Part 1

Extension of Inductive Logic
Programming

21



Chapter 3

Inductive Learning of Logic
Programs

3.1 Inductive Concept Learning

As a field of machine learning, when positive examples and negative
examples are given, the goal of inductive concept learning is to con-
struct concept representation that covers all of the positive examples
and none of the negative examples. The term cover should be defined in
each problem setting. Suppose that positive examples (+} and negative
examples (-) are given on a two-dimensional field (Fig. 3.1).

. tH

- -+

Figure 3.1: Sample Dafta

Suppose also that the concept representation is a rectangle. Ex-
amples are said Lo be covered iff the examples are inside the rectangle.

23



When all of the positive examples are covered, the concept is called
complete; otherwise it is called incomplete. When none of the negative
examples are covered, the concept is called consistent; otherwise it is
called inconsistent. Consequently, there can be four types of coverage
based on completeness and consistency (Fig 3.2).

- tH -t

- "L+ -+
compilete & consistent complele & inconsistent

™ I I S

- - [+ - " 4+
incomplete & consisient incomplete & inconsistent

Figure 3.2: Four Types of Coverage

The goal of inductive concept learning is to find complete and con-
sistent concept representation from examples. In a practical sense, since
data usually have some noise, the goal is to find a concept representa-
tion that covers almost all of the positives but few of the negatives.

3.2 Inductive Logic Programming (ILP)

3.2.1 Framework

Inductive Logic Programming (ILP) [36] is a part of inductive concept
learning, and the concept representation is definite clauses, in other
word, logic programs [32]).

Formally, the framework of ILP is defined as follows. Let a signature
L = (F,P,C) where F is a finite set of function symbols, P is a finite

24



set of predicate symbols, C is a finite set of constant symbals, and
an observation predicate p € P. Example language Lz, background
knowledge language Lp, and hypothesis language Ly are defined as
follows.

o Lg: the set of all ground atomic formulae whose predicate sym-
bols is an observation predicate symbol p.

e Lg: the set of all ground unit clauses® .

e Ly the set of all definite clauses whose heads are atomic formulae
with p and whose bodies consist of literals with predicates symbols
in background knowledge language Lp.

Let a finite set of positive examples be E+ C L, a finite set of neg-
ative examples be E~ C Lg, and a finite set of background knowledge
be B C Lp, where the following conditions are satisfied:

Yec Et Bl e
Yec E- Bl e

ILP is defined as ¢ that satisfies the following conditions with re-
spect to hypotheses H.

HCLy st. H=w(Lg Lg,Ly,B,EY,E™).
B U H is consistent.
Vee E* BUH - e.
Ve e B~ BUH e.

As with inductive concept learning, when learning from real-world
data with some noise, the last two conditions are relaxed to “for most of
e € ET and for most of e € E~. Various kinds of heuristic evaluation
measures have been proposed to estimate the appropriateness of i (c.f.,

[28))-

25



fson(X,Y)]

[son(X,Y) :- parent(Y,X)] [SUH(X,Y)!-malﬁ(X)]

[s{(X.Y)r-maIE(X)‘parem(Y,X)] \\

A [son(X,mary):-male(X)]
bes / ¢

N\

[Sﬂﬂ(iachmﬂﬂ’)i'\fﬁﬂ]ﬂ/(iﬂcfﬂp _
pateni(mary,jack),parent(lom,jack)]

S~

Figure 3.3: Sample Hypothesis Space

3.2.2 Hypothesis Space

In ILP, the hypothesis space is formed by the general-specific relation
defined by ordering < of clauses,

Let Lz be the set of all definite clauses whose heads are atomic
formulae with p and whose bodies consist of literals with predicates
symbols in background knowledge language Ly. A hypothesis space is
the lattice on equivalence classes of the clauses in Lg, based on ordering
< of clauses defined in Section 2.2,

Example 4 Let a signature & = (F,P,C), where F = ), P={soni?,
male!?, parent®}, and C={mary,tom,jack}. LetV = {X, Y} and the
observation predicate symbol be sonf®. The hypothesis space formed by
ordering < of clauses in Ly is shown in Fig 8.5.

3.2.3 Search Bias

There are two methods to control hypothesis space in ILP: search hias
and language bias. The search bias controls the search space by restrict-

! Some ILP frameworks allow a set of horn clauses.

26



ing the manner of searching. The top-down approach constructs hy-
potheses from general to specific by searching in the hypothesis space.
A typical example of learners that employ the top-down approach is
FOIL [46). On the other hand, the bottom-up approach constructs hy-
pothesis from specific to general by searching in the hypothesis space.
That is, starting from positive examples, the hypothesis is gradually
generalized. Typical examples of the learners that employ bottom-up
approach are Golem [38] and Progol [40). CHILL [65] employs a com-
bination of the two approaches.

3.2.4 Language Bias

Example language Lz, background knowledge language Lp, and hy-
pothesis language Ly defermine the search space itsell; language bias
directly controls the size of part of the hypothesis space.

Lp provides a choice of whether the learning framework allows re-
cursive definition in hypothesis clauses. That is, if observation predicate
symbol p is included in Lg, H could be recursive definitions, Otherwise,
recursive definitions are not allowed in H. In this thesis, Lp does not
include p. Other restrictions to hypothesis language includes a limit on
the number of literals in the body and variable depth of variables [38]
in a hypothesis.

Let us consider restrictions on the hypothesis language introduced

in [38].

Definition 65 (Ordered Horn Clauses) Let ' = A:—Bs,...,B, be
a Horn clause. A Horn clause C is called an ordeved Horn clause iff
By, ..., B, are totally ordered by order > as By > By > ... > B,.

Definition 66 {Determinate Terms) (98], Let K be a logic pro-
gram, the ezamples E be a set of ground aloms, end M(K') be the least
Herbrand model of 1. Let Ai—By,...,Bm,Bug1,;Bn be an ordered
Horn clause and t be a term in Bny1. i is a delerminate derm w.r.d.
B4y iff for every subsiitution 6 such that A8 € E and {B,,...,B }0
C M(K), there is a unique atom Bp100 in M(K).

Intuitively, this states that a term ¢ is determinate if each of its
variables that do not appear in preceding literals in the clause has only

27



one possible bindings given the bindings of its variables that appear in
preceding literals [28].

Definition 87 (Variable Depth) (28] Let A:— B1,..., B, Brt1, - Ba
be an ordered Horn clause. Veriables that appear in the head of the
clause have depth zero. Let a variable V' appear first in literal Botq.
Let d be the mazimum depth of the other variables in B,y that appear

in the clavse A :— By,...,Bn. Then, the depth of variable V is d + 1.

The number of literals in the body of the hypothesis, determinate
terms and variable depth are widely used to make the hypothesis space
tractable.

3.2.5 Previous ILP Systems.

Previous ILP systems include FOIL [46], Golem [38], Progol [40], CHILL [65],
mPFOIL [28], LINUS [27]), MOBAL [34], FOCL [41], CHAMP [24].

FPOIL is a typical example of the top-down learners. FOIL learns
from positive and negative examples? of function-free extended logic
programs in the following {orm:

p(X], ...,Xn) - Ll, ...,Lm,

where p is the predicate of examples and L; are literals,

FOIL is such a covering algoritlun that creates clauses one-by-one
and removes covered positive examples. The learning process stops
when all the positives are covered or constraints to hypothesis encoding
length-is violated. In the clause construction step, FOIL first creates
the head p(X,,...,X,) and then specializes it by adding literals to the
body. Literal selection is based on an entropy-based search heuristics
called weighted information gain [28].

FOIL is followed by other ILP systems including mFOIL, FOCL,
and CHAMP. mFOIL applied m-estimate {11] as a search heuristic to
FOIL. FOCL combined FOIL and ezplanation based learning (EBL).
CHAMP incorporated the predicate invention algorithm DBC into a
FOIL-like learning algorithm.

* If negative examples are not given, FOIL generates negatives based on the
closed-world asswimption.

28



Golem [38] and Progol [40] are typical examples of bottom-up learn-
ers. Golem uses Plotkin’s rlgg [43, 44]. Plotkin gave a deterministic
procedure thal computes a least general generalization of terms and
clauses with respect to ordering <. Plotkin’s rlgg is an extension of the
least general generalization (lgg).

As with FOIL, Golem is also a covering algorithms. A hypothesis
clause is constructed as follows. Golem selects several pairs of posi-
tive examples e; and ep and computes rlggs lgg(e; :— By, ..., By, €9 1—
By, ..., By), where B,..., B, are the literals in background knowledge
B. Then, it selects the rlgg that covers the greatest number of posi-
tive examples, Finally, it removes redundant literals from the body of
selected clauses. '

Progol uses an A*-like search and inverse-entailment. It develops
a most specific clause, called 1;, and conducts an A*-like search of
clauses that subsume 1;. CHILL employs a combination of top-down
and bottom-up approaches by constructing the head of clauses in a
bottom-up manner using the lgg and the body in a top-down manner
sirnilar to FOIL, MOBAL is a knowledge acquisition tool that learns a
fixxed form of clauses predefined by a rule schema.

LINUS takes a very different approach. LINUS transforms exam-
ples and background knowledge to attribute-value tuples. Then, it
generates rules or a decision tree by using an attribute-value learner.
Finally, LINUS transforms the results back to clauses. Table 3.1 shows
a summary of comparison in previous ILP systems.

Above all, FOIL, Golem, Progol are the most well-known, high per-
formance, and publicly available ILP systems that researchers in the
ILP community use to compare performance of their ILP systems.

29



Table 3.1: Previous ILP Systems

system creator learning approach

FOIL Quinlan top-down

Golem Muggleton et al. | bottom-up based on the rigg

Progol Muggleton bottom-up based on inverse-entailment
CHILL | Zelle et al. combination of hottem-up and top-down
mFOIL | Lavraé et al. top-down with m-estimate

LINUS | Lavrag et al. conversion to attribute-value learning
MOBAL | Morik et al. rule schema based

FOCL Pazzani et al, combination of top-down and EBL
CHAMP top-down with predicate invention

Kijsirikul et al.

30




