Chapter 2

Mathematical Preliminary

As the foundations of hierarchically sorted inductive logic program-
ming, this chapter provides a concise sumumary of logic programs, gen-
eralization of logic programs, and ¥-terms.

2.1 Logic Programs

2.1.1 Syntax
Definition 1 (Signature) A signature T = (F,P,C) consists of:
o A set of function symbols F.
s A sel of predicate symbols P.
o A sel of constant symbols C.
Definition 2 (Terms)
o A constant symbol c € C 1s.a term.
o A variable symbol X €'V is a term.

o If f® (1 < n) is a function symbol of arity n and t1,...,in are
terms, £ (t1,..,1) is @ term.

Definition 3 (Atomic Formulae) Ifp‘™ is a predicate symbol of ar-
ity n and ty, ...ty are terms, p™(t1,...,t,) is an atomic formula,
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An atomic formula is also called an atom.

Definition 4 (Literals) Literals consist of positive literals and nege-
tive literals,

o An alomic formula is a posilive literal.
o If P is an alomic formula, =P is a negative literal.

- Definition 5 (Ground Terms and Ground Literals) A ground ierm
is a term thal contains no variables. A ground literal is ¢ literal that
contains no variables.

Definition 6 (Clauses) If Ly, ..., L, are literals, a set of literals { Ly, ..., L, }
is a clause.

Given positive literals Hy,...,Hp, (m > 0) and negative literals
=By,...,~ By (n = 0), another notation of the clause { H1, ..., Hn, " B1, ..., 7By}
is

I]T],...,Hm - Bl: viny Bn'
The left hand side of :— is called the head and the right hand side of
:— is called the body of a clause.

Definition 7 (Horn Clauses) If Hy,..., Hy, are positive literals with
0<m <1 and ~By, ..., "By, are negative literals with n > 0, the set of
literals {Hy,...,Hm, By, ...,mB,} is a Horn clause.

Definition 8 (Definite Clauses) If H is a positive literal and - By, ...,~B,,
(n 2 0) are negative lilerals, the clause {H,—B,...,—By} is a definite
clause.

A definite clause is also called a program clause.

Definition 9 (Unit Clauses) If H is a positive literal, the clause
{H} is a unil clause.

Definition 10 (Logic Programs) A logic program is a finite set of
definite clauses.

Definition 11 (Goal Clauses) If =By, ...,mB, (n > 1) are negative
literals, the clause {~By,...,~B,} is e goal clause.
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2.1.2 Semantics

Definition 12 (Structure) Given o signeture & = {F,P,C), a struc-
ture M = (D, I) satisfies the following conditions:

o A non-empty sel D, called a domain.
o A funciion I s,

~Ifeel, I(c)e D.
- If f® e F, I(f"): D* = D.
- Ifpi~ e P, I{(p™) C D,

Definition 13 (Variable Assignment) A wvariable assignment is a
function o : V = D,

Definition 14 (Interpretation) An interpretationT is defined as T =
(M,c), where M is a structure and ¢ is a variable assignment.

Definition 15 (Term Assignment) Given an interpretationT = (M, o)
and a term 1, the term assignment [], of t is given by:

e Jtec, [t],=I().
o IfteV, [t],=0o(t)
o Ift has the form F™ (s, te), [1], = ISPt T, [ 1a 1),

Definition 16 (Satisfaction Relation) Given a signature £ = {F,P,C)
and an interpretation T, the satisfection relation |=r is defined as fol-
lows,

o =z p™ 0, ta) i (L2 ], [t 1,0 € 1(p1).

o =1 ~F iff |zz F does not hold.

) |=I {L1,.y Ly} iff Lyy ooy Ly ave literals and for some i, =1 L.
o =7 {Chy...,Co} i C1, ..., C are clauses and for all i, =1 Gy
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Definition 17 (Model) An inierpreiation T is a model of a literal, a
clause, or a set of clavses E iff =1 .

Definition 18 (Logical Entailment) Given T is a set of clauses and
E is a literal, a clause, or o set of clauses, T |= E iff for every inter-
pretation T, if l=r T then =1 E.

We read T |= E as E is a logical entailment of 7.

- Definition 19 (Herbrand Universe) Given a signature T = (F,P,C),
The Herbrand universe HU for ¥ is the set of all ground terms that
can be formed using the constants tn C and the function symbols in F.
If C is empty, we add ¢ 1o C, where ¢ is a new constant, and form the
Herbrand universe from C.

Definition 20 (Herbrand Base) A Herbrand base HB is
HB = {p™(t1,.rta) | p™ € P and t,,...,1, € HU},

Definition 21 (Herbrand Interpretation) Given M = (D,I) and
an inlerpretation I = (M, o), an interpretetion I is a Herbrand inter-
pretation, off the following holds: '

o D is a Herbrand universe HU,
e For all constant c€ C, I(c) =c.

o For all funetion f™ ¢ F, I(f™): HU™ — HU s.i. Ity ey ty) =
f(tl}'-')tNJ‘

Definition 22 (Herbrand Model) Lel T be o set of clauses. A Her-
brand interpretation T is a Herbrand model iff I is a mode of T

Given a Herbrand model Z, let 7’ = {P € HB | |=r P }. Since
any Herbrand model 7 can be regarded as the subset of the Herbrand
base 7', hereafter we treat Herbrand models T and I’ identically.

Definition 28 (Least Herbrand Model) Let I;,...,.Z, be all of the
Herbrand models of a set of clauses T. The least Herbrand model
M(T)=mn T,

Definition 24 (Empirical Content) Given ¢ set of clauses T and a
predicale name p, an empirical content Q(T) is a set of atoms with the
predicate name of p in the least Herbrand model M(T),
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2.1.3 Deduction

Definition 25 (Substitution) A substitution is the form {Vi[T1, ..., Va/To},
where Vi, ..., V,, are pairwise distinct variables, T,..., Ty are lerms, and
Vi and T are distinct.

Definition 26 (Instantiation) Let a substitution 8 = {Vi/T1,.., Vo /To}.
Let E be a term, a literal, or a clause. EO is the resull of replacing all
occurrences Vi with the term T for all i simultaneously.

Definition 27 (Deduction Relation) Given sels of definiie clauses
T and D, the deduction relation T & D holds #ff D is proven from T
by a resolution procedure based on Robinson’s resolution principle {63].

The details of resolution procedures can be found in [32].
Given a set of clauses T and a set of unit clauses {{G}},..., {G=a}},
we write T'+ {{G1},...,{Gr}} as Tt Gh,..., G, for a lighter notation.

Definition 28 (Soundness) Let T and D be sets of clauses. A reso-
lution procedure for the deduciion relation b is sound iff this condition
hosts: if T'+ D then T |= D.

Definition 2¢ (Completeness) Let T and D be set of clauses, A
resolution procedure for the deduciion relation b is complete iff this
condition hosts: if T \= D then T - D.

The SLD resolution [32], one of the resolution procedures for Horn
clauses based on Robinson’s resolution principle, has the following prop-
erty.

Theorem 1 (Correctness of SLD Resolution) [32] The SLD res-
olution for Horn clauses is complete and sound.

2.2 Generalization of Logic Programs

2.2.1 Least General Generalization

This section introduces Plotkin's least general generalization (lgg) ac-
cording to [43]. '



Definition 30 (Ordering) Let W, and W, be two terms or two atoms,
W, < Wy iff W18 = W, for some substitution 8. Let C; and C, be
clauses. Oy < Cy iff 18 C Cy for some substitution 6.

We read I < Ly as meaning Ly is more general than L, or L, is more
specific than L,. If we are ordering only Horn clauses, we introduce L
as the most specific clause with respect to <.

Example 2 (Ordering of Clauses) Suppose that we have the follow-
ing two clauses C and Cop:

G = son(X,Y) :— parent(Y, X).
Cy = son(jack,mary) :— male(jack), parent(mary, jack).

The set representations of Cy and Cy are:

C1 = {son{X,Y),~pareni(¥,X)}.
Co = {son(jack, mary), »male(jack), ~parent(mary, jack)}

When 8 = {X/[jack,Y[mary},
o

= {son(jack,mary), ~parent(mary, jack)}
c O

Thus, C; < (.

Definition 81 (Equivalence Classes of Clauses) Let C and D be
clauses. We say C ~ D iff C < D and D < C. Let [C] denote the

equivalence class under ~ of C.

Definition 32 (Ordering of Equivalence Classes) Let C and D be
clauses, We say that [C]< [D] if C < D,

The set of equivalence classes forms a lattice. For further discus-
sions, see Plotkin [43).

Definition 83 (Least General Generalization(LGG)) Let M and
N be terms, literals or clauses. L is a least general generalization of M

and N iff
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(1) L <M and L <N,
(2) f L' <M and L' <N, then ' < L.

A least general generalization of M and N is the least upper bound
of M and N in a lattice on the equivalence classes of clauses.

Definition 34 (Computation of an Lgg of Terms) Given a signa-
ture ¥ = (F,P,C) and a set of variables V, let s and t be terms. An
operational definition of a function lgg(s,i) that computes a least gen-
eral generalization of s and 1 is defined as follows.

1. lgg(s,s) = s if s is a conslant in C.

2. lgg(X,X) = X if X is a variable in V.

9, 1gg(F (51 ey 50)s [P 11y ) = P (Ugg (51,1, o 950, 20))
4. Otherwise, lgg(s,1) =V, where V is o new variable in V.

Definition 35 (Lgg of Atoms) Given o signature & = (F,P,C}, let
P and Q be atoms. An operational definition of a function lgg(P, Q)
that compuies a least general generalization of P and Q is as follows.

1. IfP = p(n)(‘sla ey Sn) and Q = p(n)(tla"':i‘n);
lgg(P, Q) = p™ (Igg(s1,ta), - 19g (8n, 1)),
2. .Othefrwise, lgg(P,Q) is undefined.

Definition 36 (Lgg of Literals) Let P and @ be aloms and L, end
Lo be literals, An lgg of literals is defined as follows [28].

1. If Ly and Ly are atoms, then lgg(Ly, L2) is the lgg of atoms.

2, If L, and Ly are the form ~P and =@, respeciively, thenlgg(Ly,Ls) =
lgg(—P,~Q) = ~lgg(P, Q).

3. Otherwise, lgg(L1, L) is undefined.

Definition 87 (Lgg of Clauses) Let clauses C = {Ly, ..., L.} and
D = {K1,.. Kn}. Then lgg(C,D) = { lgg{Li, K;) | Li € C,K; € D
and lgg(Li, K;) is not undefined.}. .
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2.2.2 Relative Least General Generalization

This section introduces Plotkin’s relative least general generalization
(rlgg) according to [44].

Definition 88 Let Th be a set of unit clauses.
Th={~L|{L}eTh},

" where ~ is defined as ~ L= =L if L is a positive literal and ~ ~L= L
if L is a negalive literal,

An ordering of clauses relative to a set of unit clauses is defined
as follows on the basis of the definition of ordering < in the previous
section.

Definition 39 (Relative Ordering of Literals) Let L and M be lit-
erals, Let Th be a set of unit clauses. L < M (Th) is defined as
{LYy < {M}UTh.

Weread L < M (T'h) as meaning L is more general than M, relative
to Th,

Definition 40 (Relative Ordering of Clauses) LetC and D be clauses
and Th be a set of unit clauses. C < D (Th) is defined as C < DUTh.

Example 3 Lei C={son{X,Y),~parent(¥, X}}, D={son(jack, mary)},
and Th = {{male(jack)}, {parent(mary,jack)}}. C is more general
than D, relative lo Th, becouse for 8 = {X{jack,Y{mary},

Cé¢ = {son(jack,mary), ~parent(mary,jack)}.
DuTh = {son(jack,mary),—male(jack), ~parent(mary, jack)}.

Therefore, G8 € D UTH, Thus, C < D (Th).

Note that C < D does not hold without Th because D has no literal
with the predicate symbol parent.

Definition 41 (Equivalence Class) Let L and M be two literals or
two clonses and Th be o set of clouses. We write L ~ M (T'h) when
L<M(Th) end M < L (Th).
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Definition 42 (Relative Least General Generalization (RLGG))
Let C, D and E be clauses and Th be a set of unit clauses. F is a least
general generalization of C' and D relative to Th iff

(1) E<C (Th) end E < D (Th).
(2) If E' < C (Th) and E' < D (Th), then E' < L (Th),

2.3 -terms

This section introduces ¥-terms on the basis of Order-Sorted Feature

(OSF) formalism [4, 2].

2.3.1 Syntax
Definition 43 (OSF Signature) An OSF Signature is given by
Yosr = (P,8, =%, MU, L), s.t.¢
o P is a set of predicate symbols;
o S is a sel of sort symbols with the sorts T and L;

e = is a parlial order on § such that T is the greatest end L is the
least element;

o (S,=,M,1) is a lattice, where sNL is defined as the infimum (or
glb) of s and t and sUt is the supremum (or lub) of sorls s and
1; .

o L is a set of feature symbols.

Definition 44 For s;,8 €8, s1 < 52 iff 51 X 82 and 53 # 5.

Definition 45 (Constants) A sel of constants C is a subset of § such
that C={ce 8 | forallt €S ifi <cthent= L},

Let ¥V be a countable infinite set of variables.

13



Definition 46 (OSF-terms) Given Sogr = (P,8,=,M,L, L), if s €
Syl €L, X €V, n>0, and 11,0ty are OSF-terms, an OSF-
term has the form

X 3(11 = tl: "')ln = tﬂ,).

Let o = X 1 8{ly = 11, by = 1,). X is called the root variable of
t and s is called the root sort of 1.

For a lighter notation, hereafter we will omit variables that are not
shared and the sort of a variable when it is T.

Definition 47 (y-terms) An OSF-term
d) =X ] ‘5(’!1 = ¢l:"')ln = 111’1'?1)
ts in normal form (and then called a P-lerm) if:

* For any variables Vi in 1, Vi is the root variable of at most one
non-top -term

¢ s is ¢ nonbotiom sort in S;
o liy.y by ave pairwise distinct feature symbols in L;
® P1,..., Y, are -terms.

OSF-terms can be normalized to -terms by OSF clause normaliza-
tion rules, which are given in Section 2.3.3, unless the results include
sort L [4].

Definition 48 (Untagged Y-terms) Letep = X i s(l; = 1y oy by =
) 8(ls = P, .y by = 4,) is called an untagged p-term.

Definition 49 (Feature Projection) Given av-termt= X : flh =

biyonly = 1), the I projection of ¢ (written as t.I;) is defined as
i.[,' = t;. v :

The definitions of atoms, literals, clauses, Horn clauses, and definite
clauses are the same as those in Section 2.1. If features are non-zero
integers 1,...,n, then a y-term X : s(1=14,2=ty,.,n = {,) can be
abbreviated to X : 8(t1yt2, vy tp).
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Definition 50 (Ground Literal based on -terms) A liferal L is
a ground literal if all soris in L are constants.

Definition 51 (7-terms) A 7-ferm is e restricted form of a -term
st X1 s if

o X is a variable in V;

* s 15 a sort symbol in S.

2.3.2 Semantics

Definition 52 (OSF Algebras) An OSF Algebra is a structure A =

(DA, (p*)pep, (87 )sesy (P iec) s1.:
e D# is non-empty set, called a domain of A;

o for each predicaie symbol p € P, p* C (DA);

o for each sort symbol s € 8 s“‘ C DA, in particular, TA = DA
and 14 =0,

o (sTs =sANs™ fortwo sorts s,s' € §;
o (s = s U™ for two sorts 5,8’ € S;
o for each feature symboll € L, " : DA — DA,

Definition 53 (A-Valuation) Given Losr = {P,S,=3,MU, L), an
A-valuation is a function oV — D4,

Definition 54 (Interpretation) An interpreiaiion T4 is defined as
I4 = (A, o), where A is an OSF Algebre and a is ¢ A-valuation.

Definition 55 (Term Denotation) Lett be a th-ferm of the form
=X 3(!1 = fl,...,ln = in)-
Given an interpretation T4, the term denotation of t is given by

[[t]]""“ {e(0)nstn () @) AET).

1<I<ﬂ

[:0%= U [0

oY DA
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Definition 56 (Satisfaction Relation) Given a signature Tosr =
(P,8,%,M,U,L) and an interpretation T4, the satisfaction relation
=74 is defined as follows.

¢ =74 p( oig) iff for all elements di,.,dy € DA such that
{d1, .. ) € [ {t1yentn) 1, (i, ... ,dn) € p. The notation
[[(tl, £a) 1 s an abbremm!wn of
U [0l sxox [ 7.
aiW— DA

o |=74 ~F iff Eza F does not hold.
o =24 {Ly, .o, Lo} iff Ly, ooy Ln are literals and for some 1, [=7a L.
¢ |=14 {Ciy,....,Cn} iff Ch,...,Cr are clauses and for all i, =4 Ci.

Definition 57 (Herbrand Interpretation Equivalent) Lei a Her-
brand wniverse HU = {X;:¢; | ¢; € C, X; in V). Let a Herbrand base

HB = {p(t1,..,1,) | p € P and t1,..,t, € HU}.

Given an inferpretation T =(4, o), where a is an A-valuation o
V — DA, un interpretation T# is a Herbrand interpretation equivalent
iff the following holds:

o D4 is o Herbrand universe HU,
o For all sorts ¢; €C, c¢f* = {X;: ¢}
¢ For all features 1 € L, 1 : HU — HU.

2.3.3 Deduction over ¢-terms

Definition 58 (Sorted Substitution) Let a sorted substitution have
the form { Xy /Y110, Xnisy /Yo itn}, where Xy, ., X, and ¥3,..., Y,
are variobles in V, sy,..,8, and iy,...,1, are sorl symbols in S, and
L <i; X s; for everyi. If E is a term, a literal, or a clause, F8 is
a result of replacing all occurrences of X;:8; by Yid; simullaneously for
every 1.
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An alternative syntactic presentation of the information conveyed
by OSF-terms can be translated into a constraint clause [4].

Definition 59 (OSF-Constraints) An order-sorted feature constraint
(OSF-constraint) is an atomic expression of either of the forms:

e X5
o X =V
e XI=Y

where X and Y are variables in V, s is a sort in S, and | is o feature

mn L,

Definition 60 (OSF-clauses) An order-soried feature clause (OSF-
clause) ¢1&...&d, is a finite, possibly empily conjunction of OSF-constirainis
¢],...,¢n(7120). . '

We can associate an OSF-term with a corresponding OSF-clause.
Let % be a p-term of the form

p=X: 3(11 = ¢1)-'-}In = ")bn)'

An OSF-clause ¢(3) corresponding to an OSF-term ¢ has the following
form:
d)=X:s & Xh=X & .. & X, =X
& 4(t) & ... & ¢(n),

where X, X],..., X| are the root variables of ¥, 11, ..., s, respectively.
We say ¢(3) is dissolved from the OSF-term 3.

On the other hand, an OSF-clause ¢ can be converted to an QSF-
term 1H(¢) as follows: first complete it by adding as many V:T con-
straints as needed so that there is exactly one sort constraint for every
occurrence of a variable V in a X.I=V constraint, where X is a variable
and { is a feature symbol; then covert it by the following ¢ transform:

(g} =X sl = P(d(1)), o dn = D(¢(Yn)))

where X is aroot variable of ¢, ¢ contains X : s, and X.b; = ¥},...,X.0, =
¥, are all other constraints in ¢ with an occurrence of the variable X
on the left-hand side. ¢(¥") denotes the maximal subclause of ¢ rooted
by Y. : :
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Definition 61 (Solved OSF-Constraint) An OSF-clause ¢ is called
solved if for every variable X, ¢ contains:

¢ at most one sorl constraint of the from X : s, with L < s;
o al most one feature constraint of the form X.1 =Y for each I;
® no equalily consirainl of the form X =Y.

Given ¢ in normal form, we will refer to its part in solved form as

Solved(¢).

Sort Intersection:
(1) Sl N s8 X 15!
Pl X 55t

Inconsistent Sort:
L X
(2) &4
Variable Elimination:
) Eaze T X #X and X € Var(g)

Feature Decomposition:
(4) phe X I=X0 X=X
PEXI=X X=X

Figure 2.1: OSF Clause Normalization Rules

Theorem 2 [f] The rules of Fig. 8.1 are solution-preserving, finite-
terminaling, and confluent (modulo variable renaming). Furthermore,
they always resull in ¢ normal form that is either the inconsistent OSF

clause or an OSF clause in solved Jorm logether with o conjunction of
equality constraints.
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Note that Var(g) is the set of variables occurring in an OSF-clause ¢
and @$[X /Y] stands for the OSF-clause obtained from ¢ after replacing
all occurrences of ¥ by X.

Theorem 3 (y-term Unification) Let ¢ and by be two th-terms.
Let ¢ be the normal form of the OSF-clause ¢(1h1)&d(1h2)&X; = X,
where Xy and X are root variables of v, and v, respectively, Then, ¢
- is the inconsistent clause iff their glb with respect to < is L. If ¢ is not
the inconsistent clause, then their glb 1, N 1}52 is given by the normal

OSF-terms ¥(Solved(4)).

Definition 62 (Typing Constraints) A typing constraint is X = ,
where X is a variable and ¥ is an OSF-term. Such an expression has
this interpretation: =ga X = ¢ iff o X) €] ¢ V.

A resolvent is the result of applying a resolution rule to a goal clause
or a resolvent. For simplicity of natation, we consider all predicate
symbols » € P to be monadic.

Definition 63 (LIFE Resolution Rule) A resolvent over OSF-terms
R = (i~ R,r()) reduces in one resolution step, choosing the lileral

r(1) and the (renamed) program clause r(1hy) :— T1(P1), s Ty (W)
non-determintstically, to the resolvent

R'= (:" A T'l("pl) Tm(‘rbm) ('ﬂb H‘%))
where X is the rool variable of 1.

Definition 64 (Deduction Relation over OSF-terms) Given sets
of definite clauses T' and D based on o-terms, the deduction relation
T tosr D holds iff D is proven from T' by the LIFE Resolution [2] in
which the LIFE resolution rule is ileratively applied.

Theorem 4 (Correctness of LIFE Resolution) [2] The LIFE res-
olution for definite clouses and goal clause based on OSF-terms is com-
plete and sound.
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