Chapter 2

Mathematical Preliminary

As the foundations of hierarchically sorted inductive logic programming, this chapter provides a concise summary of logic programs, generalization of logic programs, and ψ -terms.

2.1 Logic Programs

2.1.1 Syntax

Definition 1 (Signature) A signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$ consists of:

- A set of function symbols \mathcal{F} .
- A set of predicate symbols \mathcal{P} .
- A set of constant symbols C.

Definition 2 (Terms)

- A constant symbol $c \in C$ is a term.
- A variable symbol $X \in \mathcal{V}$ is a term.
- If $f^{(n)}$ $(1 \le n)$ is a function symbol of arity n and $t_1, ..., t_n$ are terms, $f^{(n)}(t_1, ..., t_n)$ is a term.

Definition 3 (Atomic Formulae) If $p^{(n)}$ is a predicate symbol of arity n and $t_1,...,t_n$ are terms, $p^{(n)}(t_1,...,t_n)$ is an atomic formula.

An atomic formula is also called an atom.

Definition 4 (Literals) Literals consist of positive literals and negative literals.

- An atomic formula is a positive literal.
- If P is an atomic formula, $\neg P$ is a negative literal.

Definition 5 (Ground Terms and Ground Literals) A ground term is a term that contains no variables. A ground literal is a literal that contains no variables.

Definition 6 (Clauses) If $L_1, ..., L_n$ are literals, a set of literals $\{L_1, ..., L_n\}$ is a clause.

Given positive literals $H_1, ..., H_m$ $(m \geq 0)$ and negative literals $\neg B_1, ..., \neg B_n$ $(n \geq 0)$, another notation of the clause $\{H_1, ..., H_m, \neg B_1, ..., \neg B_n\}$ is

$$H_1, ..., H_m := B_1, ..., B_n.$$

The left hand side of :— is called the head and the right hand side of :— is called the body of a clause.

Definition 7 (Horn Clauses) If $H_1, ..., H_m$ are positive literals with $0 \le m \le 1$ and $\neg B_1, ..., \neg B_n$ are negative literals with $n \ge 0$, the set of literals $\{H_1, ..., H_m, \neg B_1, ..., \neg B_n\}$ is a Horn clause.

Definition 8 (Definite Clauses) If H is a positive literal and $\neg B_1, ..., \neg B_n$ $(n \ge 0)$ are negative literals, the clause $\{H, \neg B_1, ..., \neg B_n\}$ is a definite clause.

A definite clause is also called a program clause.

Definition 9 (Unit Clauses) If H is a positive literal, the clause $\{H\}$ is a unit clause.

Definition 10 (Logic Programs) A logic program is a finite set of definite clauses.

Definition 11 (Goal Clauses) If $\neg B_1, ..., \neg B_n$ $(n \ge 1)$ are negative literals, the clause $\{\neg B_1, ..., \neg B_n\}$ is a goal clause.

2.1.2 Semantics

Definition 12 (Structure) Given a signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$, a structure $M = \langle D, I \rangle$ satisfies the following conditions:

- A non-empty set D, called a domain.
- A function I s.t.
 - If $c \in \mathcal{C}$, $I(c) \in D$.
 - If $f^{(n)} \in \mathcal{F}$, $I(f^{(n)}) : D^n \to D$.
 - If $p^{\langle n \rangle} \in \mathcal{P}$, $I(p^{\langle n \rangle}) \subseteq D^n$.

Definition 13 (Variable Assignment) A variable assignment is a function $\sigma: \mathcal{V} \to \mathcal{D}$.

Definition 14 (Interpretation) An interpretation \mathcal{I} is defined as $\mathcal{I} = \langle M, \sigma \rangle$, where M is a structure and σ is a variable assignment.

Definition 15 (Term Assignment) Given an interpretation $\mathcal{I} = \langle M, \sigma \rangle$ and a term t, the term assignment $[]]_{\sigma}$ of t is given by:

- If $t \in \mathcal{C}$, $[t]_{\sigma} = I(t)$.
- If $t \in \mathcal{V}$, $[t]_{\sigma} = \sigma(t)$.
- If t has the form $f^{(n)}(t_1,...,t_n)$, $[t]_{\sigma} = I(f^{(n)})([t_1]_{\sigma},...,[t_n]_{\sigma})$.

Definition 16 (Satisfaction Relation) Given a signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$ and an interpretation \mathcal{I} , the satisfaction relation $\models_{\mathcal{I}}$ is defined as follows.

- $\models_{\mathcal{I}} p^{\langle n \rangle}(t_1, ..., t_n)$ iff $\langle \llbracket t_1 \rrbracket_{\sigma}, ..., \llbracket t_n \rrbracket_{\sigma} \rangle \in I(p^{\langle n \rangle})$.
- $\models_{\mathcal{I}} \neg F \text{ iff } \models_{\mathcal{I}} F \text{ does not hold.}$
- $\models_{\mathcal{I}} \{L_1,...,L_n\}$ iff $L_1,...,L_n$ are literals and for some $i, \models_{\mathcal{I}} L_i$.
- $\models_{\mathcal{I}} \{C_1,...,C_n\}$ iff $C_1,...,C_n$ are clauses and for all i, $\models_{\mathcal{I}} C_i$.

Definition 17 (Model) An interpretation \mathcal{I} is a model of a literal, a clause, or a set of clauses E iff $\models_{\mathcal{I}} E$.

Definition 18 (Logical Entailment) Given T is a set of clauses and E is a literal, a clause, or a set of clauses, $T \models E$ iff for every interpretation \mathcal{I} , if $\models_{\mathcal{I}} T$ then $\models_{\mathcal{I}} E$.

We read $T \models E$ as E is a logical entailment of T.

Definition 19 (Herbrand Universe) Given a signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$, The Herbrand universe HU for Σ is the set of all ground terms that can be formed using the constants in \mathcal{C} and the function symbols in \mathcal{F} . If \mathcal{C} is empty, we add \mathcal{C} to \mathcal{C} , where \mathcal{C} is a new constant, and form the Herbrand universe from \mathcal{C} .

Definition 20 (Herbrand Base) A Herbrand base HB is

$$HB = \{p^{\langle n \rangle}(t_1, ..., t_n) \mid p^{\langle n \rangle} \in \mathcal{P} \text{ and } t_1, ..., t_n \in HU\}.$$

Definition 21 (Herbrand Interpretation) Given $M = \langle D, I \rangle$ and an interpretation $\mathcal{I} = \langle M, \sigma \rangle$, an interpretation \mathcal{I} is a Herbrand interpretation, iff the following holds:

- D is a Herbrand universe HU.
- For all constant $c \in C$, I(c) = c.
- For all function $f^{\langle n \rangle} \in \mathcal{F}$, $I(f^{\langle n \rangle}) : HU^n \to HU$ s.t. $I(f^{\langle n \rangle})(t_1, ..., t_n) = f(t_1, ..., t_n)$.

Definition 22 (Herbrand Model) Let T be a set of clauses. A Herbrand interpretation \mathcal{I} is a Herbrand model iff \mathcal{I} is a mode of T.

Given a Herbrand model \mathcal{I} , let $\mathcal{I}' = \{P \in HB \mid \models_{\mathcal{I}} P \}$. Since any Herbrand model \mathcal{I} can be regarded as the subset of the Herbrand base \mathcal{I}' , hereafter we treat Herbrand models \mathcal{I} and \mathcal{I}' identically.

Definition 23 (Least Herbrand Model) Let $\mathcal{I}_1,...,\mathcal{I}_n$ be all of the Herbrand models of a set of clauses T. The least Herbrand model $M(T) = \bigcap_i \mathcal{I}_i$.

Definition 24 (Empirical Content) Given a set of clauses T and a predicate name p, an empirical content Q(T) is a set of atoms with the predicate name of p in the least Herbrand model M(T).

2.1.3 Deduction

Definition 25 (Substitution) A substitution is the form $\{V_1/T_1, ..., V_n/T_n\}$, where $V_1, ..., V_n$ are pairwise distinct variables, $T_1, ..., T_n$ are terms, and V_i and T_i are distinct.

Definition 26 (Instantiation) Let a substitution $\theta = \{V_1/T_1, ..., V_n/T_n\}$. Let E be a term, a literal, or a clause. E θ is the result of replacing all occurrences V_i with the term T_i for all i simultaneously.

Definition 27 (Deduction Relation) Given sets of definite clauses T and D, the deduction relation $T \vdash D$ holds iff D is proven from T by a resolution procedure based on Robinson's resolution principle [63].

The details of resolution procedures can be found in [32]. Given a set of clauses T and a set of unit clauses $\{\{G_1\}, ..., \{G_n\}\}$, we write $T \vdash \{\{G_1\}, ..., \{G_n\}\}$ as $T \vdash G_1, ..., G_n$ for a lighter notation.

Definition 28 (Soundness) Let T and D be sets of clauses. A resolution procedure for the deduction relation \vdash is sound iff this condition hosts: if $T \vdash D$ then $T \models D$.

Definition 29 (Completeness) Let T and D be set of clauses. A resolution procedure for the deduction relation \vdash is complete iff this condition hosts: if $T \models D$ then $T \vdash D$.

The SLD resolution [32], one of the resolution procedures for Horn clauses based on Robinson's resolution principle, has the following property.

Theorem 1 (Correctness of SLD Resolution) [32] The SLD resolution for Horn clauses is complete and sound.

2.2 Generalization of Logic Programs

2.2.1 Least General Generalization

This section introduces Plotkin's least general generalization (lgg) according to [43].

Definition 30 (Ordering) Let W_1 and W_2 be two terms or two atoms. $W_1 \leq W_2$ iff $W_1\theta = W_2$ for some substitution θ . Let C_1 and C_2 be clauses. $C_1 \leq C_2$ iff $C_1\theta \subseteq C_2$ for some substitution θ .

We read $L_1 \leq L_2$ as meaning L_1 is more general than L_2 or L_2 is more specific than L_1 . If we are ordering only Horn clauses, we introduce \bot as the most specific clause with respect to \le .

Example 2 (Ordering of Clauses) Suppose that we have the following two clauses C_1 and C_2 :

$$C_1 = son(X, Y) :- parent(Y, X).$$

 $C_2 = son(jack, mary) :- male(jack), parent(mary, jack).$

The set representations of C_1 and C_2 are:

$$C_1 = \{son(X,Y), \neg parent(Y,X)\}.$$

 $C_2 = \{son(jack, mary), \neg male(jack), \neg parent(mary, jack)\}$

When $\theta = \{X/jack, Y/mary\}$,

$$C_1\theta = \{son(jack, mary), \neg parent(mary, jack)\}$$

 $\subseteq C_2$

Thus, $C_1 \leq C_2$.

Definition 31 (Equivalence Classes of Clauses) Let C and D be clauses. We say $C \sim D$ iff $C \leq D$ and $D \leq C$. Let [C] denote the equivalence class under \sim of C.

Definition 32 (Ordering of Equivalence Classes) Let C and D be clauses. We say that $[C] \leq [D]$ iff $C \leq D$.

The set of equivalence classes forms a lattice. For further discussions, see Plotkin [43].

Definition 33 (Least General Generalization(LGG)) Let M and N be terms, literals or clauses. L is a least general generalization of M and N iff

- (1) $L \leq M$ and $L \leq N$.
- (2) If $L' \leq M$ and $L' \leq N$, then $L' \leq L$.

A least general generalization of M and N is the least upper bound of M and N in a lattice on the equivalence classes of clauses.

Definition 34 (Computation of an Lgg of Terms) Given a signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$ and a set of variables \mathcal{V} , let s and t be terms. An operational definition of a function lgg(s,t) that computes a least general generalization of s and t is defined as follows.

- 1. lgg(s,s) = s if s is a constant in C.
- 2. lqq(X,X) = X if X is a variable in V.
- 3. $lgg(f^{(n)}(s_1,...,s_n), f^{(n)}(t_1,...,t_n)) = f^{(n)}(lgg(s_1,t_1),...,lgg(s_n,t_n)).$
- 4. Otherwise, lgg(s,t) = V, where V is a new variable in V.

Definition 35 (Lgg of Atoms) Given a signature $\Sigma = \langle \mathcal{F}, \mathcal{P}, \mathcal{C} \rangle$, let P and Q be atoms. An operational definition of a function lgg(P,Q) that computes a least general generalization of P and Q is as follows.

1. If
$$P = p^{(n)}(s_1, ..., s_n)$$
 and $Q = p^{(n)}(t_1, ..., t_n)$,
$$lgg(P, Q) = p^{(n)}(lgg(s_1, t_1), ..., lgg(s_n, t_n)).$$

2. Otherwise, lgg(P,Q) is undefined.

Definition 36 (Lgg of Literals) Let P and Q be atoms and L_1 and L_2 be literals. An lgg of literals is defined as follows [28].

- 1. If L_1 and L_2 are atoms, then $lgg(L_1, L_2)$ is the lgg of atoms.
- 2. If L_1 and L_2 are the form $\neg P$ and $\neg Q$, respectively, then $lgg(L_1, L_2) = lgg(\neg P, \neg Q) = \neg lgg(P, Q)$.
- 3. Otherwise, $lgg(L_1, L_2)$ is undefined.

Definition 37 (Lgg of Clauses) Let clauses $C = \{L_1, ..., L_n\}$ and $D = \{K_1, ..., K_m\}$. Then $lgg(C, D) = \{lgg(L_i, K_j) \mid L_i \in C, K_j \in D \text{ and } lgg(L_i, K_j) \text{ is not undefined.}\}$.

2.2.2 Relative Least General Generalization

This section introduces Plotkin's relative least general generalization (rlgg) according to [44].

Definition 38 Let Th be a set of unit clauses.

$$\overline{Th} = \{ \sim L \mid \{L\} \in Th \},\$$

where \sim is defined as $\sim L = \neg L$ if L is a positive literal and $\sim \neg L = L$ if $\neg L$ is a negative literal.

An ordering of clauses relative to a set of unit clauses is defined as follows on the basis of the definition of ordering \leq in the previous section.

Definition 39 (Relative Ordering of Literals) Let L and M be literals. Let Th be a set of unit clauses. $L \leq M$ (Th) is defined as $\{L\} \leq \{M\} \cup \overline{Th}$.

We read $L \leq M$ (Th) as meaning L is more general than M, relative to Th.

Definition 40 (Relative Ordering of Clauses) Let C and D be clauses and Th be a set of unit clauses. $C \leq D$ (Th) is defined as $C \leq D \cup \overline{Th}$.

Example 3 Let $C = \{son(X, Y), \neg parent(Y, X)\}, D = \{son(jack, mary)\},$ and $Th = \{\{male(jack)\}, \{parent(mary, jack)\}\}.$ C is more general than D, relative to Th, because for $\theta = \{X/jack, Y/mary\},$

 $C\theta = \{son(jack, mary), \neg parent(mary, jack)\}.$ $D \cup \overline{Th} = \{son(jack, mary), \neg male(jack), \neg parent(mary, jack)\}.$

Therefore, $C\theta \subseteq D \cup \overline{Th}$. Thus, $C \leq D$ (Th).

Note that $C \leq D$ does not hold without Th because D has no literal with the predicate symbol parent.

Definition 41 (Equivalence Class) Let L and M be two literals or two clauses and Th be a set of clauses. We write $L \sim M$ (Th) when $L \leq M$ (Th) and $M \leq L$ (Th).

Definition 42 (Relative Least General Generalization (RLGG)) Let C, D and E be clauses and Th be a set of unit clauses. E is a least general generalization of C and D relative to Th iff

- (1) $E \leq C$ (Th) and $E \leq D$ (Th).
- (2) If $E' \leq C$ (Th) and $E' \leq D$ (Th), then $E' \leq L$ (Th).

2.3 ψ -terms

This section introduces ψ -terms on the basis of Order-Sorted Feature (OSF) formalism [4, 2].

2.3.1 Syntax

Definition 43 (OSF Signature) An OSF Signature is given by

$$\Sigma_{OSF} = \langle \mathcal{P}, \mathcal{S}, \preceq, \sqcap, \sqcup, \mathcal{L} \rangle, \ s.t. :$$

- P is a set of predicate symbols;
- S is a set of sort symbols with the sorts \top and \bot ;
- ≼ is a partial order on S such that T is the greatest and ⊥ is the least element;
- (S, ≤, □, □) is a lattice, where s □ t is defined as the infimum (or glb) of s and t and s □ t is the supremum (or lub) of sorts s and t;
- L is a set of feature symbols.

Definition 44 For $s_1, s_2 \in \mathcal{S}$, $s_1 \prec s_2$ iff $s_1 \leq s_2$ and $s_1 \neq s_2$.

Definition 45 (Constants) A set of constants C is a subset of S such that $C = \{c \in S \mid \text{ for all } t \in S \text{ if } t \prec c \text{ then } t = \bot\}.$

Let \mathcal{V} be a countable infinite set of variables.

Definition 46 (OSF-terms) Given $\Sigma_{OSF} = \langle \mathcal{P}, \mathcal{S}, \preceq, \sqcap, \sqcup, \mathcal{L} \rangle$, if $s \in \mathcal{S}$, $l_1, ..., l_n \in \mathcal{L}$, $X \in \mathcal{V}$, $n \geq 0$, and $t_1, ..., t_n$ are OSF-terms, an OSF-term has the form

$$X: s(l_1 \Rightarrow t_1, ..., l_n \Rightarrow t_n).$$

Let $\psi = X : s(l_1 \Rightarrow t_1, ..., l_n \Rightarrow t_n)$. X is called the root variable of ψ and s is called the root sort of ψ .

For a lighter notation, hereafter we will omit variables that are not shared and the sort of a variable when it is T.

Definition 47 (ψ-terms) An OSF-term

$$\psi = X : s(l_1 \Rightarrow \psi_1, ..., l_n \Rightarrow \psi_n)$$

is in normal form (and then called a \psi-term) if:

- For any variables V_i in ψ , V_i is the root variable of at most one non-top ψ -term
- s is a nonbottom sort in S:
- $l_1, ..., l_n$ are pairwise distinct feature symbols in \mathcal{L} ;
- $\psi_1, ..., \psi_n$ are ψ -terms.

OSF-terms can be normalized to ψ -terms by OSF clause normalization rules, which are given in Section 2.3.3, unless the results include sort \perp [4].

Definition 48 (Untagged ψ -terms) Let $\psi = X : s(l_1 \Rightarrow \psi_1, ..., l_n \Rightarrow \psi_n)$. $s(l_1 \Rightarrow \psi_1, ..., l_n \Rightarrow \psi_n)$ is called an untagged ψ -term.

Definition 49 (Feature Projection) Given a ψ -term $t = X : f(l_1 \Rightarrow t_1, ..., l_n \Rightarrow t_n)$, the l_i projection of t (written as $t.l_i$) is defined as $t.l_i = t_i$.

The definitions of atoms, literals, clauses, Horn clauses, and definite clauses are the same as those in Section 2.1. If features are non-zero integers 1,...,n, then a ψ -term $X: s(1 \Rightarrow t_1, 2 \Rightarrow t_2, ..., n \Rightarrow t_n)$ can be abbreviated to $X: s(t_1, t_2, ..., t_n)$.

Definition 50 (Ground Literal based on ψ -terms) A literal L is a ground literal if all sorts in L are constants.

Definition 51 (τ -terms) A τ -term is a restricted form of a ψ -term s.t. X:s if:

- X is a variable in V:
- s is a sort symbol in S.

2.3.2 Semantics

Definition 52 (OSF Algebras) An OSF Algebra is a structure $\mathcal{A} = \langle D^{\mathcal{A}}, (p^{\mathcal{A}})_{p \in \mathcal{P}}, (s^{\mathcal{A}})_{s \in \mathcal{S}}, (l^{\mathcal{A}})_{l \in \mathcal{L}} \rangle$ s.t.:

- DA is non-empty set, called a domain of A;
- for each predicate symbol $p \in \mathcal{P}$, $p^{\mathcal{A}} \subseteq (D^{\mathcal{A}})^n$;
- for each sort symbol $s \in \mathcal{S}$, $s^{\mathcal{A}} \subseteq D^{\mathcal{A}}$; in particular, $\top^{\mathcal{A}} = D^{\mathcal{A}}$ and $\perp^{\mathcal{A}} = \emptyset$;
- $(s \sqcap s')^{\mathcal{A}} = s^{\mathcal{A}} \cap s'^{\mathcal{A}}$ for two sorts $s, s' \in \mathcal{S}$;
- $(s \sqcup s')^{\mathcal{A}} = s^{\mathcal{A}} \cup s'^{\mathcal{A}}$ for two sorts $s, s' \in \mathcal{S}$;
- for each feature symbol $l \in \mathcal{L}$, $l^{\mathcal{A}} : D^{\mathcal{A}} \to D^{\mathcal{A}}$.

Definition 53 (A-Valuation) Given $\Sigma_{OSF} = \langle \mathcal{P}, \mathcal{S}, \preceq, \sqcap, \sqcup, \mathcal{L} \rangle$, an \mathcal{A} -valuation is a function $\alpha : \mathcal{V} \to D^{\mathcal{A}}$.

Definition 54 (Interpretation) An interpretation $\mathcal{I}^{\mathcal{A}}$ is defined as $\mathcal{I}^{\mathcal{A}} = \langle \mathcal{A}, \alpha \rangle$, where \mathcal{A} is an OSF Algebra and α is a \mathcal{A} -valuation.

Definition 55 (Term Denotation) Let t be a ψ -term of the form

$$t = X : s(l_1 \Rightarrow t_1, ..., l_n \Rightarrow t_n).$$

Given an interpretation $\mathcal{I}^{\mathcal{A}}$, the term denotation of t is given by

$$[\![t]\!]^{\mathcal{A},\alpha} = \{\alpha(X)\} \cap s^{\mathcal{A}} \cap \bigcap_{1 \le i \le n} (l_i^{\mathcal{A}})^{-1} ([\![t_i]\!]^{\mathcal{A},\alpha}).$$

$$[\![t]\!]^{\mathcal{A}} = \bigcup_{\alpha: \mathcal{V} \to D^{\mathcal{A}}} [\![t]\!]^{\mathcal{A},\alpha}.$$

Definition 56 (Satisfaction Relation) Given a signature $\Sigma_{OSF} = \langle \mathcal{P}, \mathcal{S}, \preceq, \sqcap, \sqcup, \mathcal{L} \rangle$ and an interpretation $\mathcal{I}^{\mathcal{A}}$, the satisfaction relation $\models_{\mathcal{I}^{\mathcal{A}}}$ is defined as follows.

• $\models_{\mathcal{I}^{\mathcal{A}}} p(t_1,...,t_n)$ iff for all elements $d_1,...,d_n \in D^{\mathcal{A}}$ such that $\langle d_1,...,d_n \rangle \in [\![\langle t_1,...,t_n \rangle]\!]^{\mathcal{A}}$, $\langle d_1,...,d_n \rangle \in p^{\mathcal{A}}$. The notation $[\![\langle t_1,...,t_n \rangle]\!]^{\mathcal{A}}$ is an abbreviation of

$$\bigcup_{\alpha: \mathcal{V} \to D^{\mathcal{A}}} \llbracket t_1 \rrbracket^{\mathcal{A}, \alpha} \times ... \times \llbracket t_n \rrbracket^{\mathcal{A}, \alpha}.$$

- $\models_{\mathcal{I}^A} \neg F \text{ iff } \models_{\mathcal{I}^A} F \text{ does not hold.}$
- $\models_{\mathcal{I}^{\mathcal{A}}} \{L_1, ..., L_n\}$ iff $L_1, ..., L_n$ are literals and for some $i_i \models_{\mathcal{I}^{\mathcal{A}}} L_i$.
- $\models_{\mathcal{I}^{\mathcal{A}}} \{C_1, ..., C_n\}$ iff $C_1, ..., C_n$ are clauses and for all $i, \models_{\mathcal{I}^{\mathcal{A}}} C_i$.

Definition 57 (Herbrand Interpretation Equivalent) Let a Herbrand universe $HU = \{X_i : c_i \mid c_i \in C, X_i \text{ in } V\}$. Let a Herbrand base

$$HB = \{p(t_1, ..., t_n) \mid p \in \mathcal{P} \text{ and } t_1, ..., t_n \in HU\}.$$

Given an interpretation $\mathcal{I}^{\mathcal{A}} = \langle \mathcal{A}, \alpha \rangle$, where α is an \mathcal{A} -valuation α : $\mathcal{V} \to D^{\mathcal{A}}$, an interpretation $\mathcal{I}^{\mathcal{A}}$ is a Herbrand interpretation equivalent iff the following holds:

- D^A is a Herbrand universe HU.
- For all sorts $c_i \in C$, $c_i^A = \{X_i : c_i\}$.
- For all features $l \in \mathcal{L}$, $l^{A}: HU \rightarrow HU$.

2.3.3 Deduction over ψ -terms

Definition 58 (Sorted Substitution) Let a sorted substitution have the form $\{X_1:s_1/Y_1:t_1,...,X_n:s_n/Y_n:t_n\}$, where $X_1,...,X_n$ and $Y_1,...,Y_n$ are variables in V, $s_1,...,s_n$ and $t_1,...,t_n$ are sort symbols in S, and $L \prec t_i \preceq s_i$ for every i. If E is a term, a literal, or a clause, $E\theta$ is a result of replacing all occurrences of $X_i:s_i$ by $Y_i:t_i$ simultaneously for every i.

An alternative syntactic presentation of the information conveyed by OSF-terms can be translated into a constraint clause [4].

Definition 59 (OSF-Constraints) An order-sorted feature constraint (OSF-constraint) is an atomic expression of either of the forms:

- $\bullet X:s$
- $X \doteq Y$
- $X.l \doteq Y$

where X and Y are variables in V, s is a sort in S, and l is a feature in L.

Definition 60 (OSF-clauses) An order-sorted feature clause (OSF-clause) $\phi_1 \& ... \& \phi_n$ is a finite, possibly empty conjunction of OSF-constraints $\phi_1, ..., \phi_n (n \ge 0)$.

We can associate an OSF-term with a corresponding OSF-clause. Let ψ be a ψ -term of the form

$$\psi = X : s(l_1 \Rightarrow \psi_1, ..., l_n \Rightarrow \psi_n).$$

An OSF-clause $\phi(\psi)$ corresponding to an OSF-term ψ has the following form:

$$\phi(\psi) = X : s & X.l_1 \doteq X'_1 & \dots & X.l_n \doteq X'_n \\ & & \phi(\psi_1) & & \dots & \phi(\psi_n), \end{cases}$$

where $X, X'_1, ..., X'_n$ are the root variables of $\psi, \psi_1, ..., \psi_n$, respectively. We say $\phi(\psi)$ is dissolved from the OSF-term ψ .

On the other hand, an OSF-clause ϕ can be converted to an OSF-term $\psi(\phi)$ as follows: first complete it by adding as many V:T constraints as needed so that there is exactly one sort constraint for every occurrence of a variable V in a X.l=V constraint, where X is a variable and l is a feature symbol; then covert it by the following ψ transform:

$$\psi(\phi) = X : s(l_1 \Rightarrow \psi(\phi(Y_1)), ..., l_n \Rightarrow \psi(\phi(Y_n)))$$

where X is a root variable of ϕ , ϕ contains X: s, and $X.l_1 \doteq Y_1,...,X.l_n \doteq Y_n$ are all other constraints in ϕ with an occurrence of the variable X on the left-hand side. $\phi(Y)$ denotes the maximal subclause of ϕ rooted by Y.

Definition 61 (Solved OSF-Constraint) An OSF-clause ϕ is called solved if for every variable X, ϕ contains:

- at most one sort constraint of the from X: s, with $\bot \prec s$;
- at most one feature constraint of the form $X.l \doteq Y$ for each l;
- no equality constraint of the form $X \doteq Y$.

Given ϕ in normal form, we will refer to its part in solved form as $Solved(\phi)$.

Sort Intersection:

(1) $\frac{\phi \& X : s \& X : s'}{\phi \& X : s \sqcap s'}$

Inconsistent Sort:

(2) $\frac{\phi \& X: \bot}{X: \bot}$

Variable Elimination:

(3) $\frac{\phi \& X \doteq X'}{\phi(X/X')\& X \doteq X'}$ if $X \neq X'$ and $X \in Var(\phi)$

Feature Decomposition:

 $(4) \quad \frac{\phi \& X.l \doteq X' \& X.l \doteq X''}{\phi \& X.l \doteq X' \& X' \doteq X''}$

Figure 2.1: OSF Clause Normalization Rules

Theorem 2 [4] The rules of Fig. 2.1 are solution-preserving, finite-terminating, and confluent (modulo variable renaming). Furthermore, they always result in a normal form that is either the inconsistent OSF clause or an OSF clause in solved form together with a conjunction of equality constraints.

Note that $Var(\phi)$ is the set of variables occurring in an OSF-clause ϕ and $\phi[X/Y]$ stands for the OSF-clause obtained from ϕ after replacing all occurrences of Y by X.

Theorem 3 (ψ -term Unification) Let ψ_1 and ψ_2 be two ψ -terms. Let ϕ be the normal form of the OSF-clause $\phi(\psi_1)\&\phi(\psi_2)\&X_1\doteq X_2$, where X_1 and X_2 are root variables of ψ_1 and ψ_2 , respectively. Then, ϕ is the inconsistent clause iff their glb with respect to \leq is \perp . If ϕ is not the inconsistent clause, then their glb $\psi_1 \sqcap \psi_2$ is given by the normal OSF-terms $\psi(Solved(\phi))$.

Definition 62 (Typing Constraints) A typing constraint is $X \doteq \psi$, where X is a variable and ψ is an OSF-term. Such an expression has this interpretation: $\models_{\mathcal{I}^A} X \doteq \psi$ iff $\alpha(X) \in \llbracket \phi \rrbracket^{A,\alpha}$.

A resolvent is the result of applying a resolution rule to a goal clause or a resolvent. For simplicity of natation, we consider all predicate symbols $r \in \mathcal{P}$ to be monadic.

Definition 63 (LIFE Resolution Rule) A resolvent over OSF-terms $\mathbf{R} \equiv (:-R, r(\psi))$ reduces in one resolution step, choosing the literal $r(\psi)$ and the (renamed) program clause $r(\psi_0) := r_1(\psi_1), ..., r_m(\psi_m)$ non-deterministically, to the resolvent

$$\mathbf{R}' \equiv (:-R, r_1(\psi_1), ..., r_m(\psi_m), X \doteq (\psi \sqcap \psi_0)),$$

where X is the root variable of ψ .

Definition 64 (Deduction Relation over OSF-terms) Given sets of definite clauses T and D based on ψ -terms, the deduction relation $T \vdash_{OSF} D$ holds iff D is proven from T by the LIFE Resolution [2] in which the LIFE resolution rule is iteratively applied.

Theorem 4 (Correctness of LIFE Resolution) [2] The LIFE resolution for definite clauses and goal clause based on OSF-terms is complete and sound.