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ABSTRACT

Abstract

A distributed computer system is considered to be a collection of autonomous comput-
ers (nodes) located at possiblyffdrent sites and connected by a communication network.
Through the communication network, resources of the system can be shared by users at
different locations. Performance enhancement is one of the most important issues in dis-
tributed systems. The performance of a distributed computer system can often be improved
to an acceptable level by redistributing the workload among nodes. The problem of load
redistribution in distributed computer systems is calleald balancing Load balancing
policies may be eithestaticor dynamic

Static load balancing policies use only the statistical information on the system (e.g., the
average behavior of the system) in making load balancing decisions. On the other hand,
dynamic load balancing policies attempt to dynamically balance the workload reflecting
the current system state and are therefore thought to be able to further improve the system
performance.

Generally, the purpose of load balancing policies either static or dynamic is to improve
the performance of the system by redistributing the workload among nodes. We can choose
between several distinct objectives for performance optimization in many systems includ-
ing communication networks, distributed computer systems, transportation flow networks,

etc. Among them, we have the following three typical objectives or optima:




ABSTRACT

1. The overall optimumwhere all jobs are regarded to belong to one group that has
only one decision maker. The decision maker seeks to optimize a certain overall and
single performance measure like the total cost or the overall mean response time over

all the jobs.

2. The individual optimumwhere each of infinitely many jobs (or the user of each)
optimizes its own cost (e.g., its own expected response time) independently of the

others.

3. The class optimupwhere infinitely many jobs are classified into a finite number of
classes or groups, each of which has its own decision maker and is regarded as one
player or user. Each decision maker optimizes non-cooperatively its own cost (e.g.,

the expected response time) over only the jobs of its own class.

In this thesis, we use these three performance aspects (objectives or optima) with both
static and dynamic load balancing policies to optimize the performance of the following
two distributed computer systems. The first system consists of two types of service facil-
ities, a Mainframe nod@®yr and an unlimited number of Personal Computer nddes
both of which are connected by a communication network. We call this system model an
MF-PC network modelThe second system consists of a set of heterogeneous nodes (host
computers or processors) connected in an arbitrary fashion by a communication network.

First, on the MF-PC network model, a comparison between the performance of a static
overall optimal load balancing policy (SOOLBP) and a dynamic overall optimal load bal-
ancing policy (DOOLBP) is performed. We considered theq] threshold rule as a
DOOLBP. Truly optimal solutions of both SOOLBP and DOOLBP have been character-

ized. The overheads due to the two policies are assumed to be negligible. For the DOOLBP

Xi



ABSTRACT

(i.e., [L,q] threshold rule), a numerical algorithm for obtaining the optimal values of the
threshold parameters and g is proposed. Analytically, it is proved that the minimum
value of the overall system mean response time is obtained by the DOOLBP ([L,q] thresh-
old rule) with the value of the threshold parametet 0 and the suitable selection of the
other threshold parametér Also, we analytically proved the existence and uniqueness
of optimal solution of the other threshold paramdterThree independent parameters are
considered: job processing rateat theQyr node, job processing rateat the Qpc node

and job arrival ratel to the system. Without a loss of generalitys scaled down to 1. The
effects of changing the other two parameteraiidu) on the overall system mean response
time using the SOOLBP and the DOOLBP are studied through numerical experimentation.
The results show that, in the model examined, the overall mean response time is improved
by the DOOLBP over that of the one at most about 30% in the range of parameter values
examined while the overheads due to the two policies are not taken into account. The max-
imum improvement ratio is achieved for the cases whiereu for rather large values of

both and it increases asandu increase.

Second, on the MF-PC network model, a comparison between the performance of a
static individually optimal load balancing policy (SIOLBP) and a dynamic individually
optimal load balancing policy (DIOLBP) is performed. THe ¢ threshold rule is con-
sidered as a DIOLBP. Truly optimal solutions of both SIOLBP and DIOLBP have been
characterized. The overheads due to the two policies are assumed to be negligible. Three
independent parameters are considered: job processingatitkeeQyr node, job process-
ing rated at theQpc node and job arrival raté to the system. Without a loss of generality,

0 is scaled down to 1. Theffects of changing the other two parametersudu) on the

Xli
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mean job response time using the SIOLBP and the DIOLBP are studied through numeri-
cal experimentation. The results show that the DIOLBP outperforms the SIOLBP in the
overall mean response time, at most about 48% in the range of parameter values exam-
ined. The diference is of a certain magnitude for the cases whereu for rather large
values of both and it increases aandyu increase. We also examined the job flowffia

in the proposed system model under the SIOLBP and the DIOLBP. We found that, there is
a difference between the ratio that a job arriving at the system goes @{pender the
SIOLBP and the DIOLBP. That fference is of a certain magnitude for the cases where

~ u for rather large values of both and it decreaseg asdu increase. Through the course

of the numerical experimentation, we observed that if the] threshold rule is used as a
DIOLBP, in this case both of the control parametkrandqg have défect in satisfying the
equilibrium in between the two system facilities. And also, it is noticed that the equilibrium
threshold parametdr is a decreasing function of and it approacheg/6. Additionally,
several interesting phenomena are also observed.

Third, in a distributed computer system that consists of a set of heterogeneous nodes
connected with a communication means, we presented a number of numerical examples
around the Braess-like paradox wherein adding a communication capacity to the system
for the sharing of jobs between nodes leads to the performance degradation for all users in
the class optimum for static load balancing. Threedent types of communication means
(A), (B) and (C) are considered. Based on the system parameter setting, three types of
symmetriegoverall symmetry, individual symmetry and complete symmateyilefined.

From the numerical examples, it is observed that in class optimum, the worst-case degree
of the paradox (WCDP) is largest (i.e., the worst performance is obtained) in the complete

symmetry case where the arrival rate approaches the processing rate. And, as the system

Xiii
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parameter setting gradually departs the above-mentioned symmetric case without keeping
any kind of symmetries, the WCDP decreases rapidly. It decreases slowly (slower) if the
system parameter setting gradually departs the complete symmetry while keeping the indi-
vidual (overall) symmetry property. Indeed, it is also observed that in complete symmetry,
as the arrival rate approaches the processing rate, the WCDP converges to a certain limit if
any of the communication means of types (A) and (B) is used and it may increase without
bound if the communication means of type (C) is used. A final point is that, using any of
the communication means of types (A) and (B), the WCDP increases as the nsiofber
channels in every communication line increases and it is noticed tkat if, the WCDP
increases to at most aboyfs times of that obtained with the same parameters setting but

with s= 1.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

One of the main advantages of distributed computer systems over stand-alone systems is
the potential for resource sharing, to provide the users with a rich collection of resources
that are usually unavailable or highly contended for in stand-alone systems. It is frequently
observed that, in a computing environment with a number of nodes (host computers) con-
nected by communications network, the nodes are often loaded \fegyeditly. Such im-
balances in system load suggest that performance can be improved by transferring jobs
from the heavily loaded nodes to the lightly loaded ones. This form of computing power
sharing, with the purpose of improving the performance of a distributed computer system
by redistributing the workload among the available nodes, is commonly dabedbal-
ancing Load balancing may be eithstaticor dynamic

Static load balancing policies [29, 31, 32, 33, 44, 38, 39, 40, 41, 48, 50] use only the
statistical information on the system (e.g., the average behavior of the system) in making
load-balancing decisions, and their principal advantage is lower overhead cost needed to

execute them and their simplicity in implementation and mathematical tractability. They
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do not, however, adapt to fluctuations in workload. Under a situation where the system
workload is statistically balanced, some computers may be heavily loaded at a given instant
(hence stfering from performance degradation), while others are idle or lightly loaded.

On the other hand, dynamic load balancing policies [8, 31, 32, 40, 41, 65, 68, 85, 97, 98]
attempt to dynamically balance the workload reflecting the current system state and are
therefore thought to be able to further improve the system performance. Thus, it would be
thought that, compared to static ones, dynamic load balancing policies are better able to
respond to system changes and to avoid those states that result in poor performance. How-
ever, this is not always the case. In [97, 98] it have been shown through simulation that
when overheads are non-negligibly high at heavy system loads, static load balancing poli-
cies can provide performance more stable and better than that provided by some dynamic
load balancing policies. Obviously, the disadvantages of dynamic load balancing policies
is that these policies are more complex than their static counterparts, in the sense that they
require information on the runtime load and activities of state collection.

The purpose of load balancing policies either static or dynamic is to improve the per-
formance of the system by redistributing the workload among nodes. We can choose be-
tween several distinct objectives for performance optimization in many systems including
communication networks, distributed computer systems, transportation flow networks, etc.

Among them, we have the following three typical objectives or optima:

1. The overall optimumwhere all jobs are regarded to belong to one group that has
only one decision maker. The decision maker seeks to optimize a certain overall
and single performance measure like the total cost or the overall mean response time
over all the jobs. We call an optimal load balancing policy whereby the overall mean

response time is minimized tlaverall optimal policy By the overall optimization
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problem we mean the problem of obtaining the load balancing decision that achieves
the objective of the overall optimal policy. In the literature, the solution of the overall
optimization problem is referred to as system optimum, overall optimum, cooperative

optimum or social optimum. In this thesis, we shall refer to it asotherall optimum

. The individual optimurnwhere each of infinitely many jobs (or the user of each) opti-
mizes its own cost (e.g., its own expected response time) independently of the others.
In this optimized situation, each job cannot expect any further benefit by changing
its own decision. It is also assumed that the decision of a single job has a negli-
gible impact on the performance of other jobs. We call an optimal load balancing
policy whereby every job strives to optimize (minimize) its own mean response time
independently of the other jobs tledividually optimal policy By the individual
optimizationproblem we mean the problem of obtaining the load balancing decision
that achieves the objective of the individually optimal policy. In the literature, the
solution of the individual optimization problem is referred to as an individual opti-
mum, Wardrop equilibrium, or user optimum. In this thesis, we shall refer to it as the

individual optimum

. The class optimumwhere infinitely many jobs are classified into a finite number

(N > 1) of classes or groups, each of which has its own decision maker and is

regarded as one player or user. Each decision maker optimizes non-cooperatively
its own cost (e.g., the expected response time) over only the jobs of its own class.

The decision of a single decision maker of a class has a non-negligible impact on the
performance of other classes. In this optimized situation, each of a finite number of

classes or players cannot receive any further benefit by changing its decision. We

call the load balancing policy that has the previous descriptionckhgs optimal

3
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policy. By the class optimizatiorproblem we mean the problem of obtaining the
load balancing decision that achieves the objective of the class optimal policy. In
the literature, the solution of the class optimization problem is referred to as the class

optimum, or Nash equilibrium. In this thesis, we shall refer to it axthgss optimum

In this thesis, we use these three performance aspects (objectives or optima) with both
static and dynamic load balancing policies to optimize the performance of the following
two distributed computer systems. The first system consists of two types of service facil-
ities, a Mainframe nod@®yr and an unlimited number of Personal Computer nddes
both of which are connected by a communication network. We call this system model an
MF-PC network modelThe second system consists of a set of heterogeneous nodes (host
computers or processors) connected in an arbitrary fashion by a communication network.

First, on the MF-PC network model, a comparison between the performance of a static
overall optimal load balancing policy (SOOLBP) and a dynamic overall optimal load bal-
ancing policy (DOOLBP) is performed [32, 39, 40]. THe §] threshold rule is considered
as a DOOLBP. Truly optimal solutions of both SOOLBP and DOOLBP have been charac-
terized. The analytical tractability of the model encourage us to perform such comparison
analytically, for this reason, we do not take account of titkecence in the overheads due
to the two policies. For the DOOLBP ([L,q] threshold rule), a numerical algorithm for
obtaining the optimal values of threshold parameteesdq is proposed. Analytically, it
is proved that the minimum value of the overall system mean response time is obtained by
the DOOLBP ([L,q] threshold rule) with the value of the threshold paraneeterO and
the suitable selection of the other threshold parametélso, we analytically proved the

existence and uniqueness of optimal solution for the other threshold pardmeléree
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independent parameters are considered: job processingatitlkeeQyr node, job process-

ing rated at theQpc node and job arrival raté to the system. Without a loss of generality,

6 is scaled down to 1 and thus we have only two independent paramedaedy:. The ef-

fects of changing these two parametersafidu) on the overall system mean response time
using the SOOLBP and DOOLBP are studied through numerical experimentation. The re-
sults show that, in the model examined, the overall system mean response time is improved
by the DOOLBP over that of the SOOLBP at most about 30% in the range of parameter
values examined. And, the maximum improvement ratio is achieved for the cases where
A ~ u for rather large values of both and it increased asdu increase.

Second, on the MF-PC network model, a comparison between the performance of a
static individually optimal load balancing policy (SIOLBP) and a dynamic individually
optimal load balancing policy (DIOLBP) is performed [31]. THe ¢ threshold rule is
considered as a DIOLBP. Truly optimal solutions of both SIOLBP and DIOLBP have been
characterized. The analytical tractability of the model encourage us to perform such com-
parison analytically, for this reason, we do not take account of tfierdnce in the over-
heads due to the two policies. Three independent parameters are considered: job processing
rateu at theQyr node, job processing rateat theQpc node and job arrival raté to the
system. Without a loss of generality,is scaled down to 1 and thus we have only two
independent parametetsandu. The dfects of changing these two parametersadu)
on the mean job response time using the SIOLBP and DIOLBP are studied through nu-
merical experimentation. The results show that the DIOLBP outperforms the SIOLBP in
the overall mean response time, at most about 48% in the range of parameter values exam-
ined. The diference is of a certain magnitude for the cases whereu for rather large

values of both and it increases .aandyu increase. We also examined the job flowffia
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in the proposed system model under the SIOLBP and the DIOLBP. We found that, there is
a difference between the ratio that a job arriving at the system goes @uh@nder the
SIOLBP and the DIOLBP. That fference is of a certain magnitude for the cases where

~ u for rather large values of both and it decreases asdu increase. Through the course

of the numerical experimentation, we observed that if thef[ threshold rule is used as a
DIOLBP, in this case both of the control parametkrandqg have défect in satisfying the
equilibrium in between the two system facilities. And also, itis noticed that the equilibrium
threshold parametdr is a decreasing function of and it approacheg/6. Additionally,
several interesting phenomena are also observed.

Third, on a distributed computer system that consists of a set of heterogeneous nodes
connected with a communication means, we presented a number of numerical examples
around the Braess-like paradox wherein adding a communication capacity to the system
for the sharing of jobs between nodes leads to the performance degradation for all users in
the class optimum for static load balancing [29, 30, 33]. Thré&emint types of communi-
cation means (A), (B) and (C) are considered. Based on the system parameter setting, three
types of symmetriegoverall symmetry, individual symmetry and complete symmatey)
defined. From the numerical examples, it is observed that in class optimum, the worst-case
degree of the paradox (WCDP) is largest (i.e., the worst performance is obtained) in the
complete symmetry case where the arrival rate approaches the processing rate. And, as the
system parameter setting gradually departs the above-mentioned symmetric case without
keeping any kind of symmetries, the WCDP decreases rapidly. It decreases slowly (slower)
if the system parameter setting gradually departs the complete symmetry while keeping the
individual (overall) symmetry property. Indeed, it is also observed that in complete sym-

metry, as the arrival rate approaches the processing rate, the WCDP converges to a certain
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limit if any of the communication means of types (A) and (B) is used and it may increase
without bound if the communication means of type (C) is used. A final point is that, using
any of the communication means of types (A) and (B), the WCDP increases as the num-
ber s of channels in every communication line increases and it is noticed tlsatifl,

the WCDP increases to at most aboys times of that obtained with the same parameters

setting but withs = 1.

1.2 Methodology

The research methodology applied throughout this thesis is mathematical modelling. The
programs for the considered models are implemented using the Microsoft Visualé€:-

sion 6 on windows platform.

1.3 Thesis Outline

This thesis is organized as follows.

Chapter 2 presents a survey of the previous and the current studies on static and dynamic
load balancing and Braess paradox in distributed computer systems.

Chapter 3 presents a comparison between the performance of a static overall optimal
load balancing policy and a dynamic overall optimal load balancing policy on the MF-PC
network model.

Chapter 4 presents a comparison between the performance of a static individually opti-
mal load balancing policy and a dynamic individually optimal load balancing policy on the

MF-PC network model.
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Chapter 5 presents some numerical examples around the Braess-like paradoxes for non-
cooperative static load balancing in a heterogeneous distributed computer system.

Chapter 6 concludes this thesis and describes the author’s plans for future work.

Appendix A derives the overall system mean response time of a job arriving at the

MF-PC network model with thel], q] threshold rule E [W[L,q]].
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Chapter 2

Background

A distributed computer system is considered to be a collection of autonomous nodes (host
computers) located at possiblyfigirent sites and connected by a communication network.
Through the communication network, resources of the system can be shared by users at
different locations. However, a fundamental problem arises in makiagtiee use of the
total computing power of a distributed computing system. It is often the case that a certain
node has very few tasks to handle at a given time, while another node has many. It is
desirable to spread the total workload of the distributed computer system over all of its
nodes. This avoids under utilization of power; further, it decreases response time for work
introduced at more heavily loaded nodes. This form of computing power sharing, with
the purpose of improving the performance of a distributed system by redistributing the
workload among the available nodes, is commonly cdtbad balancing The purpose of
load balancing is to improve the performance of the system by redistributing the workload
among nodes, thus increasing processing capacity of the system without having to obtain
additional or faster computer hardware.

Another method for improving the performance of a distributed computer system is

upgrading the system by adding additional or faster computer hardware aiming to increase




CHAPTER 2. BACKGROUND

the total processing capacity of the system. In other words, we can think that the total
processing capacity of a system will increase when the capacity of a part of the system
increases and so we expect improvements in performance objectives accordingly in that
case. The famouBraess Paradoxells us that this is not always the case; i.e., adding
capacity to the system may sometimes lead to the degradation in the benefits of all users in
an individual optimum.

This chapter presents a survey of the previous and the current studies on load balancing

and Braess Paradox in distributed computer systems.

2.1 Load Balancing: A survey

Recent years have been witness to an increasing use of distributed computing system. This
may be attributed to two main factors: growth of the Internet, and low cost solution of end-
user computing devices. Many processes are distributed due to the inherent nature of tasks
involved with them. Besides, scale of economy is often possible due to the use of clusters
of less powerful computers instead of a central computer of significantly high power. How-
ever, a distributed solution can yield the true advantage only if it is possible to distribute
works evenly among the available computers (nodes of the system). In other words, when
load on the computers in a distributed environment has significant variance of workloads,
high performance can be achieved by redistributing loads. The task of redistributing the
loads on the computers is callexhd balancing

Load balancing can be considered for twéf@lient types of systems: the multiproces-
sors, and the distributed computer systems. It fBadilt to define these terms precisely
because they have been used very imprecisely in the literature. We define these two terms

by describing the most important characteristics of eachmultiprocessors any computer

10
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communications

hodes network

Figure 2.1: A distributed computer system

system of two or more processors that communicate via shared memodystriuted
computer systens any interconnection system of two or more computers (it is assumed
that each computer has its own private memory). The interconnection structure must per-
mit communication between any two computers (but not via shared memory). A number
of studies for multiprocessor systems have been reported [11, 17, 18, 35, 61, 63, 99].

This section focuses on the related load balancing studies in distributed computer sys-
tems. Many papers that deal with load balancing algorithms model the distributed computer
system being analyzed as a system that consists of a set of nodes connected in an arbitrary
fashion by a communications network as illustrated in Figure 2.1. Through the communi-
cation network, resources (e.g., processors, computer servers, etc.) of the system can be
shared by users atftierent locations.

From the user’s point of view this set of resources acts likegle virtual systemAs

11
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he submits a job for execution he does not and should not consider either the internal struc-
ture or the instantaneous load of the system. It is the duty of the system’s load balancing
algorithm to control the assignment of resources to jobs and to route the jobs according to
these assignments.

A load balancing policy chooses the resources that should be used to run a job in order
to improve a given performance measure. Load balancing problems are similar to deter-
mining an optimum routing policy for communications networks and an optimuffictra
assignment policy for transportation networks, but there are some signifi¢eredces.

In the routing and tréic assignment problem, a set of source-destination pairs, tte tra

for each pair and cost constraints are specified. In the load balancing problem, there is no
notion of source-destination fiec. Instead, there are collections of one or more resources
which can perform a certain type of work and which we might call functionally equivalent
subsystems. During execution, a job can choose (or be assigned) to access resources in a
particular subsystem to obtain a certain type of service. Usually, the routing of jobs to the
subsystem is not an issue. In some systems, jobs are grouped into classes and, for each
class, resources are classified as eitbeal or remote If the load balancing algorithm
chooses to execute a job at a remote resource, a penalty is paid (e.g., extra processing is
needed) to transfer the job from Itecal node to theemotenode. An important property of

a load balancing policy is fairness of service, i.e., the system should operate in such a way
that all jobs, regardless of their class, should be provided with speeaifiegptabldevels

of performance. Load balancing policies may be eistaticor dynamic

12
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2.1.1 Static Load Balancing

Static load balancing policies [24, 29, 31, 32, 33, 38, 39, 40, 41, 44, 48, 50, 58, 69, 83]
use only the statistical information on the system (e.g., the average behavior of the sys-
tem) in making load-balancing decisions, and their principal advantage is lower overhead
cost needed to execute them and their simplicity in implementation and their mathemati-
cal tractability. They do not, however, adapt to fluctuations in workload. Under a situation
where the system workload is statistically balanced, some computers may be heavily loaded
at a given instant (hence f$ering from performance degradation), while others are idle or
lightly loaded. Static load balancing policies are useful for system sizing (e.g., allocation
of resources, identification of bottlenecks, sensitivity studies, etc.). The results of optimal
static load balancing may also help us design the system and make a parametric adjustment
to improve the system performance [48, 50].

Static load balancing policies may be eitlieterministic(e.g., transfer all jobs origi-
nating at node A to node B) qrobabilistic (e.g., transfer half of the jobs originating at
node A to node B, and process the other half locally). The following paragraphs briefly
describe some of the previous studies of static load balancing in distributed computer sys-
tems.

Tantawi and Towsley [74] studied a single job class model of a distributed computer sys-
tem that consists of a set of heterogeneous host computers connected by a single channel
communications network. In this model, nodes are represented by a number of resources,
and diferent nodes may haveffrent configurations and resources witfiahent process-
ing rates. Jobs arrive at each node according to a Poisson process with posgbindi
rates for each node. The model is required to be a product form queuing network. They

considered an optimal static load balancing policy which determines the optimal load at
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each node so as to minimize the overall system mean job response time, and derived an al-
gorithm (called a single-point algorithm) that determines the optimal load at each node for
given system parameters. Ross and Yao [83] considered a more general problem consisting
of dedicated and generic jobs. Dedicated jobs can be processed only on specified nodes,
while generic jobs can be processed on any node in the system. And also they dealt with
scheduling decision at each node. The authors have noted that the problem is separable
over local scheduling decisions, and suggested a solution procedure based on this finding.
They also showed that given an allocation of the jobs on the nodes, the task of scheduling
can be solved as a polymatroid optimization problem. Mondal [69] considered the same
model of Ross and Yao [83] with the same assumptions and his results only changes the
allocation of the jobs on the nodes.

Kim and Kameda [15] considered the same model as Tantawi and Towsley [74] under
the same assumptions and devised another single-point algorithm that seems more easily
understandable and more straightforward than that of Tantawi and Towsley. They compared
the performance of their algorithm with that of Tantawi and Towsley.

Also, Tantawi and Towsley [73] studied a distributed computer system that consists of
a set of heterogeneous host computers (nodes) interconnected by a star network and they
proposed a static load balancing algorithm that determines the optimal load at each node
for given system parameters, so as to minimize the overall system mean job response time.
On the basis of Tantawi and Towsley’s work, Kim and Kameda [15] proposed an improved
static load balancing algorithm for a distributed computer system with star network config-
uration. In Tantawi and Towsley’s model [73], however, there is only one-wéyctfeom
the external nodes to the central node in the sense that jobs can be forwarded for remote

processing only from the external nodes to the central node. As an extension of this work,
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Li and Kameda [49] proposed an algorithm for optimal static load balancing in star net-
work configurations with two-way tfc and then in [47, 48], they proposed an algorithm
for optimal static load balancing in tree hierarchy network configurations.

Kameda and Zhang [46] studied the uniqueness of solutions in optimal static load bal-
ancing of open BCMP queuing networks. They obtained the linear relations that character-
ize the set of the optimal solutions. Thus the solution is unique if and only if the set of the
optimal solutions reduces to a single point.

The models presented above deal only with single job class environment. In [13, 14,
16], Kim and Kameda extended the Tanatwi and Towsely single job class model [74] to
multiple job class environment with almost the same assumptions of Tanatwi and Towsely
and they proposed an optimal static load balancing algorithm for multiple job classes. As
a generalization, Li and Kameda [50] proposed an optimal static load balancing algorithm
in a multi-class jobs distribut@gdarallel computer system with general network configura-
tions.

There are some significantffirences between the problem of load balancing and that
of routing for communications networks andftraassignment for transportation networks
as explained in section 2.1. In spite of the significaffedences, the well known algorithms
for flow assignment, the flow deviation (FD) algorithm [22, 62] and the Dafermos algorithm
for traffic assignment [21, 71] can be applied to load balancing problems easily. Kim and
Kameda [13] applied the two algorithms to load balancing problems and compared the
performance of the two algorithms with the performance of their proposed load balancing
algorithm for multi-class jobs. Also, Li and Kameda [50] applied the FD algorithm [22,
62] to load balancing problems and compared it's performance with the performance of

their proposed load balancing algorithm for a multi-class jobs distrilfoéedllel computer
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system with general network configurations.

2.1.2 Dynamic Load Balancing

Dynamic load balancing policies [8, 25, 31, 32, 39, 40, 41, 57, 58, 59, 65, 68, 75, 84, 85, 88]
attempt to dynamically balance the workload reflecting the current system state and are
therefore thought to be able to further improve the system performance. Thus, it would
be thought that, compared to static ones, dynamic load balancing policies are better able
to respond to system changes and to avoid those states that result in poor performance.
Obviously, the disadvantages of dynamic load balancing policies is that these policies are
more complex than their static counterparts, in the sense that they require information on
the runtime load and activities of state collection. Studies on dynamic load balancing have
been usually limited to specific models that assume either that all the nodes in the system
are identical or that the overheads involved in load balancing are negligible [8, 25, 31, 32,
39, 40, 41, 85].

Dynamic load balancing policies may be either preemptive or non-preemptive. A pre-
emptive load balancing policy [28, 90, 96] allows load balancing to occur whenever the
imbalance appears in the workloads among nodes. If a job that should be migrated to a
new node is in the course of execution, its execution will be continued at the new node. On
the other hand, a non-preemptive load balancing policy [25, 31, 32, 39, 40, 65, 68, 85, 98]
assigns a newly arriving job to what appears at that moment to be the best node. Once the
job execution begins, it is not moved even though its run-time characteristics, or the run-
time characteristics of any other jobs, is changed after assigning the job in such a way as to
cause the nodes to become much unbalanced. Since in most systems the service demands

of jobs are not known before starting execution, with initial assignment jobs are assigned
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to nodes in ignorance of these demands. An initial distribution of jobs cross nodes that ap-
pears balanced will therefore become unbalanced as shorter jobs complete and leave behind
an uneven distribution of longer jobs. Migration allows such imbalances to be corrected.
To migrate a job in execution, however, is much complex and is accompanied with much
overhead caused by gathering and transferring the state of the job, resulting in performance
degradation.

This section focuses only on non-preemptive load balancing policies. A non-preemptive

load balancing policy typically has three components:
1. A transfer policy that determines whether a job is processed locally or remotely.

2. A location policy that determines the node (server or processor) to which a job, se-

lected for remote execution, should be sent.

3. Aninformation policy that determines the amount of load information made available
to the location policy and what load information should be collected and how this

information is obtained.

A large number of the transfer policies proposedtaresholdpolicies [8, 31, 32, 39, 40,

41, 59, 65, 68, 85, 98]. Typically, transfer policies use some kind of load index threshold

to determine whether the node is heavily loaded or not (e.g. CPU queue length, CPU
utilization, etc.). When this load index threshold is exceeded the load balancing condition is
satisfied and the transferring mechanism is initiated. Location policy at a node determines
the allocation of a job and takes the action of the transfer if the job is determined to be

processed remotely. An information policy may be based time:-drivenor event-driven

In a time-driven approach, a node periodically announces its load information to other

nodes or issues a request-for-bid message to other nodes to collect their load information.
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Periodic policies do not adapt their activity to the system state. The overheads due to
periodic information announcement or collection at hight system loads continue to increase
the system load and thus worsen the situation. In an event-driven approach, on the other
hand, a node does not announce its load information or issue a request-for-bid message
for negotiation until its load changes. The information on the load state or the request-
for-bid message at a node can be broadcasted to all other nodes, or only to a subset of the
nodes or a single node. Since overhead and delay due to state information manipulation
have strong ffects on the performance of dynamic load balancing policies and can not
usually be negligible, many researchers studied ffexts of the amounts of the load state
information on the performance of dynamic load balancing policies and they proposed
many techniques to minimize the overheads cased by the state information manipulation
[56, 60, 65, 68, 81]. Also, thefiects of occasionally poor load balancing decisions and
the potential for instability in dynamic load balancing because of the inherent inaccuracy
of system state information have been studied in [65, 68].

Load balancing policies can be classifiedcastralizedor decentralized In central-
ized policies [8, 41, 54, 68, 88, 95], it may be considered as a system with only one load
balancing decision maker. Arriving jobs to the system are sent to this load balancing deci-
sion maker, which distributes jobs tofidirent processing nodes. The centralized policies
has the advantages of easy information collection about job arrivals and departures and the
natural implementation employing the server-client model of distributed processing. The
major disadvantages of the centralized policies is the possible performance and reliability
bottleneck due to the possible heavy load on the centralized job load balancing decision

maker [95]. For this reason, the centralized approaches are not appropriate for large-scale
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systems. Furthermore, failure of the load balancing decision maker will make the load bal-
ancing inoperable. It appears that this policy is closely related tovbrll optimal policy

in that there is only one load balancing decision maker and it makes all the load balancing
decisions.

The decentralized policies, on the other hand, delegates job distribution decisions to
individual nodes. Usually each node accepts the local job arrivals and makes decisions to
send them to other nodes based on its own partial information on the system load distri-
bution. It appears that this policy is closely related to ithaividually optimal policyin
that each job (or the user of each) optimizes its own cost (e.g., its own expected mean re-
sponse time), independently of the others. The decentralized load balancing is widely used
to handle the imperfect system load information [8, 41, 51, 52, 54, 60, 68, 95].

Decentralized load balancing policies can be broadly characterizezhder-initiated,
receiver-initiated andsymmetrically-initiated In sender-initiated policies [8, 41, 54, 60,

76, 81], congested nodes attempt to transfer jobs to lightly loaded ones. In the receiver-
initiated policies [8, 41, 54, 60, 76], lightly loaded nodes search for congested nodes
from which jobs may be transferred. Many policies have been analyzed, which com-
bine the desired features of both sender and receiver-initiated techniques, and are called
symmetrically-initiated36, 54, 56]. They seek to find suitable receivers when senders
wish to send jobs, and to find suitable senders when receivers wish to acquire jobs. Ef-
ficient symmetrical policies (e.g. [55]) behave as sender-initiated under low and mediate
load conditions, and as receiver-initiated under heavy load conditions, following the corre-
sponding result of Eager, Lazowska, and Zahorjan [60]. The following paragraphs briefly
describe some of the previous studies of the dynamic load balancing in distributed com-

puter systems.
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Eager, Lazowska, and Zahorjan [59, 60] provide an analytic study of dynamic load
balancing policies. They showed that the sender-initiated policy performs better at low
to moderate system loads and the receiver-initiated policy performs better at hight system
loads. They have also shown that the overhead associated with state information collec-
tion and maintenance under the distributed policy can be reduced substantially by probing
only a few randomly selected nodes about their system state as opposed to all nodes in
the system. Shivaratri and Krueger [36] have proposed and evaluated, using simulation,
two location policies that combine the good features of the sender-initiated and receiver-
initiated location policies. Schaar, Efe, Delcambre and Bhuyan [70] studied the impact of
the communication delay on the performance of some dynamic load balancing policies.

Hac, and Jin [1] have implemented a receiver-initiated algorithm and evaluated its per-
formance under three workload types: CPU-intensive, 10-intensive, and mixed workloads.
They compared the performance of their load balancing policy with that when no load bal-
ancing is employed. They found that, for all the three types of workload, load balancing is
beneficial. Unfortunately, they did not compare the performance of various load balancing
policies that have been proposed in the literature. Also, in [2], they studied sender initi-
ated and receiver initiated load balancing strategies. In these strategies, the system load is
balanced in terms of the number of active processes on each host. A migration factor is
considered, defined as the ratio of the mean transfer time to the response time of a process
executed locally. If the migration factor is less than or equal to one, the process is declared
as migrant, otherwise no action is taken. Their study is limited to independent applications.

Dikshit, Tripathi, and Jalote [78] have implemented both sender-initiated and receiver-
initiated policies on a five node system connected by a J8Mbmmunication network.

As a part of their study they have conducted an experiment on the impact of service time
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variance, but the cdicient of variation is less than or equal to 1 (taken from exponential
and uniform distributions).

Dandamudi [76] evaluated the performance of three node scheduling policies: First-
ComgFirst Served (FCFS), Shortest Job First (SJF), Round Robin (RR), combined with
the sender-initiated and receiver-initiated load balancing. Furthermore, he looked at the
impact of variance in the interarrival times and in the job service times. Dasgupta, Majum-
ber, and Bhattacharya [77] proposed one of the newer dynamic, symmetrical, distributed,
and dficient algorithms, called the Variable Threshold THR) algorithm. They used it
for dynamic load balancing on a shared BUS architecture, which monitors the threshold
for the starting of load balancing, to dynamically adapt itself to the limited bandwidth of
the shared BUS architecture. Antonis, Garofalakis, Mourtos, and Spirakis [54] proposed a
dynamic, distributed hierarchical scheme, called the Virtual Tree Algorithm (VTA), which
creates and uses a virtual binary tree structure over the actual network topology. It intro-
duces the basic concept of conjugate nodes in multiple levels in the tree. Their algorithm
needs remote information only for the transfer policy, and no additional information for the
location policy. They proved that the proposed virtual construction can keep the exchang-
ing messages to a number comparable to those of the prewidtisrg algorithms. And
they compared the performance of their algorithm (VTA) with that oMh& HRalgorithm
that is proposed by Dasgupta, Majumber, and Bhattacharya [77].

Deng, Liu, Long, and Xiao [95] measured the informatidinceency of a load balancing
policy by the competitive ratio of the solution (for each load distribution) of a load balanc-
ing policy to the optimal solution (for the same load distribution) assuming that nodes have
complete information about the load distribution over the network. They showed that when

jobs have dterent sizes, even with preemptive scheduling, the load balancing policy is
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NP-complete. When the jobs are of the same size, they gave a polynomial algorithm, using
network-flow techniques, which extends to approximate solutions for jobffefelnt sizes.
They also applied this benchmark solution for three network topologies: completely con-
nected graphs, rings, and hierarchical complete k-ary trees. Stefano, Bello, and Mirabella
[20] assess job allocation on heterogeneous computer networks. They argue that the use of
minimum global information can contribute to improve the performance of a load balancing
policy to a significant degree. The performance of random allocation policy is compared
with two partially global job allocation policies. (1) Threshold policy selects a node at ran-
dom and enquires if it has exceeded its load threshold. If it has not, the job is transferred to
it. (2) Shortest policy selects a group of nodes randomly, acquires the load information on
each and makes the allocation decision accordingly. As a conclusion the results show that
even partial global information provides important performance improvement.
Mitzenmacher [68] studied thedfect of occasionally poor load balancing decisions and
the potential for instability in dynamic load balancing because of the inherent inaccuracy of
system state information. Also, Dahlin [65] studied the same problem and he proposed load
interpretation strategies that interpret system load information based on its age. Through
simulation, he examined several simple algorithms that use such load interpretation strate-
gies under a range of workloads. Bozyigit [64] presented a new dynamic load balancing
scheme, called DYLOBA, where both the current system load and the load to be exerted
by the application are equally important. The target system chosen is a general purpose
network of workstations. The approach utilizes the past execution statistics of the applica-
tions. In this sense, information on the run time system load and resource requirement of
the applications, averaged over past executions, is integrated.

Hui and Chanson [12] presented a hydrodynamic framework for solving the dynamic
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load balancing problem on a network of heterogeneous computers. In this approach, each
processor is viewed as a liquid cylinder where the cross-sectional area corresponds to the
capacity of the processor, the communication links are modelled as liquid channels be-
tween the cylinders, the workload is represented as liquid, and the load balancing algorithm
describes the flow of the liquid. It is proven that all algorithms under this framework con-
verges geometrically to the state of equilibrium, in which the heights of the liquid columns
are the same in all the cylinders.

Altman and Shimkin [25] studied thetect of projected load buildup on individual user
decisions and consequently on the system performance, in shared facility. Assuming that
the users are symmetric, they have shown the existence of a unique equilibrium point, and
how this equilibrium emerges as a result of simple learning scenario. Karatza and Hilzer
[58] studied the ffects of load balancing on the performance of a heterogeneous distributed
computer system, where half of the total processors have double speed of the others. They
considered two job classes. Programs of the first class are dedicated to fast processors,
while second class programs are generic in the sense that they can be al-located to any pro-
cessor. Their objective was to find a policy that results in good overall performance while
maintaining the fairness of individual job classes. Through simulation, they examined and
compared the processor performance under a variety of workloads. Their results show that
the performance of the best method depends on system workload.

Tiemeyer and Wong [90] presented a distributed, dynamic load balancing algorithm
for fully-connected distributed computing systems. In this work, they described a method
through which the communication protocol can be tailored to the capabilities of the sys-

tem’s individual processors. Also, they described modifications designed to make the
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scheme fault tolerant. These modifications handle those cases in which one or more proces-
sors are considered nonfunctional. Watts, and Taylor [53] proposed a practical, comprehen-
sive approach to dynamic load balancing that has been applied to nontrivial applications.
Incorporated into the approach are a neffugiion algorithm, which fiers a good tradetb
between total work transfer and run time, and a task selection mechanism, which allows
task size and communication costs to guide task movement.

Mirchandaney, Towsley, and Stankovic [85] studied the performance characteristics of
simple load balancing algorithms for heterogeneous distributed systems. They assumed
that a non-negligible delays are encountered in transferring jobs from one node to another
and in gathering remote state information. They analyzedftieeteof these delays on the
performance of two threshold-based algorithms. Also, they formulated queueing theoretic
models for each of the algorithms operating in heterogeneous systems under the assumption
that the job arrival process at each node in Poisson and the service times and job transfer
times are exponentially distributed. They solved these models using Matrix-Geometric
solution technique. And they used these models to studyfibete of diterent parameters
and algorithm variations on the mean job response time: e.g.,flbet ®f varying the
thresholds, the impact of changing the probe limit, the impact of biasing the probing, and
the optimal response times over a large range of loads and delays.

We found a very few number of works that considered the problem of comparing be-
tween the performance of static and dynamic load balancing policies. The following para-
graphs briefly describe these studies.

Igbal, Saltz, and Bokhari [4] studied the problem of uniformly distributing the load of a
parallel program over a multiprocessor system. In this work, they described and analyzed

four policies for load balancing. And, they compared the performance of these policies
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on a set of problems whose structure permits the use of the four policies. The considered
four policies are (1) the optimal static assignment algorithm which is guaranteed to yield
the best static solution, (2) the static binary dissection method which is very fast but sub-
optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme,
which estimates the optimal solution to arbitrary accuracy and (4) the predictive dynamic
load balancing heuristic which uses information on the precedence relationships within
the program. Through simulation, they showed that the dynamic policy outperforms any
of the static methods, and the overhead incurred by the dynamic heuristic (4) is reduced
considerably if it is startedfbwith a static assignment provided by either (1), (2), or (3).

In [41, 97, 98], the authors compared through simulation the performance of two dy-
namic and two static load balancing policies in a heterogeneous distributed computer sys-
tem model. They assumed that all the nodes in the system have the same function but
possibly diterent capacities, and the overheads and the delays for both job transfer and
system state-information exchange are non-negligible. Their simulation results show that
both dynamic and static policies improve performance dramatically, and that the perfor-
mance provided by the static policies is not much inferior to that provided by the dynamic
policies. They also showed that when overheads are non-negligibly high at heavy system
loads, static policies can provide performance more stable and better than that provided by
the considered dynamic policies.

In the previous studies, the comparison between the performance of the static and dy-
namic policies is done through simulation. To the best of our knowledge, there is no work
that compares analytically between the performance of static and dynamic load balanc-
ing policies in a distributed computer system model. For this reason in [32, 39, 40], we

analytically compare between the performance of a static overall optimal load balancing
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policy (SOOLBP) and a dynamic overall optimal load balancing policy (DOOLBP) in a
distributed computer system that consists of two types of service facilities, a Mainframe
nodeQyr and an unlimited number of Personal Computer nd@gs both of which are
connected by a communication network. Truly optimal solutions of both SOOLBP and
DOOLBP have been characterized. The overheads due to the two policies are assumed to
be negligible. Thell, q] threshold rule is considered as a DOOLBP. A numerical algorithm
for obtaining the optimal values of the threshold paramdtesadq is proposed. Analyt-

ically, it is proved that the minimum value of the overall system mean response time is
obtained by the DOOLBP with the value of the threshold paranteted and the suitable
selection of the other threshold paramdierAlso, we analytically proved the existence
and uniqueness of optimal solution of the other threshold pararhefrat is, we need to
choose only the proper value bfwith g fixed to be 0 in finding the set of parameter values

of the threshold rule that gives the minimum value for the overall system mean response
time. Three independent parameters are considered: job processingt#teQyr node,

job processing rate at theQpc node and job arrival raté to the system. Without a loss of
generality,6 is scaled down to 1. Thetfects of changing the other two parametersad

() on the overall system mean response time using the SOOLBP and DOOLBP are stud-
ied through numerical experimentation. The results show that, in the model examined, the
overall system mean response time is improved by the DOOLBP over that of the SOOLBP
at most about 30% in the range of parameter values examined while the overheads due
to the two policies are not taken into account. And, the maximum improvement ratio is
achieved for the cases whete- u for rather large values of both and it increased asd

u increase.

Also, in [31], we analytically compare between the performance of a static individually
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optimal load balancing policy (SIOLBP) and a dynamic individually optimal load balanc-
ing policy (DIOLBP) on the same model that is considered in [32, 39, 40]. The overheads
due to the two policies are assumed to be negligible. Three independent parameters are
considered: job processing rateat theQyr node, job processing rateat theQpc node

and job arrival ratel to the system. Without a loss of generalifyis scaled down to 1.

The dfects of changing the other two parameterafdu) on the mean job response time
using the SIOLBP and the DIOLBP are studied through numerical experimentation. The
results show that the DIOLBP outperforms the SIOLBP in the overall mean response time,
at most about 48% in the range of parameter values examined while the overheads due to
the two policies are not taken into account. Thi#efence is of a certain magnitude for the
cases wherga ~ u for rather large values of both and it increased as\du increase. We

also examined the job flow tfigc in the proposed system model under the SIOLBP and the
DIOLBP. We found that, there is aftierence between the ratio that a job arriving at the
system goes to th@yr under the SIOLBP and the DIOLBP. Thati@rence is of a certain
magnitude for the cases whete- u for rather large values of both and it decreases as
andu increase. Through the course of the numerical experimentation, we observed that if
the [L, q] threshold rule is used as a DIOLBP, in this case both of the control parameters
L andg have dfect in satisfying the equilibrium in between the two system facilities. And
also, it is noticed that the equilibrium threshold paramétes a decreasing function of

and it approaches/6. Additionally, several interesting phenomena are also observed.
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2.2 Braress Paradox: A survey

Intuitively, we can think that the total processing capacity of a system will increase when
the capacity of a part of the system increases, and so we expect improvements in perfor-
mance objectives accordingly in that case. The famous Braess paradox tells us that this
is not always the case; i.e., increased capacity of a part of the system may sometimes
lead to the degradation in the benefits of all users in an individual optimum [10, 19, 27].
The Braess Paradox attracted the attention of researchers in many fields such as Arora and
Sen [72] in the field of Software Multi-Agent Systems, Roughgarden and Tardos [91] in
the Theory of Computing, Cohen and Kelly [27], Kelly [80] and Cohen arittide [26]

in queueing networks, Kelly [79] and Bean, Kelly and Taylor [34] in loss networks and
Kamedaet al[38, 42, 45] in distributed computational systems. The following paragraphs
briefly describe some of the previous studies related to this topic.

Braess [19] discovered a deterministic mathematical model of a congested network
such that, paradoxically, when a link (path) is added and each user seeks his best possible
path, at the new equilibrium, the mean response time for all users is higher than before. At
equilibrium, independently self-seeking users are unable to ignore that added capacity that
ends up increasing their response time.

Clavert [9] supposed a Poisson stream of arriving users to a distributed processing sys-
tem and they have a dynamic load balancing policy which gives them the quickest path. He
analytically showed an example where increasing the processing capacity of a server in the
considered model can lead to increasing the mean response time in equilibrium.

Cohen and Kelly [27] reported the first example of Braess’s paradox in a mathematical
model of a queueing network. They investigated Braess’s paradox in the setting where the

users (arrivals) have knowledge only of mean queue lengths of the network servers that is

28



CHAPTER 2. BACKGROUND

they used a static load balancing policy.

Cohen and Jé&ies [26] reported some examples of single-server queueing networks
in which adding servers or increasing the processing capacity of existing servers leads to
degrading the network performance. Kameda [37] used a static load balancing policy to
study the problem of estimating the worst case ratio of performance degradation caused
by adding capacity for the sharing of jobs between nodes in networks generalized from
what were studied by Cohen, Kelly andidies [26, 27] in comparison with the networks
of the same topology as the original Braess network [19]. In his work, the measure of
performance degradation considered is the ratio of the mean response time for each user
of a network after adding capacity to that before adding capacity, which means that the
network has performance degradation if the measure is greater than one. And he showed
that a value of the measure is less than 2 for every general Braess network and the worst
case is obtained in a symmetric reduced Cohen-Kelly network.

The famous Braess paradox tells us that increased capacity of a part of the system may
sometimes lead to the degradation in the benefits of all users in an individual optimum
[10, 19, 27]. As it is known that thelass optimuntonverges to thendividual optimumas
the number of classes becomes large [3], we can expect that, in the class optimum, a similar
type of paradox occurs (with large number of classes), i.e., increased capacity of a part of
the system may lead to the degradation in the benefits of all classes in a class optimum,
whenever it occurs for the individual optimum. We call it BBeess-like paradaxindeed
in [5], Korilis et al. found some examples wherein the Braess-like paradox appears in
a class optimum where all user classes are identical in the same topology for which the
original Braess Paradox (for the individual optimum) was in fact obtained. Furthermore in

[6], he also obtained a flicient condition under which the Braess Paradox should not occur
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in a more general model that has one source-destination pair and identical user classes.

In a model that has asymmetric classes; i.e., classes are not identical, Katrak 28]
have obtained, however, numerical examples where a paradox similar to Braesss appears
in the class optimum but does not occur in the individual optimum in the same environ-
ment. These cases look quite strange if we note that such a paradox should never occur
in the overall optimum and if we regard the class optimum as an intermediate between the
overall optimum and the individual optimum. Later on, in [43] he also showed that the
worst-case degree of the paradox (WCDP) may increase without bound in class optimum
where the values of parameters of all classes are identical and also it has been shown that
this strange behavior (i.e., the WCDP may increase without bound) does not occur for the
overall and individual optimum, in the same setting of the system parameters. To the best
of our knowledge, [43] is the first paper that reported such a case where the WCDP can
increase without bound. In [29, 30, 33], we studied the dependence of the WCDP on the
system parameter setting through a number of numerical examples around the Braess-like
paradox in a distributed computer system. Each node in the system has, at its disposition, a
communication means, which it may use to forward to other nodes an arbitrary portion of
its job arrival stream. We considered threffelient types of communication means (A), (B)
and (C). Based on the system parameter setting, we defined tfierewli types of symme-
tries: overall symmetry, individual symmetry and complete symmEtgm the numerical
examples, it is observed that in the class optimum, the WCDP is largest in the complete
symmetry case when the arrival rate approaches the processing rate. And, as the system
parameter setting gradually departs the above-mentioned symmetric case without keeping

any kind of symmetries, the WCDP decreases rapidly. It decreases slowly (slower) if the
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system parameter setting gradually departs the complete symmetry while keeping the indi-
vidual (overall) symmetry property. Indeed, it is also observed that in complete symmetry,
as the arrival rate approaches the processing rate, the WCDP converges to a certain limit if
any of the communication means of types (A) and (B) is used and it may increase without
bound if the communication means of type (C) is used. A final point is that, using any of
the communication means of types (A) and (B), the WCDP increases as the nsiofber
channels in every communication line increases and it is noticed tbat if, the WCDP
increases to at most aboyfs times of that obtained with the same parameters setting but

with s=1.
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Chapter 3

A Comparative Study of Static and
Dynamic Overall Optimal Load
Balancing Policies in a Mainframe —
Personal Computer Network Model

3.1 Introduction

As technology has quickly and relentlessly advanced in the field of computer hardware, dis-
tributed computer systems have become increasingly popular. A distributed computer sys-
tem is considered to be a collection of autonomous computers (nodes) located at possibly
different sites and connected by a communication network. Through the communication
network, resources of the system can be shared by user$exedt locations. Distributed
computer systems, such as networks of workstations or mirrored sites on the World Wide
Web, face the problem of using their resourcéedaively. If some hosts lie idle while
others are extremely busy, system performance may fall significantly. Performance en-

hancement is one of the most important issues in distributed systems. The performance of
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a distributed computer system can often be improved to an acceptable level by redistribut-
ing the workload among nodes. The problem of load redistribution in distributed computer
systems is calletbad balancing A number of load balancing policies have been proposed

to improve the performance of distribufpdrallel systems (e.g., to minimize the mean job
response time, to maximize the processing capacity of the systentliigrly utilizing

the processing power of the entire system. Although a communication delay is incurred
in transferring a job from one node to another, the performance of a distributed computer
system can generally be improved by dieetive load balancing policy [51, 52, 59, 86, 92].
Load balancing policies may be eitreaticor dynamic

Static load balancing policies [8, 15, 41, 74, 98] use only the statistical information on
the system (e.g., the average behavior of the system) in making load-balancing decisions,
and their principal advantage is lower overhead cost needed to execute them and their
simplicity in implementation and their mathematical tractability. They do not, however,
adapt to fluctuations in the workload. Under a situation where the system workload is
statistically balanced, some computers may be heavily loaded at a given instant (hence
sufering from performance degradation), while others are idle or lightly loaded.

On the other hand, dynamic load balancing policies [8, 41, 57, 59, 75, 84, 85, 88]
attempt to dynamically balance the workload reflecting the current system state and are
therefore thought to be able to further improve the system performance. Thus, it would be
thought that, compared to static ones, dynamic load balancing policies are better able to
respond to system changes and to avoid those states that result in poor performance. How-
ever, this is not always the case. In [97, 98] it have been shown through simulation that
when overheads are non-negligibly high at heavy system loads, static load balancing poli-

cies can provide performance more stable and better than that provided by some dynamic
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load balancing policies. Obviously, the disadvantage of dynamic load balancing policies
is that these policies are more complex than their static counterparts, in the sense that they
require information on the runtime load and activities of state collection. Tfeetef oc-
casionally poor load balancing decisions and the potential for instability in dynamic load
balancing because of the inherent inaccuracy of system state information have been studied
in [68].

Generally, the purpose of load balancing policies either static or dynamic is to improve
the performance of the system by redistributing the workload among nodes. We can choose
between several distinct objectives for performance optimization in many systems includ-
ing communication networks, distributed computer systems, transportation flow networks,

etc. Among them, we have three typical objectives or optima:

1. The overall optimumwhere all jobs are regarded to belong to one group that has
only one decision maker. The decision maker seeks to optimize a certain overall and
single performance measure like the total cost or the overall mean response time (the
expected value of the time length that starts when a job arrives at the system and
ends when the job leaves the system after the processing of the job is completed)
over all the jobs. We call an optimal load balancing policy whereby the overall mean
response time is minimized tleverall optimal policy By the overall optimization
problem we mean the problem of obtaining the load balancing decision that achieves
the objective of the overall optimal policy. In the literature, the solution of the overall
optimization problem is referred to as system optimum, overall optimum, cooperative

optimum or social optimum. In this thesis, we shall refer to it asotherall optimum

2. The individual optimumwhere each of infinitely many jobs (or the user of each) opti-

mizes its own cost (e.g., its own expected response time) independently of the others.
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In this optimized situation, each job cannot expect any further benefit by changing
its own decision. It is also assumed that the decision of a single job has a negli-
gible impact on the performance of other jobs. We call an optimal load balancing
policy whereby every job strives to optimize (minimize) its own mean response time
independently of the other jobs tldividually optimal policy By the individual
optimizationproblem we mean the problem of obtaining the load balancing decision
that achieves the objective of the individually optimal policy. In the literature, the
solution of the individual optimization problem is referred to as an individual opti-
mum, Wardrop equilibrium, or user optimum. In this thesis, we shall refer to it as the

individual optimum

3. The class optimumwhere infinitely many jobs are classified into a finite number
(N > 1) of classes or groups, each of which has its own decision maker and is
regarded as one player or user. Each decision maker optimizes non-cooperatively
its own cost (e.g., the expected response time) over only the jobs of its own class.
The decision of a single decision maker of a class has a non-negligible impact on the
performance of other classes. In this optimized situation, each of a finite number of
classes or players cannot receive any further benefit by changing its decision. We
call the load balancing policy that has the previous descriptiorcthgs optimal
policy. By theclass optimizatiorproblem we mean the problem of obtaining the
load balancing decision that achieves the objective of the class optimal policy. In
the literature, the solution of the class optimization problem is referred to as the class

optimum, or Nash equilibrium. In this thesis, we shall refer to it asthgss optimum

Note that the class optimum is reduced to the overall optimum when the number of

classes reduces to N(= 1) and approaches the individual optimum when the number of
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classes becomes infinitely many (& o) [3].

In this chapter, we propose static and a dynamic overall optimal load balancing
policieswhereby job scheduling is determined so as to minimize the overall system mean
response time of jobs in the whole system. That is, the goal of the two policies is system
wide optimization. Our ultimate goal is to examine to what extent the dynamic overall
optimal load balancing policy outperforms the static one by an exhaustive numerical in-
vestigation on a model for which both policies are analytically studied. Optimal static load
balancing policies have been analytically studied in a variety of models for distributed com-
puter systems [15, 48, 73, 74, 98]. On the other hand, as far as we know, optimal dynamic
load balancing policies have been studied only in very specific models: one is that of using
an M/M/m queueing model [59], and another is what is analytically studied in [25]. The
latter is the model studied here that consists of a Mainframe @geand an unlimited
number of Personal Computer nod@s:. The [L, g] threshold rule is considered as a dy-
namic overall optimal load balancing policy. In this rule, a job arriving at@se node
is forwarded to the&Qyr node with probability 1 if the number of jobs staying at Qgr
node is less thah, with probability g if the number equalk, and otherwise is processed
by the Qpc node. The model allows us to have exhaustive numerical investigation to gain
insight into the problem. The objective of both policies is to minimize the overall system
mean response time. The performance of these two policies is compared on the considered
model where truly optimal solutions of both static and dynamic overall optimal load bal-
ancing policies have been characterized. The analytical tractability of the model encourage
us to perform such comparison analytically, for this reason, we do not take account of the
difference in the overheads due to the two load balancing policies. The model we consider

here is analytically studied in [25] and is motivated in part by the following scenario.
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Potential computer users, each requiring the use of a computer to execute a given job,
arrive sequentially at a computer facility. As it has been stated in [25], the model studied
here is relevant to a wide range of application areas that involve shared service such as
computing and telecommunications. We mention here two relevant applications in the

latter area:

1. Consider a situation where users can communicate with each other either through a
Local Area Network (LAN) or through the public network, e.g., by connecting to the
telephone network via a modem, which is typically slower. However, the throughput
available to each user on the LAN decreases as the total workload increases. This is
specially the case in LANs where a single channel should be shared between all users,
e.g., the Fiber Distributed Data Interface (FDDI). The LAN can thus be approximated
by a processor sharing queue, whereas the public network can be viewed as assigning

a private server to each session.

2. Consider a non-real time application, such as data transfer, on an Asynchronous
Transfer Mode (ATM) network. ATM networks support both guaranteed services

as well as bestffort services.

(a) Guaranteed services are Constant Bit Rate (CBR), in which a fixed amount of
bandwidth is assigned to a session, and Variable Bit Rate (VBR), in which some

average and peak bit-rates are assigned to a session.

(b) Best-dfort services are Available Bit Rate (ABR) and Unspecified Bit Rate
(UBR); in both cases, some available bandwidth is shared among the connec-

tions that use these services.
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At a session level, ABR and UBR services can be approximated by a processor sharing
gueue, whereas CBR and VBR services can be approximated by a single server, dedicated
for one session. For more information about the real applications to the MF-PC network
model see [25].

While there have been some studies of performance comparison between dynamic and
static load balancing policies in more sophisticated models where overheads are considered
[41, 98], the truly optimal dynamic policy is not accurately obtained in contrast to the model
considered here. The results obtained here show that, in the model examined, the dynamic
overall optimal load balancing policy outperforms the static one in the overall system mean
response time, at most about 30% in the range of parameter values examined while the
overheads due to the two policies are not taken into account. Another remarkable finding is
that the minimum value of the overall system mean response time is achieved hydhe [
threshold rule with the value of the threshold paramgter 0 and the suitable selection
of the other threshold parameter Also, we proved the existence and uniqueness of the
optimal solution of the other threshold paramdterThat is, we need to choose only the
proper value ot. with gfixed to be 0 in finding the set of parameter values of the threshold

rule that gives the minimum value for the overall system mean response time.

3.2 Model Description and Assumptions

We consider a distributed computer system that consists of two types of service facilities,
a Mainframe node&Qyr and unlimited number of Personal Computer no@gg, both

of which are connected in an arbitrary fashion by a communication network as shown in
Figure 3.1. We call this system model MF-PC network model We assume that the

expected communication delay between @g- node and theQpc node is negligible.
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Jobs arrive at the system according to a time-invariant Poisson process, i.e. inter-arrival
times of jobs are independent, identically and exponentially distributed with mgan 1
Simultaneous arrivals are excluded. A job arriving at the system may be processed either
by theQur node or by the&Qpc node according to load balancing policies. We assume that
the service rate &@yr is u and that its service discipline is first-come-first-served (FCFS),

or processor sharing whereby the service rate for each job eqimls= x/n when the
number of jobs in th&yr node isn. The Qpc Node dfers a fixed expected service time

671, In the Qpc, Service starts immediately upon admission, and thus the mean response
time is identical to the service time. We assume that at kth and Qpc, service times

are independent, identically and exponentially distributed.

[ R ! —A
1 Resource 1 BPC - 'BMF
: rmand :
. queues
A
Q Node
PC
Communication Network
Q Node
ME.
----------- 1
Resource BMF

and

Figure 3.1: A model of an MF-PC network system
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3.3 Two Optimal Load Balancing Policies

In the following two subsections, we present a static overall optimal and a dynamic overall

load balancing policies and their solutions.

3.3.1 Static Overall Optimal Load Balancing Policy (SOOLBP)

Itis very important to design and implement computer systems that have good performance.
We may have, however, several performance measures in evaluating the performance of
computer systems. To evaluate and optimize the performance of a computer system, we
are forced to use one out of several performance measures. It seems that the most common
performance measure is the overall mean response time, which is defined to be the expected
value of the time length that starts when a job arrives at the system (i.e., an arbitrary node)
and ends when the job leaves the system after the processing of the job is completed. In
this section, we consider a static overall optimal load balancing policy that determines the
optimal load at each node so as to minimize the overall system mean response time in our
system model.

In this policy, the decision of transferring a job from one node to another does not
depend on the state of the system, and hengaisc in nature. Also, we assume that
a job transferred from one node to another receives its service there, and is not further
transferred.

We use the following notation:
e Bur: Job processing rate (load) at tQgr node.

e Fur(Bmr): Expected delay of a job processed at @@= node.

40



CHAPTER 3. STATIC VS. DYNAMIC OVERALL OPTIMAL LOAD BALANCING POLICIES

With the considered model we have:

1 )
if Bur < 1;
Fue(Bue) = {4~ Bur (3.1)

00 otherwise.

The problem of minimizing the overall system mean response time is expressed as

minD(Bwr) = %[BMFFMF(ﬁMF) + (1 Bur)d ] (3.2)

with respect t@ye such that < Byr < A.

DefineBy (0 < Bo < i) such that—2 — — gL

(1 = Bo)?

The optimal load at th®yr node Bye) is given as follows:

if A;
Bur = Po Who< (3.3)
1 it 1< B

3.3.2 Dynamic Overall Optimal Load Balancing Policy (DOOLBP)

By this policy, each arriving job may observe the current load inQie node, and then
choose whether to join the shared mainframe or to remain @gherode. Also, the goal
of this policy is to minimize the overall system mean response time.

A class of threshold load balancing policies have been shown to be useful when jobs
are completely independent and consists of single threads of control. This situation is fairly
common in networks of workstations. Such threshold policies contain control parameters
(e.g. threshold values and transfer probability for every host), that require fine-tuning in
order to yield optimal or near optimal performance. For more information about the use of
the threshold load balancing policies see [25, 40, 59, 82, 87, 92, 94].

We use thell, q] threshold rule as a dynamic overall optimal load balancing policy. In

this rule, an arriving job will go to th@yr node with probability of, respectively, , and
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1, if the job finds that th&yr node has, more than, equal to, and less thajops. We
consider a formul& [W[L’q]] for the overall mean response time of the system with respect
to [L, g] threshold rule and minimiz& [W[Lyq]]. The overall mean response time of a job

arriving at the system with threshold,[q], E [W[L,q]], is obtained as follows:
E [W[L,q]] = POl+QAY, (3.4)
where, ifo # 1 (i.e. 1 # ),

P = Po(l-q+qo)p",
_ (=(L+1)p")(2-p) + (L -p")
Q = Po (L=
+(L + 1)Pogp™*,
1-p
1 _ pL+1(1 _ q) _ qﬁ)L+2’

Py =

andifp =1 (i.e.1 = p),

p_ 1 _(L+1)(L+29)
CL+1+q % 2(L+1+q)

where:
e Pis the probability that an arriving job at the system goes taQkhenode.

e Q is the expected number of jobs (which includes the jobs in service) iIQthe

node from state O to state+ 1 (see Figure 3.2).
e Py is the probability that the number of jobs in tRgr node is O.

For the derivation oE [W[L,q]], see Appendix A.
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A

SR WD W
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Figure 3.2: State transition diagram

Observing that the overall system mean response time does not depend on the service
discipline in theQue node (PS, FCFS, etc.), the problem reduces to that of a standard

gueueing control.

Proposition 3.3.1 The overall system mean response time is minimized by the [L, q] thresh-
old policy with the value of threshold parametet@and the suitable selection of the other

threshold parameter L.

proof: Note that the [, 1] threshold policy is identical to theL[+ 1, 0] threshold pol-
icy. It is suficient to show that, given, u, 6 and L, E[W[L,q]] is monotonically non-
decreasing or non-increasingqre [0, 1]. Thatis, eithera%E [W[L’q]] > Oforallqe [0,1],
0 0
%‘E |Wi_q| < 0forallge0,1], or %E |WiLq| = 0forallqe[0,1].

It can be shown as follows. Giveh y, 6 andL, we have the following two distinct

cases:
e Case(Q)p=1(.e.2=pu)andqe0,1)

e Case (2)p # 1 (i.e.1# u)andqe[0,1)
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Case (1):p=1(i.e.A1=pu)andqge[0,1]

1 a L+ (L +29), 4

— 2
ok _ 2/1+(2+3L+L)9‘ )
oq 220(L + 1+ )2
Case (2):p # 1 (i.e. 1 # u) andq € [0, 1]
ElWq| = Pot+Q?, (3.7)
where
_ 1-p
Po = 1-ptti(1-q) — g2’ (3.8)
B (—(L + 1)pY)(1 - p) + (1 - p-+1
v T=pP
+(L + 1)Pogo**?, (3.9)
P = Pol-q+qo)p". (3.10)
Hence,
94~ 6L+ poiq- 1) - a2’ (3.11)
where
Ci = Op(l+L-2p-Lp+p"), (3.12)
Co = Ap-17. (3.13)

In both of the above two cases, the numerators of (3.6) and (3.11) are independent of
whereas the denominators dependjand remain positive for atj € [0, 1]. We therefore
see that [W[L’q]] is either monotonically non-increasing or non-decreasing 0[O0, 1],

givenA, u, 6 andL.
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Proposition 3.3.2 GivenJ, u, and#, there existd. such thatE [Wig] — E [Wi_10/] < O

for L < L andE [Wg] - E[WjL_10y] > Ofor L > L.

That is, the response time function decreaseis for 0 < L < L and increases ih for
L>L.

proof: Givena, u, 6, andg = 0, we have the following two distinct cases:

e Case (D)p=1(i.e,1=p)

e Case 2)p # 1 (i.e.,A#pu)

Case(Dp=1(.e.1=p)

1 Lo,
E[W[L’q]] - 1)9 oA (3.14)
oE 1 1
oL~ 21 (L+1p6 (3.15)
0’E 2
= A
aL? (L +1)%¢° (3.16)
2
Thus, ‘;Tlgz 0 for all values ofL > 0, which means that, the response time function
E [W[L,q]] is convex and hence, it has only one minimum point.
Case (Q)p #1(i.e.1#p)
EMrg] = I — L+ 1))
[La] = ut(1 - pth) Pry
1
+ 3.17
) G40
9E _ pH(0(p "t = 1) — (L + 1) + (o — 1)u) logp) (3.18)
oL u6(p-+1 — 1)2 ) )
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L
Since 5> 0, from the above equation, it is seen that the sig%%fdepends on

0
#Q(pL+1_1)
the value ofA(L) = 6(p"** — 1) — [(L + 1) + (0 — 1)u] log(p). Then,%—A(L) = H(p-* -

1) log(p).

Note thatA(-1) < 0 and since in this case, # 1, then we have the following two

distinct cases:

e Case (1): p > 1, then by noting that log > 0 andp*** =1 > 0 for L > -1,
&A(L) >0forL > -1.

e Case (2): p < 1, then by noting that log < 0 andp*** =1 < 0 for L > -1,
d
d—LA(L) >0forL > -1.

This proves that\(L) is increasing irL for L > —1. Therefore, there exists a unique value
L of L such that\(L) = 0. ThusE [W;_q] decreases with for L < L and increases with

for L > L. Note that [] denotes the largest integer that is not greater th&etL = [L] for

L = [[]. ForL > [L], setl = [L], if E[Wq)| < E[Wjii1q)]> andL = [[] + 1, otherwise.

Then,E [W;_q] decreases with for L < L andE [W_ o] increases with. for L > L.

By this proposition, we proved the existence and uniqueness of the optimal solution of
the other threshold parameterThat is, we need to choose only the proper valuke with
g fixed to be 0 in finding the set of parameter values of the threshold rule that gives the
minimum value for the overall system mean response time.

From the above two propositions, we easily see that, giyem andéd with q = 0,
the following algorithm gives the minimum value of the other threshold paraneteat
minimizes the overall system mean response time of a job arriving at the MF-PC network

model.
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Starting fromL = 0, while E[W_q| > E[W:+10], increasel by 1, and otherwise
stop. Then thell, 0] threshold policy brings the minimum value of the overall system

mean response tinte[W_q].

Job processing rate at Q b node (8) is 1 : Fixed parameter

Mean response time Tg

Job processing External job arrival
rate at Q,,. node rate to the system
|-092( M) Log,(A)

Figure 3.3: The overall system mean response figby the SOOLBP for each combina-
tion of the values oft andu

3.4 Results and Discussion

Through a number of numerical examples, we estimate the overall system mean response
time of the MF-PC network model, using a SOOLBP and a DOOLBP, for each combination
of the values of job arrival raté to the system, job processing ratat theQyr node, and

job processing raté at theQpc node. Since we have only three system parameltess

andd, we scale dowr to 1 and thus we have only two independent parameters. We denote

by Tp andTs, respectively, the overall system mean response times of the DOOLBP and
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Job processing rate at Q b node (0) is 1 : Fixed parameter
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Figure 3.4: The overall system mean response figby the DOOLBP for each combina-
tion of the values oft andu

SOOLBP.

Figures 3.3 and 3.4 show the overall mean response time of the system by the SOOLBP
and DOOLBP, respectively, for various combinations of the values of the system parameters
A andu. From these two figures, we can see that the overall system mean response time
offered by the two considered load balancing policies is in between 0 and 1. This is because
the Qpc Node dters a fixed expected service tigé and we scaled dowdito 1. Also, form
these two figures, it is easy to note that the overall system mean response time obtained by
the DOOLBP is better than that of the static one specially when the arrival rate¢he
system approaches the processing fatd the Qyur node. To estimate how much it is
better, we define the improvement ratio in the overall system mean response time to be the

ratio of the overall system mean response time of the DOOLBP over that of the SOOLBP

Ts-Tp
as
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Job processing rate at Q o node (0) is 1 : Fixed parameter

" 0.3
< 93°
o 015
F 0.1
' 0.05
¥ 0.0
| —

10

Job processing External job arrival
rate at Q,,. node rate to the system
Log (H) Log,(A)

Figure 3.5: The improvement ratio in the overall system mean response time by the
DOOLBP over the SOOLBP for each combination of the values afidu

Figure 3.5 shows the improvement ratio in the overall system mean response time with
respect tol andu. Figure 3.6 shows, for each given valuelpthe maximum improvement
ratio in the overall system mean response time with respeat tdhe results naturally
confirmed our forecast that the DOOLBP is mofEeetive than the static one. From the
two Figures 3.5 and 3.6, we can see that, in the model examined, the improvement ratio in
the overall system mean response time by the DOOLBP over the SOOLBP is at most about
30% in the range of parameter values examined while overhead due to the two policies are
not taken into account. Theftkrence is of a certain magnitude for the cases wheveu
for rather large values of both and it increasestandu increase. Figure 3.7 shows the

corresponding value @f that gives the maximum improvement ratio in the overall system
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Figure 3.6: The maximum improvement ratio in the overall system mean response time
(with respect tq:) by the DOOLBP over the SOOLBP for each valuetof
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Figure 3.7: The value qf that gives the maximum improvement ratio in the overall system
mean response time by the DOOLBP over the SOOLBP for each value of
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Figure 3.8: The overall system mean job response time by the DOOLBP for each combi-
nation ofL andq for the case oft = 1.4142135 angi = 2.2028464

mean response time for each given valua .oFrom this figure, we see that the maximum
improvement ratio in the overall system mean response time is achieved for the cases where
A ~ u for rather large values of both.

Another remarkable observation is that if thedj] threshold rule is used as the DOOLBP,
the minimum value of the overall system mean response time is achieved hy @n [
threshold rule, that is, the overall system mean response time can be minimized only by
suitably selecting the threshold paramdteand the other threshold parametgs not ef-
fective. Sincel is an integer and whose region is [(Ll) (note that [, 1] is identical to
[L + 1,0]), superficially it might look that the DOOLBP (i.e.l.[q] threshold rule) has a
continuous parameter + g to control. The DOOLBP, however, has only the discrete pa-
rameterL as the &ective parameter to control (see, e.g., Figure 3.8) whereas the SOOLBP

has a continuous paramefjr to control. The two Figures, 3.5 and 3.6, show seemingly
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peculiar behaviors concerning the improvement ratio in the overall system mean response
time as the values of system parameters change. This peculiarity is thought to come from
the contrast between the continuity in the control varighle for the SOOLBP and the
discreteness in the threshold paramétéor the DOOLBP.

3.5 Conclusion

We have studied two optimal load balancing policies. One is a static overall optimal load
balancing policy and the other is a dynamic overall optimal load balancing policy, for
a distributed computer system consisting of a single-server central §gge @nd an
infinite-server satellite nodeQec) connected by a communication network. The aim of
both policies is to minimize the overall system mean response time. By numerical exami-
nation, we have estimated thdfdrence in thefects on the overall system mean response
time between a dynamic overall optimal load balancing policy using lthg] threshold

rule and a static overall optimal load balancing policy. The results show that, in the model
examined, the dynamic overall optimal load balancing policy outperforms the static one
in the overall system mean response time, at most about 30% in the range of parameter
values examined while the overheads due to the two policies are not taken into account.
The diference is of a certain magnitude for the cases whevre: for rather large values of

both and it increases asandu increase. Another remarkable result is that, the minimum
value of the overall system mean response time is achieved by the dynamic overall optimal
load balancing policy ([, g] threshold rule) with the value of the threshold paramegter0

and the suitable selection of the other threshold paranhet&ihat is, we need to choose
only the proper value df with g fixed to be 0 in finding the set of parameter values of the

threshold rule that gives the minimum value for the overall system mean job response time.
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Chapter 4

A Comparative Study of Static and
Dynamic Individually Optimal Load
Balancing Policies in a Mainframe —
Personal Computer Network Model

4.1 Introduction

The growth of online Internet services during the past decade has increased the demand for
scalable and dependable distributed computing systems. These systems face high quality-
of-service requirements and concurrently serve many clients that transmit a large, often
bursty, number of requests. A distributed computer system is considered to be a collection
of autonomous computers (nodes) located at possilffgrdnt sites and connected by a
communication network. Through the communication network, resources of the system
can be shared by users affdrent locations. Performance enhancement is one of the most
important issues in distributed systems. The performance of a distributed computer system
can often be improved to an acceptable level simply by redistributing the load among the

nodes. The problem of load redistribution in distributed systems is claléetibalancing
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[93]. Load balancing for distributed systems has been an active research area for many
years and hence as a result, a number of load balancing policies have been proposed to im-
prove the performance of distribufpdrallel systems (e.g., to minimize the mean response
time of a job, to maximize the processing capacity of the system)ioyiently utilizing

the processing power of the entire system. Although a communication delay is incurred
in transferring a job from one node to another, the performance of a distributed computer
system can generally be improved by dieetive load balancing policy [51, 52, 59, 86, 92].

Load balancing policies may be either static or dynamic. For more information about static
and dynamic load balancing policies, see section 2.1 in chapter 2.

Traditional computer networks were designed and operated with the overall (system-
wide) optimization in mind. Accordingly, the actions of the network users were deter-
mined so as to optimize the overall network performance. Consequently, users would often
find themselves sacrificing some of their own performance for the sake of the entire net-
work. Recently, it has been recognized that the overall optimization may be an impractical
paradigm for the control of the modern (high speed and large-scale) networking config-
urations. Indeed, control decisions in large-scale networks are often made by each user
independently, according to its own individual performance objectives. Such networks are
henceforth calledhon-cooperative The individual optimumand theclass optimumare
considered to be two flerent ways to model the decision making in non-cooperative net-
works. The most common example of a non-cooperative network is the Internet. In the
current Transmission Control Protocol, each user adjusts its transmission window the max-
imum number of unacknowledged packets that the user can have circulating in the network

independently, based on some feedback information about the level of congestion in the
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network (detected as packet loss). Moreover, the Internet Protocol (both IPv4 and the cur-
rent IPv6 Specification), for example, provides the option of source routing that enables the
user to determine the path(s) its flow follows from source to destination [5, 6, 7, 91]. Also,
this kind of non-cooperative resource sharing problems can be observed at higher network
layers as well, such as the use of mirror database sites (FTP sites on the Internet providing
a good example), World-Wide Web servers and similar systems.

In this chapter, we propose two load balancing policies. One is a static individually
optimal load balancing policy (SIOLBP) and the other is a dynamic individually optimal
load balancing policy (DIOLBP). In these policies, every job strives to optimize (minimize)
its own mean response time independently of the other jobs. In this optimized situation,
each job cannot expect any further benefit by changing its own decision. Itis also assumed
that the decision of a single job has a negligible impact on the performance of other jobs.
According to the individually optimal policy, jobs are scheduled so that every job may feel
that its own expected response time is minimized if it knows the expected node delay at
each node. In other words, when the individually optimal policy is realized, the expected
response time of a job cannot be improved further when the scheduling decisions for other
jobs are fixed, and the system reaches an equilibrium. It appears that this policy is closely
related to a completely decentralized scheme in that each job itself determines on the basis
of the information of the mean node delay which node should process it. The performance
of these two policies is compared in a distributed computer system where truly optimal so-
lutions of the SIOLBP and the DIOLBP have been characterized. The analytical tractability
of the model encourage us to perform such comparison analytically, for this reason, we do
not take account of the flierence in the overheads due to the two load balancing policies.

We focus on two main issues. The first issue is to examine to what extent the DIOLBP
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policy outperforms the static one by an exhaustive numerical investigation on a model for
which both policies are analytically studied. The second issue concerns the examination of
the job flow trdfic in the proposed system model under the two load balancing policies.

While there have been some studies of performance comparison between dynamic and
static load balancing policies in more sophisticated models where overheads are considered
[41, 97, 98], the truly optimal dynamic policy is not accurately obtained in contrast to the
model considered here.

The results obtained here show that, in the model examined, the DIOLBP outperforms
the static one in the overall mean response time, at most about 48% in the range of pa-
rameter values examined while the overheads due to the two policies are not taken into
account. The dierence is of a certain magnitude for the cases wheve: for rather large
values of both and it increases .aandyu increase. We also examined the job flowffia
in the proposed system model under the SIOLBP and the DIOLBP. We found that, there is
a difference between the ratio that a job arriving at the system goes @h@nder the
SIOLBP and the DIOLBP. That fference is of a certain magnitude for the cases where

~ u for rather large values of both and it decreases asdyu increase.

4.2 Model Description and Assumptions

We consider a distributed computer system model as shown in Figure 4.1. The model con-
sists of two types of service facilities, a Mainframe n@jg- and an unlimited number of
Personal Computer nod€c, both of which are connected by a communication network.
We call this system model thdF-PC network modelThis model is absolutely identical

to the model which is considered throughout Chapter 3. We assume that the expected com-

munication delay between tl@yr node and th&pc node is negligible. Jobs arrive at the
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Figure 4.1: A model of an MF-PC network system

system according to a time-invariant Poisson process, i.e. inter-arrival times of jobs are in-
dependent, identically and exponentially distributed with meahn $imultaneous arrivals
are excluded. A job arriving at the system may be processed either theaode or by
the Qpc Node according to load balancing policies. We assume that the service @je at
node isu and that its service discipline is processor sharing whereby the service rate for
each job equalg(n) = u/n when the number of jobs in th@yr node isn. The Qpc Node
offers a fixed expected service timie!. We assume that at bofQyr and Qpc, Service
times are independent, identically and exponentially distributed.

The model we consider here is analytically studied in [25] and is motivated in part by
the following scenario.

Potential computer users, each requiring the use of a computer to execute a given job,
arrive sequentially at a computer facility. Each user upon arrival, may choose between the

following two options: either connect to a central mainframe nQge, which is normally
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serving many users in parallel; or use a personal computer @pde Each user (job)
is interested in minimizing his own response time individually (i.e., independently of the
other users in the system). For more information about the real applications of the model

considered here, see section 3.1 in chapter 3.

4.3 Two Optimal Load Balancing Policies

In the following two subsections, we present static and dynamic individually optimal load

balancing policies and their solutions.

4.3.1 Static Individually Optimal Load Balancing Policy (SIOLBP)

In this policy, the decision of transferring a job from one node to another does not depend on
the state of the system, and hencstaticin nature. Also, we assume that a job transferred
from one node to another receives its service there, and is not further transferred. According
to the individually optimal policy, jobs are scheduled so that every job may feel that its own
expected response time is minimum if it knows the expected node delay at each node. In
other words, when the individually optimal policy is realized, the expected response time
of a job cannot be improved further when the scheduling decisions for other jobs are fixed,
and the system reaches an equilibrium [41, 97, 98]. It appears that this policy is closely
related to a completely decentralized scheme in that each job itself determines on the basis
of the information of the mean node delay which node should process it.

We use the following notation:
e Bur: Job processing rate (load) at tQgr node.

e Bpc: Job processing rate (load) at tpc node.

58



CHAPTER 4. STATIC VS. DYNAMIC INDIVIDUALLY OPTIMAL LOAD BALANCING POLICIES

e Fur(Bur): Expected delay of a job processed at @ node.

With the considered model we have:
1

Fue(Bve) =3 K~ Bwr
00 otherwise

if Bur <u,

The static individually optimal load balancing policy is formulated as the problem of

minimizing the mean response time of each job which is expressed as
D(Buir) = min{Fue(Bur). 07"} (4.1)
with respect tggyr such that < By < A.

Definition 4.3.1 By is said to satisfy the equilibrium conditions for the static individually

optimal policy if the following relations hold:

Fue(Bue) > 67, Bur =0, (4.2)
Fur(Bur) <67 Bur =4, (4.3)
Fur(Bue) = 071, 0<fBur < 4, (4.4)

subject to the total follow constraint

Bur + Bpc = 4. (4.5)

4.3.2 Dynamic Individually Optimal Load Balancing Policy (DIOLBP)

We assume that the users are self-optimizing, so that each wishes to minimize his own
response time. By this policy, each arriving job may observe the current load @ythe

node, and then choose whether to join the shared mainframe or to remairQtthede.
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A class of threshold load balancing policies have been shown to be useful when jobs
are completely independent and consists of single threads of control. This situation is fairly
common in networks of workstations. Such threshold policies contain control parameters
(e.g. threshold values and transfer probability for every host), that require fine-tuning in
order to yield optimal or near optimal performance. For more information about the use of
the threshold load balancing policies see [25, 40, 59, 82, 87, 92, 94].

We use thell, g] threshold rule as a dynamic individually optimal load balancing policy.

In this rule, an arriving job will go to th&yr node with the probability of, respectively, O,
g, and 1, if the arriving job finds that tH@yr node has, more than, equal to, and less than,
L jobs.

Given the system parametetsu, andé, we use the algorithm of Altman and Shimkin
[25] to compute the optimal valugs andqg® of the control parametetsandq that satisfy
the equilibrium in between the two system facilities. This algorithm can be summarized as

follows:

Equilibrium Threshold Algorithm

The equilibrium thresholdl*, g*] is determined by the following procedure.
L* =min[L > 0: V(L,[L,1]*) > 6]
If V(L*,[L*,0]°) > 671, then the equilibrium threshold i&1, 0].
If V(L*,[L*,0]°) < 671, then the equilibrium threshold it 1, g*], where O< g* < 1 is

the unique solution of
V(LS [LgT®) =671 (4.6)

where:
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e V(n,[L,q]*®) is the expected service time of an arriving job if it joins QgF node

at queue length (0 < n < L) while all subsequent jobs are using the threshold rule

[L.al.

First, we determine the service timégL, [L, g]*) and then, we obtain the solutiap
of equation 4.6 as follows:
Fix [L, q] and definev(n) := V(n,[L, g]*). ThenV(n), 0 < n < L, is the solution of the

following set ofL + 1 linear equations:

V(n) = é a(n A 1)V(n 1)+ V(n +1), O<n<L-2 (4.7
V(L-1) = i “(LaL Dy -2+ V(L) (- qMV(L 1), (4.8)
V(L) = ;% + o i V(L -1) (4.9)

wherea = A + u. These equations follow from the memoryless property of the system,
which implies thatV(n) equals the expected remaining service time of any user present
at queue lengtim + 1. Thus,V(n) equals the expected time till the next transitian'(in

the first equations), plus the expected remaining service time after that transition. These
equations can obviously be solved numerically for each giteg]{ however, in order to
obtain the optimal threshold in closed form we use a more explicit solution as follows. By

4.7,V(n) can be expressed as

V(n) = a(n)V(0)+ b(n), 0O<n<lL, (4.10)

where the coicientsa(n) andb(n) are obtained recursively by substituting 4.10 into 4.7,

61



CHAPTER 4. STATIC VS. DYNAMIC INDIVIDUALLY OPTIMAL LOAD BALANCING POLICIES

which yields

an+1) = % [(ﬂ + )a(n) - ﬂ%la(n - 1)] . nx1, (4.11)

b(n + 1)

% |G+ Dby - a0 -1 -1|, n=1 (4.12)

with initial valuesa(0) = 1, a(1) = (a/1), b(0) = 0, b(1) = —1~1. Note that these coie-
cients do not depend dnandg. So,V(0, [L, q]) is obtained by substituting/(L) from 4.9
into 4.8 and then substituting(L — 2) andV(L — 1) from 4.10 as follows:

pt = bl - 1) — g i(b(L) - b(L - 1))
Lall-1)+qgalLl)-alL-1)

L+1

(4.13)

V() =

V(n) can now be obtained from 4.10 to 4.13. Hence, the equilibrium threshold can be cal-
culated. First, we compute as follows:

L* = min|L > 0: V(L [L.1]°) > ¢71|. If V(L",[L",0]) > ¢%, theng" = 0. Other-
wise, 0< g° < 1 is computed as the unique solution of 4.6. Using 4.9, 4.10, and 4.13,

V(L*, [L*, g]*) can be expressed as a functiorgatthose solution is

alL) —a(L*-1)

q = ct a(L*) (9_1 - /J_l - L*L:_ 1b(|—* - 1))
; L*Lj_ - ((L7) - b(L" - 1))] , (4.14)

whereC £ y= 1 —671/(L* + 1).

For more details about the computatiorgh, [L, g]*°) and the optimality of this algo-
rithm see [25].

After computing the optimal values® andg* of the control parameters and g that
satisfy the equilibrium in between the two system facilities, the mean response time of a

job arriving at the system with threshold*[ g*] is computed using equation 3.4.
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Job processing rate at Q Pcnode (0) is 1: Fixed parameter
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Figure 4.2: Mean job response tirfig by the SIOLBP for each combination of the values
of 2 andu

4.4 Results and Discussion

Through a number of numerical examples, we estimate the mean response time of a job

arriving at the MF-PC network model for each combination of the values of job arrival rate

A to the system, job processing ratat theQyr node, and job processing ratat theQpc

node. Since we have only three system paramaterandd. Without a loss of generality,

we scaled dowm to 1 and thus we have only two independent parameters. We denote by

Ts andTp, respectively, the mean job response times with the SIOLBP and DIOLBP.
Figures 4.2 and 4.3 show that the mean response time of a job arriving at the system

by the SIOLBP and DIOLBP, respectively, for various combinations of the valu¢sod

u. From these two figures, we can see that the mean job responsefierexidy the two
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Job processing rate at Q PCnode () is 1: Fixed parameter
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Figure 4.3: Mean job response tirig by the DIOLBP for each combination of the values
of A andu

considered load balancing policies is in between 0 and 1. This is becau§pdhede

offers a fixed service timeg ! and we scale dowéto 1. Also, form these two figures, it is

easy to note that the mean job response time obtained by the DIOLBP is better than that of
the static one specially when the arrival rate the system approaches the processing rate

u of the Qur node. To estimate how much it is better, we define the improvement ratio in
the mean job response time to be the ratio of the mean job response time of the DIOLBP
over that of the SIOLBP a-erT_—STD. Figure 4.4 shows the improvement ratio in the mean
job response time with respect foandu. From that figure, we can see that the mean
response time is improved by the DIOLBP over that of the SIOLBP at most about 48% in

the range of parameter values examined while the overheads due to the two policies are not
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Job processing rate at Q PCnode (0) is 1: Fixed parameter
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Figure 4.4. The improvement ratio in the mean job response time by DIOLBP over the
SIOLBP for each combination of the valuesoandu

taken into account. The maximum improvement ratio is achieved for the casesivhere
for rather large values of both and it increasestandu increase. The results naturally
confirmed our forecast that the DIOLBP is mofeetive than the static one.

Since theQpc node dfers a fixed expected service timeY). We computed thQyr
node mean job response time by the SIOLBHATs) and the DIOLBP MFTp) to see the
effect of these two policies on it. By the SIOLBP, tg, node mean job response time
is the same as the mean response time of a job arriving at the system (see Figure 4.2), this
is because when the two system service facilities are usedQhenode response time
equals that of th&pc node ¢~1). The Que Node mean job response time by the DIOLBP

is shown in Figure 4.5. From that figure, it is noticed that@yg- node mean job response
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Job processing rate at Q F,Cnode (0) is 1: Fixed parameter
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Figure 4.5: Mean job response time of Qgr node by the DIOLBP for each combination
of the values oft andu

time decreases asdecreases fromég2o V26 which is unusual and then starts to increase
again ag: decreases from/26 to 6. This is because, when= 26, the optimal values of the
threshold parametetsandqg areL = 1 andqg = 1, which is equivalent tk. = 2 andq =0
and au — V26, the value ofy gradually decreases until it becomes zerp at V26. This
explains why theQyur node mean job response time decreases @screases fromé2o
V2. Whenu decreases fromy26 to ¢ the optimal values of the threshold parameteamd
gareL = 1 andqg = 0 (whatever the values dfandu). Which means that only on job could
be in theQur node and hence, it's expected response timeis So that theQur node
mean job response time increasegw @ecreases from/26 to 6. This directly explains the

. . — . . MFTs—MFT
peculiarity obtained in Figure 4.6 which presents the improvement rﬂ%—W)
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Job processing rate at Q F)Cnode (©) is 1: Fixed parameter
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Figure 4.6: The improvement ratio in tl@yr node mean job response time by the DI-
OLBP over the SIOLBP for each combination of the valueg ahdu

in the Qur Node mean job response time.

To examine the job flow tféic in the proposed system model under the two load bal-
ancing policies, we compute the ratio that an arriving job at the system g@ag-toode
under the SIOLBP and the DIOLBP, denoted®yandRy, respectively. Figure 4.7 presents
IRs— Ryl since in this figure, it is not easy to see exactly what going orjRyxeRd < 0.21,
we computev|Rs — Ry| which is a magnification for the flerence between the two ratios
for various combinations of the values.bfindu as shown in Figure 4.8. From that figure
one can notice that almost there is nfelience betweeR; andRy whena is significantly
smaller than, the maximum dierence betweeR; andRy is achieved for the cases where

A ~ u for rather large values of both and it decrease$ asdyu increase.
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Job processing rate at Q PCnode (0) is 1: Fixed parameter
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Figure 4.7: The absolute value of thétdrence between the ratio that an arriving job at the
system goes to th@yr node under the SIOLBP and the DIOLBP (i/&; — Ry|) for each
combination of the values af andu

As exemplified by Figure 4.9, through the course of the numerical experimentation,
we observed that if thel] g] threshold rule is used as a DIOLBP, in this case both of the
control parameterk andq have a €fect in satisfying the equilibrium in between the two
system facilities. And, also as exemplified by Figure 4.9, it is noticed that the equilibrium

threshold parametdris a decreasing function afand it approaches/6.

4.5 Conclusion

We have studied two optimal load balancing policies, static individually and dynamic indi-

vidually, for a system consisting of a single-server central nQig { and an infinite-server
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Job processing rate at Q PCnode () is 1: Fixed parameter
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Figure 4.8: The square root of the absolute value of tiemince between the ratio that an
arriving job at the system goes to tRg,r hode under the SIOLBP and the DIOLBP (i.e.,
VIRs — Ryl) for each combination of the values . ofndu

satellite node Qpc) connected by a communication network. By numerical examination,
we have estimated the rate offérence in the ffects on the mean job response time be-
tween a SIOLBP and a DIOLBP using threshdldqj].

We have observed that the improvement ratio in the mean response time by the DIOLBP
over the static one is at most about 48% in the model examined while the overheads due to
the policies are not taken into account. The improvement ratio is of a certain magnitude for
the cases where ~ u for rather large values of both and it increased amdu increase.

We also examined the job flow fi& in the proposed system model by computing the ratio
that an arriving job at the system goesQgge node under the SIOLBP and the DIOLBP.

The results show that, there is afdrence between the ratio that a job arriving at the

69



CHAPTER 4. STATIC VS. DYNAMIC INDIVIDUALLY OPTIMAL LOAD BALANCING POLICIES

Job processing rate at Q. node is 5

34t Job processing rate at Q MFnode is 100

Equilibrium Threshold L+q

0 50 100 150 200 250 300 350

External job arrival rate to the system
(A)

Figure 4.9: L+q as a function of the external job arrival raitéo the system

system goes to th@yr under the SIOLBP and the DIOLBP. Thati@rence is of a certain
magnitude for the cases whete- u for rather large values of both and it decreases as
andu increase.

Through the course of the numerical experimentation, we observed that iEthE [
threshold rule is used as a DIOLBP, in this case both of the control paranieterdq
have a €ect in satisfying the equilibrium in between the two system facilities. And also,
it is noticed that the equilibrium threshold paramdtes a decreasing function afand it

approacheg/6.
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Chapter 5

Numerical Studies on a Paradox for
Non-Cooperative Static Load Balancing
In Distributed Computer Systems

5.1 Introduction

Tasks that require huge computations and process colossal quantities of data are now nu-
merous and diverse. Such is the case of meteorological or climate prediction, computing
the aerodynamic behavior of a new model of aircraft, deciphering the genome of a living
organism or detecting the elementary particles produced by an accelerator, to name but a
few. These tasks are also becoming increasingly ambitious, and thus more and more de-
manding in terms of computing power, data flow and memory capacity. How can computer
infrastructure meet these continuously growing needs?

The performance of the hardware and software available in each computing center or
to each individual user is rising very sharply. This trend is not howevécgnt to meet
the many challenges that face science, technology and industry. The computing power in
hardware doubles every 18 months or so, on the average, whereas storage capacity doubles

every 12 months and the performance of network connections doubles every 9 months.
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Thus, the performance of computers improves less rapidly than that of networks. There-
fore, a potentially revolutionary concept has been developing for six to seven years. The
idea is to link geographically distant equipment together, especially via the Internet, to con-
stitute a network that combines the computing power, storage capabilities and so forth of
all its users. Each of these users will thus be able to use the sum of available resources
in terms of computing power, memory, software and data, put in by all the other users of
the network. This is the basic idea behind computing grids. It means that computer re-
sources are simultaneously globalized and dematerialized [67]. The model considered in
this chapter could be considered as a basic model foGRED computing infrastructure.

The exponential growth of computer networking, in terms of number of users and com-
ponents, tréic volume and diversity of service, demands massive upgrades of capacity in
existing networks. Traditionally, capacity design methodologies have been developed with
a single-class networking paradigm in mind. This approach overlooks the non-cooperative
structure of modern (high speed and large-scale) networks and entails, as will be explained
in the sequel, the danger of degraded performance when resources are added to a net-
work, a phenomenon known as tBeaess Paradox The term non-cooperative is used
to characterize networks operated according to a decentralized control paradigm, where
control decision are made by each user independently, according to its own individual per-
formance objectives. Thadividual optimumand theclass optimunare considered to be
two different ways to model the decision making in non-cooperative networks. The most
common example of a non-cooperative network is the Internet. In the current Transmis-
sion Control Protocol, each user adjusts its transmission window the maximum number of
unacknowledged packets that the user can have circulating in the network independently,

based on some feedback information about the level of congestion in the network (detected
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as packet loss). Moreover, the Internet Protocol (both IPv4 and the current IPv6 Specifica-
tion), for example, provides the option of source routing that enables the user to determine
the path(s) its flow follows from source to destination [5, 6, 7, 91]. Also, this kind of non-
cooperative resource sharing problems can be observed at higher network layers as well,
such as the use of mirror database sites (FTP sites on the Internet providing a good exam-
ple), World-Wide Web servers and similar systems. In fact, the problem extends beyond
the realm of networking. Multiprocessor systems that are shared by noncooperative tasks
provide yet another field for the potential application of the present study.

Intuitively, we can think that the total processing capacity of a system will increase
when the capacity of a part of the system increases and so we expect improvements in
performance objectives accordingly in that case. The famous Braess Paradox tells us that
this is not always the case; i.e., adding capacity to the system may sometimes lead to the
degradation in the benefits of all users in an individual optimum [10, 19, 26, 27, 42, 66, 89].

As it is known that the class optimum converges to the individual optimum as the num-
ber of classes becomes large [3], we can expect that, in the class optimum, a similar type of
paradox occurs (with large number of classes), i.e., increased capacity of a part of the sys-
tem may lead to the degradation in the benefits of all classes in a class optimum, whenever
it occurs for the individual optimum. Indeed in [5], Korilis found some examples wherein
the Braess-like paradox appears in a class optimum where all user classes are identical in
the same topology for which the original Braess Paradox (for the individual optimum) was
in fact obtained. Furthermore in [6], he also obtainedfé@ant condition under which the
Braess Paradox should not occur in a more general model that has one source-destination
pair and identical user classes.

In [38], Kameda obtained, however, numerical examples where a paradox similar to
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Braess’s appears in the class optimum but does not occur in the individual optimum in the
same environment. These cases look quite strange if we note that such a paradox should
never occur in the overall optimum and if we regard the class optimum as an intermediate
between the overall optimum and the individual optimum.

In [43], it has been shown that the worst-case degree of the paradox (WCDP) may
increase without bound in class optimum where the values of parameters of all classes are
identical and also it has been shown that this strange behavior (i.e., the WCDP may increase
without bound) does not occur for the overall and individual optimum, in the same setting
of the system parameters. To the best of our knowledge, [43] is the first paper that reported
such a case where the WCDP can increase without bound. Based on [43] some questions
arise like, under what conditions in the class optimum this strange behavior appears? If we
slightly change the system parameter setting to represent asymmetric system model, what
will happen to this strange behavior? Will it increase (decrease)? If itincreases (decreases),
will this increase (decrease) be rapid or slow? And finally, what will be the overall tendency
of the WCDP? The algorithms used to obtain the optima and the equilibria are based on the
algorithms given in [15, 41, 45, 50, 74].

In this chapter, we answer these questions through a number of numerical examples
around the Braess-like paradox wherein adding a communication capacity to the system
for the sharing of jobs between nodes leads to the performance degradation for all users in
the class optimum for static load balancing. Each node in the system has, at its disposition,
a communication means, which it may use to forward to other nodes an arbitrary portion
of its job arrival stream. We considered thre&eatient types of communication means (A),

(B) and (C). Based on the system parameter setting, three types of symnieeesl|

symmetry, individual symmetry and complete symmate/defined. From the numerical
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examples, it is observed that in the class optimum, the WCDP is largest (i.e., the worst
performance is obtained) in the complete symmetry case when the arrival rate approaches
the processing rate. And, as the system parameter setting gradually departs the above-
mentioned symmetric case without keeping any kind of symmetries, the WCDP decreases
rapidly. It decreases slowly (slower) if the system parameter setting gradually departs the
complete symmetry while keeping the individual (overall) symmetry property. Indeed, it is
also observed that in complete symmetry, as the arrival rate approaches the processing rate,
the WCDP converges to a certain limit if any of the communication means of types (A) and
(B) is used and it may increase without bound if the communication means of type (C) is
used. A final point is that, using any of the communication means of types (A) and (B), the
WCDP increases as the numiseof channels in every communication line increases and

it is noticed that ifs > 1, the WCDP increases to at most abg(g times of that obtained

with the same parameters setting but wsth 1.

5.2 Model Description and Assumptions

We consider a distributed computer system that consista nbdes (host computers or
processors) connected with a communication means as shown in Figure 5.1. Nodes are
numbered 12,...,m. Each node consists of a single exponential server with service rate
ui(i = 1,2,...,m). We classify jobs arriving at nodeinto classi, i = 1,2,...,m. Jobs

arrive to node according to a time-invariant Poisson process, with the average external
arrival rate¢;, out of which the ratex; of jobs are processed at nodeThe ratex;; of

jobs is forwarded upon arrival through the communication means to anotherjr{gde

to be processed there and the results of processing those jobs are returned back through the

communication means to nodeWe assume further that a transferred job from notie

75



CHAPTER 5. STUDIES ON A PARADOX FOR NON-COOPERATIVE STATIC LOAD BALANCING

node|j (# i) receives its service at nodeand is not transferred to other nodes., each
job is forwarded at most onceYhen, it follows thaty,, X, = ¢, X; > 0,i,j=1,2,...,m.
We denote the vectorx, X2, - - - , Xim) by X;i and the vectorxy, X, - - - , Xm) by X. Thus,

X = (X11, X12, -+ » Xams X21, X22,°  * » Xom, * * * » Xmm). Denote the set ok’s that satisfy the
constrains by and the total arrival rate to the systemdyhenced = 3., ¢,. Each node
has one decision maker, also numbeirgd= 1,2, --- , m. Within these constrains, a set of
values ofx;j, (i, j = 1,2,--- ,m) are chosen to achieve the optimization. The load on node
is 3q Xqi and is denoted by;. The expected processing¢luding queueingtime of a job
that is proceeded at nodgs given by:

o if Bi < i
Di(B) = Hi—Bi A
00 otherwise

The expected communicatiom¢luding queueingtime of forwarding a job arriving at
nodei to nodej and sending it back after processing from ngtienode, (i # j) is denoted
by Gj;(x). We refer to the length of time between the instant when a job arrives at a node
and the instant when it leaves one of the nodes, after all processing and communication, if
any, are over athe response timir the job. Thus the expected response time of a job that

arrives at nodeis given by:

T = 2 3 %Tul) (5.1)
'k
where
Ti(x) = Di(B), (5.2)
Tij(X) = Dj(ﬂj) +Gij(X), for j #i (53)

Then, the overall expected response time of a job that arrives at the system is given by:
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' node 3 '
node 2 node 4

node 1 Comm. Network

Jobs transferred xX.. W

from node j to node i

node m
Cl)i f A — ) ij
External arrivals i L Resource: Jobs transferred
to node i . and :| from node ito node j
1 queues —
........... y Bi
node i Jobs completed
at node i

Figure 5.1: A distributed computer system

T = 2 > 0T 5.

As we mentioned in chapter 1, section 1.1, in many systems including communication
networks and distributed computer systems, we may have several distinct objectives for
performance optimization. Among them, we have the following three typical objectives or

optima:
1. The overall optimunis given byx that satisfies the following,

T(X) =minT(x) suchthat x € E. (5.5)
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2. The individual optimunis given byX that satisfies the following for ali|

Ti(X) = min{T;,(X)}, such thatX € E. (5.6)
p

3. The class optimum (or Nash equilibriums)given byx that satisfies the following for

all'i,
'|:i =Ti(X) = IT)](II’I Ti(f(_(i); Xi), such that(f(_(i); Xi) € E, (5.7)

where &_g; X;) denotes thenmdimensional vector in which the elements corresponding
to X; have been replaced respectivelyhy

In [23, 97] it is shown that the three problems (5.5), (5.6) and (5.7) are equivalent to
some variational inequalities. For the existence and uniqueness of those optima the reader
is referred to [23, 24]. In [45], it has been shown that no mutual forwarding of jobs occurs
in overall and individual optima. Consequentip paradoxoccurs in overall and individual

optima. In this chapter, we consider only the class optimum.

5.3 Communication Means

As to the communication means, we consider the following three types (A), (B) and (C).
(A) It consists ofm(m-1) two-way communication lines. The two-way communication
line ij is used for forwarding of jobs that arrive at noid® nodej (# i) and for sending
back the processed results of these jobs to nodeach communication line connecting
nodei to nodej consists ofs communication channels. Each communication channel is
chosen randomly with probability/$ and is modelled by a processor sharing server with
service rate 1f; i.e., the mean communication (without queueing) time iBhus, the ca-

pacity of each communication channel j&.1We assume that the expected communication
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(including queueinptime of a job arriving at nodeand being processed at nopé# i) is

expressed as

t . it
LI LY
Xijt S
Gij(x) = TS
00 otherwise.

(B) It consists of a single communication line that is used commonly in forwarding
and sending back of jobs that arrive at all nodes in the system. The assumption on the
communication line is the same as in type (A) except that there is only one communication
line which is used for forwarding and sending back jobs arriving at all nodes in the system.
Thus, the expected communicatidndluding queueingtime of a job arriving at node

and being processed at nofé# i) is expressed as

t LAt
— if — <1,
G 1 At S
ij(z) = S
00 otherwise,
m m
whered = Z Z Xik Is the communication tfac through the line (network tfac).
i=1 k=1,(k#i)

(C) It consists of a single or multiple communication line that has no queueing delay.
Thus, the expected communication time of a job arriving at nade being processed at

nodej (# i) is expressed as

Gij(x) =t.

5.4 Worst-Case Degree of the Paradox (WCDP)

For each set of datg andy;, i = 1,2,--- ,m, we can find some valu® (depending upon

the set of data) of the mean communication time such that the communication line is not
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used any more at equilibria if the mean communication time is largertthaRor the set
of datag; andy;, i = 1,2,--- ,m, we increase the communication time from Qtto For
eacht we compute the class optimum (Nash equilibrium).
We focus our attention on the degradation that may occur as a result of increasing
the communication capacity. To this aim we say th&@raess-like paradowccurs if the

following holds:

6i(ty, ) >0 forall i

for somei,t, such thatO < t; < to, (5.8)

Ti(ty) — Ti(t)
Ti(t2)
computed at the unique (Nash) equilibrium, when the mean communication time is

whereg;(ty, tp) = andT;(t) denotes the mean response time for clgess,

For simplicity, we only consider the case wheaye= t* equivalently, the system has
no communication means and we denf(g t) by Ai(t). Denoteg= (¢4, ¢2,- - , $m) and
pu= (u1,p2,- -+ ,um). Thus, we define the worst-case degree of the parallgx ¢)) as

follows:

[, ¢) = maxmin(a; (0} (5.9)

5.5 Types of Symmetries

Based on the system parameter setting, we define the following types of symmetries among

nodes of the system.
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5.5.1 Overall Symmetry

If the following condition holds

Hi
(ui — ¢1)?

then according to [41, 45], there is no forwarding of jobs among nodes for any value of the

= constantfor all i, (5.10)

communication channel capacitytlfor the cases (A), (B) and (C) of the communication
means, when the system is at the overall optimum. If condition (5.10) holds, in this case,

we say that we have an overall symmetry property among nodes.

5.5.2 Individual Symmetry

If the following condition holds

= constantfor all i, (5.11)
Hi — i

it can be proved from definition (5.6) that at the individual optimum there is no forwarding
of jobs among nodes for any value of the communication channel capdtifgrthe cases
(A), (B) and (C) of the communication means. If condition (5.11) holds, in this case, we

say that we have an individual symmetry property among nodes.

5.5.3 Complete Symmetry

If both conditions (5.10) and (5.11) hold or equivalentlyuif = u, = --- = uy and
$1 = ¢ = -+ = ¢m, then we say that we have a complete symmetry among nodes. In
complete symmetry, according to [45], there is no forwarding of jobs both in the overall

and individual optima.
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5.5.4 No Symmetry

If the following condition holds

4 constantfor all i, (5.12)

Hi — i
in this case, we say that there is no symmetry property among nodes.

5.6 Results and Discussion

We answer the questions raised in section 5.1 through a number of numerical examples
around the Braess-like paradox wherein adding a communication capacity to the system
for the sharing of jobs between nodes leads to the performance degradation for all users in
the class optimum for static load balancing. These examples are classified according to the

type of symmetries among nodes of the system as follows:

5.6.1 Complete Symmetry Maintained

In Figure 5.2 and table 5.1, witm = 2 (i.e., the system has two nojlese show the
effect of changing;; = u while keepingg; = ¢ = 1 (i.e., the complete symmetry property
is maintainedl on the WCDP using the communication means of type (C). As shown in
Figure 5.2 and table 5.1, by using the communication means of type (C), the WCDP may
increase without bound as the arrival ratepproaches the processing rate

Also, in the tables 5.2, 5.3 and 5.4 with = 2, 4, 8 respectively and = 1 (i.e, every
communication line has only one communication chanmed show the #ect of changing
ui = p while keepingg; = ¢ = 1 (i.e., the complete symmetry property is maintajned

and also, we show theffect of increasing the numben of nodes in the system on the
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WCDP using the communication means of type (A) when the processing agieroaches
the arrival ratep. As shown in the tables 5.2, 5.3 and 5.4, by using the communication
means of type (A), the WCDP converges to a certain limit as the arrival rate approaches the
processing rate and it increases as the numa&rnodes in the system increases. It is very
important to note that, the results obtained when the communication means of type (B) is
used show the same tendency to those of type (A).

Generally, from the previous results, we can say that in complete symmetry, as the
arrival rate approaches the processing rate, the WCDP converges to a certain limit if any of
the communication means of types (A) and (B) is used and it may increase without bound

if the communication means of type (C) is used.

% 10000 (5.13)

H1—d1  p2— @2

Note: under condition (5.13), the obtained valuesspére very close to the corresponding

values ofy;.

Table 5.1: The fect of changing: while keepingy = 1 on the WCDP in complete sym-
metry withm = 2 using the communication means of types (C), when the processing rate
approaches the arrival rate

7 1.01 1.001 | 1.0001 1.00001
I'(%) | 1250.0| 12500.0| 125000.0, 1249999.998

To see what will happen if the system parameter setting gradually departs the complete
symmetry property, using the communication means of types (A) and (C), we examined a
distributed computer system that consists of two serniezs (n=2) ands = 1. We show

typical numerical examples, by changing the system parameters values for each of the three
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Figure 5.2: The WCDPI)) in complete symmetry given the valuespind¢ = 1 with
m = 2 using the communication means of type (C)
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Figure 5.3: The WCDPI)) in complete symmetry given the valuespind¢ = 1 with
m = 2 ands = 1 using the communication means of type (A)
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Table 5.2: The ffect of changing: while keepingp = 1 on the WCDP in complete symme-

try with m = 2 ands = 1 using the communication means of types (A), when the processing
rate approaches the arrival rate

1.01
34.8587

1.001
35.3052

1.0001
35.3503

1.00001
35.3510
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Figure 5.4. The WCDPI)) in complete symmetry given the valuesiobind¢ = 1 with
m = 4 ands = 1 using the communication means of type (A)

Table 5.3: The fect of changingt while keepingp = 1 on the WCDP in complete symme-
try with m = 4 ands = 1 using the communication means of types (A), when the processing
rate approaches the arrival rate

J7i

1.01

1.001

1.0001

1.00001

(%)

73.5149

74.8501

74.9849

74.9851
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=]

Worst-case degree of the parado

Figure 5.5: The WCDPI)) in complete symmetry given the valuespbndg¢ = 1 with
m = 8 ands = 1 using the communication means of type (A)

Table 5.4: The ffect of changingt while keepingp = 1 on the WCDP in complete symme-

try with m = 8 ands = 1 using the communication means of types (A), when the processing
rate approaches the arrival rate

u 1.01 1.001 1.0001 | 1.00001
I'(%) | 120.2931| 123.3942| 123.7087| 123.7124
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directions: overall, individual and no symmetry property is maintained. In particular, we
consider a family of systems for which condition (5.13) holds for the cases with overall,
individual and no symmetry property is maintained. We have added condition (5.13) to be
sure that; is very close tq; to be able to see what will happen to the WCDP if the system

parameter setting gradually departs the complete symmetry property.

5.6.2 Overall Symmetry Maintained

The two Figures 5.6 and 5.9 show how the WCDP depends on the combinajioraod

' i iti M1 H2
, with ¢; and iven by condition (5.13) ang =
e o 729 d 5-13) 1= 1) (42— ¢2)?
symmetry property is maintained) using the communication means of types (A) and (C)

(i.e., overall

respectively.
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Figure 5.6: The fect of changing the system parameters while keeping the overall sym-
metry property among nodes on the WCDP using the communication means of type (A)

From the two Figures 5.6 and 5.9, it is observed that the WCDP gets it's maximum

value whernu; = u, and thusg; = ¢, (i.e., in complete symmetry) and it increasesuas
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Figure 5.7: The ffect of changing the system parameters while keeping the individual
symmetry property among nodes on the WCDP using the communication means of type

(A)

andu, increase. It decreases slowly as the system parameter setting gradually departs the

complete symmetry while keeping the overall symmetry property.

5.6.3 Individual Symmetry Maintained

The two Figures 5.7 and 5.10 show how the WCDP depends on the combinatioarcd

U2, with ¢, and¢, given by condition (5.13) and 1 = = (i.e., the individual
Hi—¢1 2 — 2
symmetry property is maintained) using the communication means of types (A) and (C)

respectively.

From the two Figures 5.7 and 5.10, it is observed that the WCDP gets it's maximum
value whenu; = u, and thus,g; = ¢, (i.e., in complete symmetry) and it increases as
11 anduy increase. It decreases a little bit more rapidly than that obtained in the overall
symmetry case as the system parameter setting gradually departs the complete symmetry

while keeping the individual symmetry property.
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Figure 5.8: The ffect of changing the system parameters without keeping any kind of
symmetry among nodes on the WCDP using the communication means of type (A)

5.6.4 No Symmetry Maintained

The two Figures 5.8 and 5.11 show how the WCDP depends on the combinatiparcd

U2, With ¢, and ¢, given by condition (5.13) and b _ 9 (i.e., no symmetry
Mi—¢1  H2—¢2
property is maintained) using the communication means of types (A) and (C) respectively.
From the two Figures 5.8 and 5.11, it is observed that the WCDP gets it's maximum
value whenu; = up, and thusg, = ¢, (i.e., in complete symmetry) and it increasegaand
U2 increase. It decreases more rapidly than that obtained in the individual and the overall

symmetry cases as the system parameter setting gradually departs the complete symmetry

without keeping any kind of symmetries.

Remark 5.6.1 It is very important to note that, in this case, the system still has a kind of

symmetry such that the expected queue length (the number of jobs that stay in each node)

is identical when no communication means is available.

89



CHAPTER 5. STUDIES ON A PARADOX FOR NON-COOPERATIVE STATIC LOAD BALANCING

Figure 5.9: The ffect of changing the system parameters while keeping the overall sym-
metry property among nodes on the WCDP using the communication means of type (C)

5.6.5 Complete Symmetry vs. No Symmetry

From the previous examples presented in sections 5.6.2, 5.6.3 and 5.6.4, it is observed that
the WCDP is largest in complete symmetry where the arrival rate approaches the process-
ing rate. But it is very important to note that in these cases (overall symmetry, individual
symmetry and no symmetry), each case has a relation that corrglated,; which may

imply a kind of symmetry between nodes. What will happen if we did not keep that rela-
tion? Will we find an asymmetric case where the WCDP is greater than that obtained in
the complete symmetry case when the arrival rate approaches the processing rate? Or the
obtained result will be ensured. And also, what will be tffe& of increasing the number

mof nodes in the system and the numbef channels in every communication line on the
WCDP? We answer these questions through a number of numerical examples. We classify

the numerical examples based on the type of the communication means as follows:
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Figure 5.10: The fect of changing the system parameters while keeping the individual
symmetry property among nodes on the WCDP using the communication means of type

(©)

Communication means of type (A)

In Figures 5.12, 5.13 and 5.14, using the communication means of type (A)mtiP

ands = 1,4 and 100, respectively, that is, we have four independent parameiersu,

and¢,. Without a loss of generality, we scaled downto 1 and thus we have only three
independent parameters. We set them as follpyvs,1(0.1)2i = 1, 2 (i.e., the value ofi;

is varied from 1(jobsec) to 2(jobsec) in steps of 0.1(jofsec))and¢, = 0.5(0.01) < u».

For each given value qf;, through a finer search, we compute the following maxX”

and then we compare it with the WCDP that is obtained in the corresponding complete
symmetry case. As shown in Figures 5.12, 5.13 and 5.14, it is observed that the WCDP
increases and it converges to a certain limit as the arrival rate approaches the processing
rate, and we did not find any asymmetric case where the WCDP is greater than what is
obtained in the complete symmetry case where the arrival rate approaches the processing

rate. Furthermore, it is observed that the WCDP increases as the nsmbehnannels in
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Figure 5.11: The fect of changing the system parameters without keeping any kind of
symmetry among nodes on the WCDP using the communication means of type (C)

every communication line increases and wikenl, the WCDP increases to at most about
y/stimes of what is obtained with the same system parameter setting bus wifh

In Figures 5.15, 5.16 and 5.17, using the communication means of type (Aywith
ands = 1,4 and 100, respectively, we observe tHEeet of the numbem of nodes in
the system on this phenomena. We have eight independent paramgpgris= 1,--- , 4.
Again, without a loss of generality, we scaled dawrio 1 and thus we have seven indepen-
dent parameters. We set them as followss 1(0.1)2,i = 1,--- ,4 and¢; = 0.5(0.01) <
ui, i = 2,3,4. For each given value of, through a finer search, we compute the following
max, 4 I',i = 2,3,4 and then we compare it with the WCDP that is obtained in the cor-
responding complete symmetry case. From Figures 5.12, 5.13, 5.14, 5.15, 5.16, and 5.17,
it is observed that the WCDP increases as the numb&rnodes in the system increases.
Also, with m = 4 as shown in Figures 5.15, 5.16, and 5.17, it is observed that the WCDP
increases and it converges to a certain limit as the arrival rate approaches the processing

rate. Again we did not find any asymmetric case where the WCDP is greater than what is
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obtained in the complete symmetry case where the arrival rate approaches the processing
rate, which ensures the results obtained earlier. It is also observed that the WCDP increases
as the numbes of channels in every communication line increases and wherl, the

WCDP increases to at most aboyfs times of what is obtained with the same system

parameter setting but with= 1.

Communication means of type (B)

The results obtained when the communication means of type (B) is used show the same
tendency as what is obtained when the communication means of type (A) is used. For
this reason, we only present a part of this results here. In Figures 5.18 and 5.19, with the
communication means of type (B)) = 4 ands = 1 and 100, respectively, we show the
results of the same experiments as that performed with type (A). Like the results obtained
when the communication means of type (A) is used, it is observed that the WCDP increases
and it converges to a certain limit as the arrival rate approaches the processing rate, and
we have found that there is no asymmetric case where the WCDP is greater than what is
obtained in the complete symmetry case where the arrival rate approaches the processing
rate. Furthermore, it is observed that the WCDP increases as the nammbenannels in

every communication line increases and wisenl, the WCDP increases to at most about

y/stimes of what is obtained with the same system parameter setting bus wifh

Communication means of type (C)

Figures 5.20 and 5.21 show the results of the same experiments using the communication
means of type (C) witlhm = 2 andm = 4 respectively. We observe that as the arrival rate

approaches the processing rate, the WCDP increases without bound and that of asymmetric
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cases approaches that of the symmetric cases. Thus, we observe that for any asymmetric
case there exist a complete symmetric case that has the WCDP greater than that of the
asymmetric case.

In each of the above cases, it has been seen that, in the class optimum, there exists no
asymmetric case that has the WCDP greater than that of a complete symmetric case where
the arrival rate approaches the processing rate, and therefore that, in the class optimum, the

WCDRP is largest in complete symmetry.

5.7 Conclusion

We have presented a number of numerical examples for the Braess-like paradox wherein
adding a communication capacity to the system for the sharing of jobs between nodes
leads to the performance degradation for all users in the class optimum for load balancing.
From these examples, it is observed that in the class optimum, the WCDP is largest in the
complete symmetry case where the arrival rate approaches the processing rate. And, as the
system parameter setting gradually departs the above-mentioned symmetric case without
keeping any kind of symmetries, the WCDP decreases rapidly. It decreases slowly (slower)
if the system parameter setting gradually departs the complete symmetry while keeping
the individual (overall) symmetry property. Indeed, it is also observed that in complete
symmetry, as the arrival rate approaches processing rate, the WCDP converges to a certain
limit if any of the communication means of types (A) and (B) is used and it may increase
without bound if the communication means of type (C) is used. A final point is that, using
any of the communication means of types (A) and (B), the WCDP increases as any of the
numbers of channels in every communication line increases and it is noticed that if,

the WCDP increases to at most aboys times of that obtained with the same parameters
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setting but withs = 1.

In conclusion, it seems that, in the systems of symmetrical nodes, adding means of job
forwarding looks apparently ifikective and in some class optimum, adding means of job
forwarding causes mutual job forwarding among nodes and bring about the paradox. If
the results observed in this study hold generally, we think that more exhaustive research
into these problems is worth pursuing in order to gain insight into the optimal design and
QoS (quality of service) management of distributed computer systems, communication

networks, etc.
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Figure 5.12: Comparison between the valued dhat is obtained in complete symme-

try with m = 2,s = 1 and may,,, I for every given value ofi; and¢; = 1 using the
communication means of type (A)
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Figure 5.13: Comparison between the valued dhat is obtained in complete symme-

try with m = 2,s = 4 and may,,, I for every given value ofi; and¢; = 1 using the
communication means of type (A)
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Figure 5.14: Comparison between the value§ tiat is obtained in complete symmetry

with m = 2,s = 100 and may,, I" for every given value of;; and¢; = 1 using the
communication means of type (A)
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Figure 5.15: Comparison between the value§ tfiat is obtained in complete symmetry

withm=4,s=1and may, I', (i = 2,3,4) for every given value of; and¢, = 1 using
the communication means of type (A)
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Figure 5.16: Comparison between the value§ tiat is obtained in complete symmetry

withm=4,s=4and may, I, (i = 2,3,4) for every given value of; and¢; = 1 using
the communication means of type (A)
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Figure 5.17: Comparison between the value§ tfiat is obtained in complete symmetry

withm =4, s= 100 and max, I, (i = 2, 3, 4) for every given value gf; and¢; = 1 using
the communication means of type (A)
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Figure 5.18: Comparison between the value§ tfiat is obtained in complete symmetry

withm=4,s=1and may, I', (i = 2,3,4) for every given value of; and¢, = 1 using
the communication means of type (B)
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Figure 5.19: Comparison between the value§ tiat is obtained in complete symmetry

withm= 4, s= 100 and max,, I', (i = 2, 3, 4) for every given value qgf; and¢, = 1 using
the communication means of type (B)
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with m = 2 and may, 4, I" for every given value ofi; and¢; = 1 using the communication
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Chapter 6

Conclusions and Future Work

One of the main advantages of distributed computer systems over the stand-alone systems
is that distributed computer systems can share job processing in the event of overloads.
Load balancing involves the distribution of jobs throughout a networked computer system,
thus increasing throughput without having to obtain additional or faster computer hardware.
Load balancing policies may be either static or dynamic.

In this thesis, both static and dynamic load balancing policies have been considered.
Throughout our study, we used three performance aspects (objectives or optima) namely:
overall optimum, individual optimum and class optimum with static and dynamic load
balancing policies to optimize the performance of the considered distributed computer sys-
tems.

In Chapter 2, we present a brief survey for the previous and current load balancing
studies related to our work.

In chapter 3, we propose a static and a dynamic overall optimal load balancing policies.
The objective of both policies is to minimize the overall system mean response time. The

performance of these two policies is compared on the MF-PC network model where truly
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optimal solutions of both static and dynamic load balancing policies have been character-
ized. The analytical tractability of the model encourage us to perform such comparison
analytically, for this reason, the overheads due to the two policies are assumed to be negli-
gible. The L, g] threshold rule is used as a dynamic overall optimal load balancing policy.
For this policy (i.e., [L,q] threshold rule), a numerical algorithm for obtaining the optimal
values ofL andq is proposed. Analytically, it is proved that the minimum value of the
overall system mean response time is obtained by the dynamic overall optimal load balanc-
ing policy with the value of the threshold parameget 0 and the suitable selection of the
other threshold parameter Also, we analytically proved the existence and uniqueness of
optimal solution for the other threshold paramdterThat is, we need to choose only the
proper value ot with g fixed to be 0 in finding the set of parameter values of the threshold
rule that gives the minimum value for the overall system mean response time. Three inde-
pendent parameters are considered: job processing eittheQyr node, job processing

rated at theQpc node and job arrival raté to the system. Without a loss of generalitys

scaled down to 1. Theflects of changing the other two parameteraiidu) on the overall
system mean response time using the static overall optimal load balancing policy and the
dynamic overall optimal load balancing policy are studied through numerical experimenta-
tion. The results show that, in the model examined, the overall system mean response time
is improved by the dynamic overall optimal load balancing policy over that of the static
overall optimal load balancing policy at most about 30% in the range of parameter values
examined while the overheads due to the two policies are not taken into account. The max-
imum improvement ratio is achieved for the cases whiereu for rather large values of

both and it increases asandu increase.

In chapter 4, we propose a static and a dynamic individually optimal load balancing
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policies. In these policies, every job strives to optimize (minimize) its own mean response
time independently of the other jobs. The performance of these two policies is compared
on the MF-PC network model where truly optimal solutions of both static and dynamic
load balancing policies have been characterized. The analytical tractability of the model
encourage us to perform such comparison analytically, for this reason, the overheads due
to the two policies are assumed to be negligible. Tha] threshold rule is used as a
dynamic individually optimal load balancing policies. Three independent parameters are
considered: job processing rateat theQuyr node, job processing rateat the Qpc node

and job arrival ratel to the system. Without a loss of generaliyis scaled down to 1.

The dfects of changing the other two parametersafdu) on the mean job response time
using the SIOLBP and the DIOLBP are studied through numerical experimentation. The
results show that the DIOLBP outperforms the SIOLBP in the mean job response time, at
most about 48% in the range of parameter values examined while the overheads due to the
two policies are not taken into account. Thée@lence is of a certain magnitude for the
cases wherg ~ u for rather large values of both and it increased asidu increase. We

also examined the job flow tfiéc in the proposed system model by computing the ratio
that an arriving job at the system goesQggr node under the SIOLBP and the DIOLBP.
The results show that, there is afdrence between the ratio that a job arriving at the
system goes to th@yr under the SIOLBP and the DIOLBP. Thaff@irence is of a certain
magnitude for the cases whete- u for rather large values of both and it decreases as
andu increase. Through the course of the numerical experimentation, we observed that if
the [L, g] threshold rule is used as a DIOLBP, in this case both of the control paranheters
andq have a €fect in satisfying the equilibrium in between the two system facilities. And

also, it is noticed that the equilibrium threshold paramétes a decreasing function of
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and it approaches/6.

In chapter 5, we present a number of numerical examples around the Braess-like para-
dox wherein adding a communication capacity to the system for the sharing of jobs between
nodes leads to the performance degradation for all users in the class optimum for static load
balancing. Three dierent types of communication means (A), (B) and (C) are considered.
Based on the system parameter setting, three types of symmnietrezall symmetry, indi-
vidual symmetry and complete symmetsg defined. From the numerical examples, it is
observed that in class optimum, the worst-case degree of the paradox (WCDP) is largest
(i.e., the worst performance is obtained) in the complete symmetry case where the arrival
rate approaches the processing rate. And, as the system parameter setting gradually departs
the above-mentioned symmetric case without keeping any kind of symmetries, the WCDP
decreases rapidly. It decreases slowly (slower) if the system parameter setting gradually
departs the complete symmetry while keeping the individual (overall) symmetry property.
Indeed, it is also observed that in complete symmetry, as the arrival rate approaches the
processing rate, the WCDP converges to a certain limit if any of the communication means
of types (A) and (B) is used and it may increase without bound if the communication means
of type (C) is used. A final point is that, using any of the communication means of types
(A) and (B), the WCDP increases as the numbef channels in every communication line
increases and it is noticed thatsif> 1, the WCDP increases to at most aba(gtimes of
that obtained with the same parameters setting but swH.

In our future work, we consider the possibility of an extension to the work done in
chapter 5 using a dynamic load balancing policy. This is because the model studied in
chapter 5 could be considered as a basic model for the GRID computing infrastructure

where the dynamic load balancing is intended to be used for improving the performance of
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the GRID. We also think that more exhaustive research into Braess-like paradox problem
is worth pursuing in order to gain insight into the optimal design and quality of service

management of distributed computer systems, communication networks, etc.
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APPENDIX A. DERIVATION OF THE OVERALL MEAN RESPONSE TIME OF A JOB ARRIVING AT
THE MF-PC NETWORK MODEL WITH THE L, g] THRESHOLD RULE

Appendix A

Derivation of the overall mean response
time of a job arriving at the MF-PC
network model with the [L, ] threshold
rule

We derive here the overall mean response time of a job arriving at the MF-PC network
model with the [, q] threshold rule E [W[L,q]]. Let P¢ be the probability that the number
of jobs in theQyr node isk. The state transition diagram is shown in Figure A.1. With this

state transition diagram we have the following equations:

APy = uPy
APy = uP,
APL1 = uPyL
AP = uPig. (A.1)

Letp = A/u. From A.1, we can easily have the recursions:

P. = pPo
P, = p°Po




APPENDIX A. DERIVATION OF THE OVERALL MEAN RESPONSE TIME OF A JOB ARRIVING AT
THE MF-PC NETWORK MODEL WITH THE L, g] THRESHOLD RULE

PL = PLPO
PLi = pgPo, (A.2)
and ifp = 1,
Pi=P,=---=PL=Po, Pr=0qPo. (A.3)

N R N |
! H 3 . 3
Figure A.1: State transition diagram

From A.2, we have

Pi+Py+--+P. = Polo+p>+-+p")

= P (A.4)
1-p
L+1
Note thatZ P, = 1. We have
i=0
1-p .
if p#1;
_ pL+1(1 — _ L+2° !
Po={1 " 1l-d-w (A.5)
_ if p=1.
L+1+q "e
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THE MF-PC NETWORK MODEL WITH THE L, g] THRESHOLD RULE

Substituting relation A.5 to A.2 or A.3, we can have the probability that the number of jobs
in the Qur node isk, Px(0 < k < L). With the above relations, we proceed to calculate the
overall mean response time of a job arriving at the system.PlUe¢ the probability that

a job arriving at the system goes to t@pc node. With L, q] threshold rule, the arriving

job will go to the Qpc Node with probability of 1 if the job finds th@yr node with states

L+ 1 L+2,---, and with probability of 1- q if the job finds theQyr node with state..

ThenP is expressed as
P= (1 - Q)PL + PL+1- (A6)

The mean response time of a job that goe®te node is§~. Let Q be the expected
number of jobs (which includes the jobs in service) in @g node from state 0 to state
L + 1 in the state transition diagram ( see Figure 3.2 in chapter 3). By the Little’s Law, the

mean response time of a job arriving at the system goes tQjfzenode is
Qv

where)V is the actual load rate to tl§@yr node, and is given by = A(1-P). Therefore, the
overall mean response time of a job arriving at the system with threshaifl [E [W[L,q]],

is

PO +(1-P)QV™

E[Wq]
Po~t+Qat. (A.7)

From A.4,Q can be calculated as follows:

L
Q=) iPi+(L+1)PLs (A.8)
i=1
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THE MF-PC NETWORK MODEL WITH THE L, g] THRESHOLD RULE

By substituting relations A.6 and A.8 into A.7, we obtain the overall mean response time

of a job arriving at the system with threshold ], E [W[L,q]]. The relation is as follows:

E [W[Lq]] =((1-9gP.+ I:)L+1)9_l + Q/l_l, (A.9)
where, ifp # 1,
P. = p'Py, (A.10)
P = oo"'Py, (A.11)
L
Q = ) iPi+(L+ 1Py
i=1
— Py (—(L+1)pH(A-p) + (L -p"Y)
(1-p)?
+(L + 1)Pogo" 4, (A.12)
_ 1-p
Po = 1- p(1—q) — go-'2’ (A.13)
and ifp =1,
P = Po, (A.14)
Piii = gPo, (A.15)

L
Q = ) iPi+(L+ 1Py
i=1

L
= (Zu +(L+1)q)Po
i=1

- (L(L2+ D+ 1)q) Po

L+ 1) (L +29)

 2(L+1+9) ° (A.16)
Po = L+i+q' (A7)
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