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Chapter 3
Punctured Convolutional Codes

Alter describing the fundamental of PCC, this chapter presents its generator polyno-
mial matrices and upper bound on the constraint length in Theorem 1 and Theorem
2, respectively. By virtue of them, the puncturing realizations of the known good
nonsysternatic and systematic high rate CCs are put forward.

3.1 Imtroduction

CCs are ones of the most powerful FEC codes, which are widely used in communica-
tion systems. In a CC encoder, the parity bits of every block are not only related to
the information bits of the corresponding block but also related to other blocks which
are located in ahead. Then, CCs usually have better correction ability than the BCs,
Unfortunately, the use of CCs is primarily restricted to the low rate CCs with the
rate K = }‘ or the high rate but short constraint length CCs. However, in many ap-
plications, such as wireless channel, their transmission rates must be high while each
bandwidth is strictly limited. For compromising power and bandwicth efficiency, the
high rate CCs with long constraint length are needed, bui their decoding is complex.

The PCCs were suggested in 1979 [36] to make high rate codes from low rate ones
simply. Punctured high rate CCs (R = ﬁ) are produced by being periodically
nl bits punctured m bits from R = } low rate CC {(called as the original code).
Some PCCs were shown to be almost as good as the known good regular codes. For
example, puncturing an original code reduces its free distance, however, this distance
of R = - PCCs is as large as that achieved with the ones of any R = ﬁ code.

nl—m
Thus, in this case no loss in minimum distance is caused by puncturing. Besides,

PCCs have two other advantages:

o Simplifying the Viterbi decoder for high rate CCs. In the meantime, PCCs can
be advantageously decoded by the sequential decoding, too [37](38].

e Being able to implement a multirate (or rate-compatible) CC encoder/decoder([39],

which is very useful in multimedia communication systems.
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Figure 3.1: The basic steps being punctured from £ = ;1; CC

Therefore, PCCs are used widely in multirate CDMA systems [40] and wireless
cellular systems [41].

The basic steps being punctured from R = + CC is shown in Figure 3.1. Firstly,
by a good R = % CC encoder, an input data sequence is changed into an original
coded data sequence. Then, the original coded data sequence is periodically n! bits
punctured m bits to produce punctured coded data sequence, according to the map
of deleting bits which indicates deleting bit positions.

From the viewpoint of minimum bit error probability, Yasuda et al.[42] have shown
a set of good PCCs with different rates from a R = { original encoder. Lee[43] found
new R = H_Ll PCCs that minimize the required signal-to-noise ratio (SNR) for a
target BER of 107%. Kimf{44] derived a group of good high rate systematic PCCs by
analyzing their weight spectra and by BER simulation. New rational rate PCCs were
-proposed for soft decision Viterbi decoding [45][46]. However, though some algebraic

properties have been found [37][47][48], no systematic construction method for good
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PCCs is known yet. This limit needs the exhaustive search to find the required good
PCCs. To give indications for guiding the search for good PCCs, this chapter shows
the generator polynomial matrix and the constraint length K of PCCs. By virtue of
these properties, the puncturing realizations of the known good nonsystematic high
rate % CCs from nonsystematic % CCs and the known good systematic high rate l-|+1
CCs from 1 systematic CCs are given.

3.2 Generator Polynomial Matrix of the PCCs

The generator polynomial matrix is very important to construct CCs. In order to

obtain it, this section puts forward Theorem 1 about the generator polynomial matrix
J(D)of R= # CCs, firstly.

Theorem 1 Suppose the generator polynomial matriz of R = ﬁ CC be:

where DD is a delay operator in the shift regisier. Then, the generctor polynomial
matriz J(D) of R =4 CC can be expressed by:

ha(D) Sa(D) ... JaD) o Jigenen (D) 1 a-gere(P)

J(D)= Jj,ll(D) Jj,z.(D) Jj,n.(D) Jj,(iml);'l.+l(D) Jj,(i—l);;+2(D)

JaD) J2fdD) o JaD) o Jgenaan(D) Jig-nese(D)

Jin(D) . Jgenmer(D) Jig-nese(D) o (D)
Jiin(DY o Jjgmnmr (D) Jru-pne(D) o Jpe(D) (3.2)

JianlD) oo Jgeynni(D) Dgoime(@) o Sw(D)
where, 1,7 =1,2,...,{;

Jiietinsa(D) = DT G (D), (3.3)

forh=({+i—j)mod i, s=1,2,...,n Gsa(D) is the construction part of Gs(D),
ezpressed by

o9

Gop(D)+ Gen(DV+ -+ + Coya (D) = 3 (gsp + gsp D+ + gsy—1 DYDY, (3.4)
t=0

Proof: Refer to Appendix A. O
The generator polynomial matrix @(D) of R = L PCCs is derived by being

nt—m

punctured m columns from J(D) in terms of the perforation matrix.
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Figure 3.2: The constructing method of R =3 PCC from R=1 CC

For example, let an original code be the CC with R = % and K = 7, which has a
generator polynomial matrix: G(D) =[1+D+D*+D*+ D5 1 + D?* + D3 + DA 4
D*+ D% 1+ D+ D + D).

From Theorem 1, the generator polynomial matrix J(D) of CC with R = $ is:

1+D 1+D+D* 1+D 1 D
(D+I)2 D4+ D? D? 1+D 1+D+D2
D D? D D+D* D+ D?

1 1+ D i+ D D
14+ D 1 D 1 )

D?* 14D 1+D+D? 14D

Let the corresponding perforation matrix be:

1 00
Pp=|0o0 1],
110

then, the generator polynomial matrix Q(D) of PCCs with B =3 is:

14D 14D 1 14D
D+ D? D2 1+ D D (3.5)
D D D 1+D4D? | ’

The constructing method of the above PCC is shown as Figure 3.2.

In the most practical cases, the original CCs with R = % are selected. Suppose
its generator polynomial matrix is:

G(D) = [Gi(D), G2(D)]. (3.6)
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Table 3.1: The relationship between R = % good original CCs and R = 2

PCCs

R =% good original CCs R=3 PCCs TP

K | &i(D) G11(D) Q12(D) Q1a(D)
Ga(D) Qo1(D) Qa2(D) Q23(D)

g 14 D? 1+ 0 14D 1 10
1+D4+D? 0 D 1+D 131

4 1+ D4 D8 1 1+P 1+ D 11
14D+ D*+ D3 D+ D? D+ p? 1 10

5 14+ D%+ D% 14-D? 1+ 5 +D? D 11
1+D+4+ D% 4 D D? D 1+ D% 10

6 | 1+D*4+ D"+ DF 1+ D D? 1+ 5 I+ D+ D% 10
1+ D+ D%y DY 4 DS D3 D+ D4 DB 1+ D 11

7 1+ DE A D¥F DY+ DY 1+D+ D7 1+D+0% D+ D7 [¥]
1+D+D*+ D34 DF D24 DR D4 D? 1+ D+ D3 10

§ | 14+D7+ D5+ D%+ D7 1+D+ D3 1+ D+ D7 1+ D+ L7 10
1+TD+D’+D3+D“ D3+ Dt D+ D4 DA 1+ D+ D? 11
+D

9 1+ DI Dy D Do I+ D+ D+ D" [ 1+D+ 07 D 11
1+D+D2 07 4 DS pe DD DD | 1+ D+DP 4D | 10
+07 4 D8

3

By virtue of Theorem 1, the generator polynomial matrix J(D} of R = % CCs
can be expressed by:

Ju(D}  Jia(D} Jioi-1{D)  ha(D) S (D) Sa(D)

J(D)= Jj,lkD) Jj.ﬂkD) Jj.2i—.1(D) Jj,ﬂi.(D) Jj.m—.l(D) J_.,-,m‘(D) :

Jw_‘l (D) Jl.-QI’{D)
(3.7)

JalD) Sa(D) Jiai1(D) (D)

where, 1,7 = 1,...,{;

—_—

DGy (D
DT Gyu(D

Jigi-1(D) =
Jj,Zi(D) =

)s
),

i

for h=(I+i—7) mod L

Similarly, the corresponding generator polynomial matrix Q(D) of R = ﬁ
PCCs is derived by being punctured rn columns from J{D) in terms of the perforation
matrix. For example, Tables 3.1 and 3.2 give the generator polynomial matrices
Q(D) of rate  and % PCCs, being punctured by perforation matrices P from good
CCs with R = 1 and constraint length X, from 3 to 9. Since the puncturing of
a catastrophic original code will always result in catastrophic PCCs[46], the non-
catastrophic original B = § codes should be selected to produce R = % and R = 3
PCCs. Besides, the choosing of perforation matrix refers to the principle as follows

[49):

| et
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Table 3.2: The relationship between R = % good original CCs and R = ;13-

PCCs

R =3 good original CCs =4 PCCs P
Q11(D) 12(D) Qa{D) D)
Ky | GuD) Qz1{D) Qlaz(D) Qas(D} Qa4(D)
Ga{D) Qa1(0) Qa2(D) Qas(D} QD)
1 i 1 1 101
3 1+ D? D D 1 0 110
1+ D+ D52 0 D D 1
1+D 1T+D T 1 110
4 14D+ D3 1] D 14D 1 101
1+D+D*+ D? D Is] 0 14D
T+D 1 15D 0 101
5 | 1+D%+ D4 o D 1 D 110
1+ 0D+ D? | D* D* D4 D? D 14D
1 1+D T 1+D 100
6 | 1+DY+D* 4 D5 D+ D? D+ D? 1+D 1 111
1+ D4+ D? - D3+ D5 D? D+ p? 1+ D
1+ D+ D% | 1+D 5 D® 0 1 110
7 [ 1+ P24+ D% 4 D54 DB D+ D? D 1+D+DP* | 1 101
1+D4+D 4 D4 D8 0 j2) D+ D? i+ D+ D2
1+DP+ D5+ D%+ D7 1+ 02 1+ D D2 1 110
8 | 1+D+D2+ D3 +D4 D4 p? o 14 D? 1+D4+D% | 111
+D7 Fal D+D*4+ 3 | D+D? 1+ D
1+ DF+ D3 DT+ DB 14D 1+ D b T+ D% 111
9 | 1+D+D*4 D34 DS D+ DA D+D* 4D | t4+ D b 100
+D7 4- D8 D? D+ D3 p+ DR 1+ D

1. For the purpose of sequential decoding, do not delete the first and second
columns (i.e., the first codeword), since they tend to yield codes with a rapidly
increasing column distance function. Besides, it can make the encoder proceed

quickly.

2. Do not delete the all columns in one codeword, which makes all the potential
(i.e. different generators) of the original code be used fully.

3.3 The Constraint Length of PCCs

The constraint length is a very important parameter of CCs. At encoder, the con-
straint length determines how many bits of past information are used to determine
the parities. At decoder, it determines when to decide about the decoded informa-
tion. For a CC, the greater its constraint length is, the better it performs. Therefore,
this section induces Theorem 2:

t

nl—m

CC punctured from o low

Theorem 2 The constraint length Ky of a high rate
rate 1_11 CCis :

K< UG — D0 +1 (3.8)

where I, is the constraint length of R = 1 CC, and [z] indicates the minimal integer

which is larger than or equal {o x.
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Proof: Let M) and M; be the highest dimension of G,(D) (s = 1,2,++-,n) and
Ji(D) (§=1,...,L,i=1,...,nl), respectively, so M; = K; — 1 and M, = K, - 1.

If My =tl, then, t = 241,

IfMy=tl+h (1 <h <U—1), then, t =Mzl = Mul=b g — [pf, /1] ~ 1.

From Theorem 1, according to the generality of ensuring M as large as possible,
we have the following conclusions:

If My =1t then, M, = ¥ = ¢ =41,

IF My #tl, then, My = &3t 4 #HE= = G400y 4 9 Ty /1),

That is to say: My = [M/1].

In general, we have the conclusion as: Ky < [(J; — 1}/I} + 1. O

From Theorem 2, we have the upper bound of constraint length for high rate nt+m
PCC, which is related to the constraint length K of an original R = 1 CC and the
periodical length {, but has no relationship with n and m.

For example, the constraint length of a high rate % CC punctured from low rate
5 CCwith K} =7 is: K3 = [(7—1)/3] +1 = 3, which is in good agreement with
{3.5).

3.4 Puncturing Realization of the Known Good High Rate
CCs

Up to now, many good PCCs have been obtained on the basis of one general con-
structing method, which includes two steps as follows:

o Step 1 Selecting a known good 1 CC with a given constraint length as an
original code.

e Step 2 Determining the perforation matrices that will yield good PCCs for

different coding rates.

But, by this method, all good PCCs may not always correspond with the known
good high rate CCs. In order to produce the same PCCs as the known good high
rate CCs by available perforation matrices, the original CCs should be selected. In
the following, the generator polynomial matrices of systematic and nonsystematic
original CCs are given, which can produce the known good high rate CCs by the

available perforation matrices.

3.4.1 Puncturing Realization of the Known Good Nonsystematic CCs

Suppose that an orthogonal perforation matrix[47] is used, where only one entry “1”
is in each row, the puncturing bits m = nl — n, and R = % PCC is obtained. Then,

the corresponding generator polynomial matrix Q(D) can be expressed by:
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Table 3.3: R = 3 original codes that yield the known good R = 2CCs

R = 3 Original CGCs R =2 PCCs, ie. the known good A = £ CCs
Gi1{D} 21 (D) Qu{D}
K1 | G2(D) Gi2(D) Qzal{D}
@3(D) Gha(D) Qz3{D}
1+ D+ PP+ D3I IR i+D D+ DT D3
7 | 1+ P*+ D% + DY DB - DS D+ D2 1+ D+ D%+ B8
1+ D+ D% 4 D5 14 D4 D? 1
1+ D1+ % 1+D¥4 D3 0
9 | 1+ PP+ D% 4 DY DS D+ D% 1+D? 4+ D4
1+D+ D% D4 D% 4. D7 4 DB 1+ D4+ D3 i+D+ D%+ D4
1+ D+ DT+ D5+ D5+ 7 1+ D7 D+ DF+ D8
N[ 1+D*+ D+ D* 4 D74+ DDV | D24 D3+ D4 14D+ D?+ D¢
1+ D+ D? 4+ B + D7 4 B° 1+D4+ D34+ D% | 14D

Q1a(D) Qa(D) ... Qua(D}

D aa(D) ... 2 (D
oy < | (D Gald) . QenlD)

Ql,l.(D) Q£.2‘(D) Qt,nr(D)

From Theorem 1, we know Q;;(2) is one of i entries: J; ¢i-1yne1(£2), Jjim1ynt2{D),
oy Jiin (D), which is only related to Gi(D), fori=1,...,nand 5 =1,...,1. This
makes the original code be used fully (i.e., each generator polynomial is used). On
the other hand, this makes it possible to yield the determinate original codes from
the known good high rate codes by some orthogonal perforation matrices.

By virtue of these conclusions, we have obtained the low rate é original codes
corresponding to the known good R = % CCsand R = % original codes corresponding
to the known good R = ¥ CCs{50], as listed in Tables 3.3 and 3.4. It is worth noting
that Tables 3.3 and 3.4 are identical to the conclusions in [47], which are based on
the general PCC constructing method, as mentioned at the beginning of this Section.
However, Tables 3.3 and 3.4 are induced by different methods, which are based on
how the generator polynomial matrices of an original low rate CC are constructed
from a good high rate CC. In Table 3.3, K, is the constraint length of R = é CC
and m = 3 x 2 — 3 = 3, the orthogonal perforation matrix is:

10
P=101
01

In Table 3.4, K is the constraint length of R =1 CC and m = 4 x 3~ 4 = 8, the
orthogonal perforation matrix is:
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Table 3.4: R =} original codes that yield the known good R =4 CCs

R =1 Original CCs | & =% PCCs, ie. the known good &= 3 CCs
G (DY Qu(D) Ln(D) Qa1{D)

X1 | Ga{D) Q12(D) Qz2(D) Qaz{D)
Ga(D} @13(D) Qaa{D) (D)
Gu(D) [ @14(D) Q2a{D) Q34 (13)

1 1 o 0

T |1+ D+D* 4+ DR 1 1+D D
1+ D% 4 D4 + DS 1 b 1+ D2
1+D-+D*4+ D 1 1 1+ D%
T+ D+D¥ 4+ DY D* 14+ D0 D+ D? D

9 | 1+D*+D5+ D7 D2 1 D+ D®
1+ D% 4 D¢+ D7 0 n? 14+ 54 D2
14D+ 02+ D14+ D%+ D® 1+04D% | 14D 1
1+ D3 D5+ D DT + D% 1+ 0+D07 1 DP 4 D3 D3

11 [ 1+ 4 D5+ D54 D7 D 4 b2 1+ D? n
1+D+ P4 P54 DV 4 DY D 1 14D+ D24+ DR
14D+ P2+ 574 D° 1 14+D24+0° |1

1 0 0
p 0 10
0 01
0 01

By this method, we can construct any known good high rate ﬁ CCs with original
R =1 CCsand available orthogonal perforation matrices.

3.4.2 Puncturing Realization of the Known Good Systematic CCs

Since there is a large body of research devoted to the class of R = 3 CCs, the
constructing of PCCs from the original R = % CCs is very useful. The determinate
generator polynomial matrix of the original R = -;- CCs can not be obtained from the
generator polynomial matrices of R = £ and R = % PCCs as before. But the good
systematic PCCs can be found [39] from systematic R = 1 original CCs for their
determinate relationship as follows.

Suppose the generator polynomial matrix of systematic £ = % (CCs is:

G(D) = [1, Go(D)} (3.9)

If the generator polynomial matrix of systematic R = 2 CCs is:

(30 23,

then, from Theorem 1, its determinate relationship with G(D) is:

G(D) = Qas(D?) + DQ1a(D?). (3.10)
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If the generator polynomial matrix of systematic £ = % CCs is:

1 0 0 D)}

0 1 0 QuibD) |,
0 0 1 QD)

then, from Theorem 1, its determinate relationship with G{D) is:

Ga(D) = Qaa(D?) + DQas(D®) + D*Quq(D?). (3.11)

Therefore, Tables 3.5 and 3.6 give the systematic original codes that yield good
systematic B = -g- and R = % CCs. For Table 3.5, Ky is the constraint length of
R= % CCs, =1, the corresponding perforation matrix is:

-(31)

For Table 3.6, K3 is the constraint length of R = % CCs, m=2, the corresponding

111
P_(001)'

perforation matrix is:
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Table 3.5: Systematic original codes that yield the known good systematic

R=2CCs
Systematic original H= £ CCs | Systemalic puncturedﬁ CCs
Ga (DY Kz | GhalDy Qua{D}
1+ D+ D3 3 1+ D 1
1+ B+D¥ Pt 3 1+ 0 14+ D7
1+ D +D3+ D7 D8 4 1+ I} L+ D%+ D3
1+ Dy D3 DY O Y DE 5 1+ D4 D8 T+ I D8 D%
+D?

14+ D DY DYYB5 + DB 6 1+D+ D4 DF

+D° + D194 pit

L+D%+ D+ DY+ DF

I+ D+ 3+ D + DFy b° 7 1+D+ D3 D5 DB

+D9+DID+D11 +Dl3

1+ D+ DS+ D"+ D°

Table 3.6: Systematic original codes that yield the known good systematic

Rzg CCs

Systematic original R = é- CCs

JI_ Systematic punctured R = % CCs

Ga(D)

3

D)
Q2a{D)
Qza(.D)

1+D+D?*+D*+ D8+ D84 D7

14+ D
14 D2
14D+ D?

14+D+D2 4 D34 DS + D% 4 D7 D9 . D10
+D11

1.+ D+ D7
14 D24 D?
1+ D4+ 0?4 B3

14D+ D24 D34 D5 DB 4 D7 4 D9 P10
+D1!+D13+D14

T+ D+ P+ D7
14+ D? 4 D% 4 D4
1+ D+ D%y D3

14+ D4+ DD D8 4. DF . D7 4. D% 4 DAO
+DII+D13+DM+D19

14 D4 D73+ DY
1+D24 D34 DAy D8
14D+ 0?4 D%

1+ D+ D4 D4 D54 D% 4 DT+ PP 4+ D10
+DII+D13+D14+DIQ+D21

I+D+05+ D%
1+D?+ D3+ D4y DS
14+ D+ D24 D4 DT
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