNF resolution][32). Conklin and
Witten [13] illustrated that the model complexity measure can estimate
a more appropriate code length of the hypothesis clauses in two example
problems than the proof complexity measure. Since both complexity
measures require the computation of the code length of a set of clauses,
we will explain a complexity measure of clauses with sorts based on the
model complexity measure, Example 1, then, demonstrates the serious
problem of treating is.a relations as cndma,ly background knowledge
through the code length measure.

According to Conklin and Witten [13], complezity-based induction
with model complexity finds the best set logic program 7T for a set of
examples £ so that the description length L e (T|E) is minimized.

Definition 68 (code length of an atom) Given a signature L = (F,P,C),
the code length of an atom with the predicaie symbol p is

logo{i P) +n log, (| V |+] C).

Definition 69 (code length of a theroy) The code length L(T) is
the sum of the following bits:

* log, (v +1) bits where v is the number of variables in the program.

o 1 bit per program, 2 bits per rule in the program, and 2 bits per
literal in the body of each rule

34

o the bits for all atoms in the program.
Definition 70 {description length) Lue(T'|E) is defined as:
Lae(T|B) = L(T) + Lpc(E[T).

L pe(E|T) denotes the length of examples E with respect to a logic
program 1", which is measured by the model complexity.

Definition 71 (code length of examples) Luye(E|T) is defined as

Luse(BIT) % 10g, (1907,

where Q(T') is an empiracal content.

Note that, if |Q(T)| = |E| then Lue(E|T)=0.

4.4 Code Length of r-terms

In order to compute the code length of clauses in £, we extend the
definition of the code length of an atom as follows.

Definition 72 (code length of an atom) Given a signature YosFp =
(P,S,=,M,U,L), the code lenglh of an atom with the predicale symbol

p s
logg (| P {) +n logy (| V | x| S]).

Since a 7-term has sorts attached to variables, we should state the
sort associated with each variable. The following example demonstrates
the computation of the code length for the hypothesis clause of "mor-
tal”. '

Example 5

The code lengths of three simple definitions of morial are compared.
Suppose that T} are the results of learning from the following examples:

35

Table 4.1; Code Length of Example Clauses

(M) mortal(X : human) | logy(2)+1+ 2 + 0 0
+1x(1+log,(1%3000))=16.6
(T3) mortal(X) :-
X <Y, | logy(4)+14 2 +2x3 0
Y < 2, +3x(1 + 2xlog,(343000+7))=83.3
Z < human.
(T3) mortal(pl).
mortal(p2).
mortal(p3). 0+142x5+0 0
mortal(pd). + 5x(1 + log,(0 + 300047)) = 73.8
mortal(p5).

positive: { mortal(pl),mortal(p2),morial(p3),mortal(p}),

mortal(p5) },

negative: { mortal(tl), morial(tg) }.

background knowledge: { p/=<male, p2<male, p8<male, pj=<female,
pé=female, male<male-female, female<male-female,

male-female<human, 11Rthing, t2<thing, ...

human=anylhing, thing=anything,
(In iotal, 3000 < relations are written here.))

The background knowledge consists of 3000 is_a relations denoted

by < . .
Let us compare code lengths of traditional logic programs and a

traditional logic program based on 7-terms. Table 4.1 shows that the
code lengths of logic programs 7y, Ty and Ty, where T} is a logic program
based on 7-terms, T; is a traditional logic program, and T} is examples,

The code lengths L(T}) of Ty, T3, and Ty are 16.6 bits, 83.3 bits

and 73.8 bits, respectively. Lae(E|T}) is zero because the model of

36

T; exactly matches that of the original examples. Ty is rejected as
a hypothesis clause because the bit length of 7% exceeds that of the
examples (i.e., T3). This strongly suggests that hypothesis languages
should involve sorts and that is_a relations should be treated separately
from other background knowledge.

As explained in this section, the code length measure should be
extended to deal with a sort hierarchy, and ¢s.e rclations should be
treated as special hackground knowledge in computing the appropriate
clause complexity.

4.5 Algorithm of RHB

RHB learns hypotheses in a combined bottom-up and top-down man-
ner, following the result presented in [65]. Namely, the head is made in
a bottom-up manner and then the body is constructed in a top-down
manner.

The outer loop of RHB finds covers of the positive examples £% ina
greedy manner. It constructs hypothesis clauses one by one by calling
inner_loop(E*, B) (Algorithm 1), which returns a hypothesis clause.
Covered examples are removed from E¥ in each cycle.

In the following sections, we will now see how sorts are utilized in
each component of the RHB algorithm.,

4.5.1 Least General Generalization of r-terms

A least general generalization of two r-terms is defined as:
o lgg(X:s,X:8) = X:s.
o lgg(X:s,Y:il) = Z:s L,

From the definition of L, it is clear that the result of {¢gg is a least general
generalization of two terms with respect to ordering of clauses <. Other
definitions of lggs of literal and clauses are the same as Plotkin’s lggs.

37

Algorithm 1 inner loop(E*, B)

1 Given positive Bt and E~, background knowledge B.

2 Determine the sorts of variables in a head by computing sorted
lggs of k pairs of elements in Et for predefined constant k, and
select the most general head as Head,

3 If the stopping condition is salisfied, return Head.
4 Let Body be empty.
§ Create a set of all possible literals L.

6 Select the literal | with the highest information gain as evaluated
by the model complezity measure.

7 Add 1 to Body.
8 Dynamically restrict sorts in Head :— Body,

9 If the stopping condilion is satisfied, return the clause Head :—
Body.

10 Golo &,

4.5.2 Dynamic Sort Restriction

The special feature of RHB is its ezample-guided sort restriction of a
clause during clause construction, After adding a literal, for each root.
variable X; of 7-terms X;isy, in the current clause, RHB computes 'r,'\tl.
that is the lub of all sorts that aie matched to s x; when unifying each
covered positive examples with the current head and prove the body.
In the same way, it computes Tx, which is the lub of all sorts matched
to sx; when unifying each covered negative examples with the current
head and prove the body. Then, the following dynamic sort restriction
is applied for all 7 and obtain a new Body.

38

Definition 78 (Dynamic Sort Restriction)

1. If 'r}'i = Tx, then replace X;:sx, in Head :— Body by X7, where
7 18 the most gemeral sort such that 73, < 7 < 15,

2. If 7z, 2 7%, then replace X;isx, in Head :— Body by Xy

8. If the order of 73, and tx, is undefined then replace X:sx, in

Head :— Body by X;: 1')'1'-"..

According to this sort restriction, newly introduced variables in the
body can be bound to sorts at certain levels of the sort hierarchy. If
RHB had no such sort restriction, newly introduced variables would
always be bound to T, and RHB could produce overgeneral clauses.
Moreover, the result of the sort restriction operation by the unifica-
tion dynamically affects the sorts of all variables related to the unified
variable. LIFE’s sort unification mechanism directly performs this op-
eration.

4.6 Experiments and Results

Two kinds of experiments were conducted with 3000 is_a relations rep-
resenting direct links in a sort hierarchy to confirm that RHB can effi-
ciently handle a sort hierarchy while still achieving a high accuracy. The
experiment was performed on a SparcStation 20 with a mamn memory

of 96 Mbyes.

4.6.1 Learning Time and Sort Hierarchy Size

To estimate the effect of the sort hierarchy size on the learning speed,
the sample relation “speak” was learned several times by FOIL, Golem,
Progol and RHB, for different numbers of ¢s.a relations.

Figure 4.1 shows that FOIL becomes inherently slow when learning
the relation with about 3000 is.a relations. On the other hand, the
learning speed of RHB, Golem and Progol were not affected by the
number of is.¢ relations. ® However, Golem needed an input-output

3 The currenl version of RHB runs on a LIFE interpreter while the other learners
are written in C.

39

--A~- PROGOL

S T O %

AN

Bapsed fearing time {sec,)
3

________ EEEE Y

T e LR Lol it e
A -
k]

3} 560 1000 1500 2000 2500 3000
The number of |s_a relations in background knowladge

|

]

Figure 4.1: Learning Time vs Sort Hierarchy Size

mode declaration for is.a relations. Without these declarations, for
example, Golem took 209.8 sec with the 3000 is_a relations. Golem’s

clause reduction phase spent most of the time searching for effective
ts.a relations. '

4.6.2 Comparison of Accuracy

To examine the accuracy, five sets of 20, 50, 100 and 200 examples
are prepared. The examples were randomly generated where the posi-

tive examples satisfied, but the negative examples did not satisfy, the
following answer clause:

speak(A : person, B:language) :—
grew(A, C:country), official lang(B, ().

Learning experiments were conducted on the 20, 50, 100 and 200
training examples and on 200 test examples different from the trajn-
mg examples with 3000 total is.a relations. The learners were RHB,

40

—— FOIL
—&— RHE

—&— GOLEM
ehse PROGON.
100 e

e
5 g
w
a
3
= /
O B0 /
& et
2 o7
[=]
g -] 1
8 I
T ¥

4

l

5y E— R " . . .
Q BD 100 160 200 250

The numbear of examplaes

Figure 4.2: Accuracy vs Example Size

FOIL! , Golem and Progol. Figure 4.2 shows the accuracy of RHB,
FOIL, Golem and Progol. RHB and Progol exhibited a high accuracy.
FOIL and Golem produced overgeneral clauses while RHB and Pro-
gol produced clauses almost identical to the answer clause. Figure 4.3
shows the time taken in the learning in seconds. Compared to Golem,
RHB seemed to learn slowly, but without input-output mode decla-
rations, Golem spent 4281 sec. to learn from 100 examples. Progol
-was two times slower than RHB. These results indicate that introduc-
ing sorts into ILP systems enables not only efficient learning, but also
learning with a high accuracy.

4.7 Related Work

The lgg of i-terms has already been illustrated in [1] The general-
ization for Sorted First Order Predicate Celeulus (SFOPC) [15] is pre-
sented in [16]. The generalization algorithm for SFOPC can achieve

4 POIL failed to learn from 200 examples because of insufficient memory.

41

~— FOIL

—i3-- RHB
—o— GOLEM
=~k == PROGOL
1000
BOO
2 soo
3 /
n
=
=
8
5 p
2 .-
=% LT
L] .
] e
200 ! - -
»‘ .—"'-'
. B___,—l

L+ 50 100 150 200 250
The number of examples

Figure 4.3: Learning Time vs Example Size

the 7-term lgg by converting formulae and sort hierarchy to the A-
expression and S-expression of the SFOPC, respectively. A feature of
our operational definition of the zi-term lgg is that the algorithm is
given as a partial extension of the definition of Plotkin’s lgg.

4.8 Summary

This chapter presented the Relational Learner with Hierarchical Back-
ground Knowledge (RHB). It generates sorted Prolog programs that
discriminate between positive and negative examples on the basis of
background knowledge that includes a large-scale sort hierarchy as hi-
erarchical background knowledge. Previous learners, such as FOIL,
Golem and Progol, have serious problems in handling relations with a
large-scale sort hierarchy. RHB provides is-a relations with special op-
erations when computing lggs and the code length of clauses, RHB was
implemented in LIFE, which can efficiently learn relations with a sort
hierarchy through its sort handling mechanisms, Experimental results

42

showed that RHB can efficiently handle about 3000 is_a relations while
still achieving a high accuracy.

Sample problem “speak”

% positive examples

speak(jack, english).
speak(betty, japanese),
speak(taro, japanese).
speak(jire, japanese).
speak{goro, japanesa),
speak{cowl,moo},
speak{cow2,moo0),

% negative examples

speak{cowl, japanese).
speak(cowl,english).
speak{cow2, japanese),
speak(cow2,englishy}.
speak(taro,moo).
speak(jiro,moo).
speak({jack, japanese).
speak(betty, english},
speak(taro, english).
speak(jiro, english).
speak(goro, english).

% background knowledge

born(jack, america).
born(betty, america).
born(tarc, japan}.
born{jiro, japan).
born{goro, america},
born(moco, japan).
born{moun, america).

grew(jack, america),.

grew(betty, japan),
grew(taro, japan).

43

grew(jire, japan).
grev(goro, japan).
grew({cowl, japan).
grew{cow2, america).

official_lang(america, english}.

officinl_lang(japan, japanese),

jack < old_aged,
taro < brother.
Jjiro < husband,
goro < male.

betty < female.
america < country,
japan < country,
engliszh < language,
japanese < language.
moo < abstract,
cowl < animal.

cow2 < animal.

% other is_a relations.

44

