5. SUMMARY AND CONCLUSION In this thesis, the main focus has been made on the elucidation of the nature of structural transformation of C_{60} based on the cooperative effects of photo-irradiation, pressure, and impurity doping. We have investigated systematically the photo-induced structural transformation of C₆₀ single crystals under high pressure up to 30 GPa. We found that the photoluminescence, optical transmittance, and Raman spectra showed continuous changes depending on the applied pressure at the photo-irradiation. These results indicated that formation of intermolecular bonds imprinted the contracted structures where C₆₀ intermolecular distance was kept short. The number of intermolecular bonds per C₆₀ molecule was estimated by the comparative analyses based on the fictive pressure using the high pressure optical spectra of C₆₀ photopolymer which had been subjected to the photo-irradiation at ambient pressure. The number of the intermolecular bond increases up to around 5 with an increase in the applied pressure to 25 GPa. From the PL analysis of the photo-induced structural transformation at HPHT conditions (P≈3 GPa, T≤100 °C), the activation energy of the photo-polymerization under 3 GPa was estimated 0.23 eV. The result revealed the formation of intermolecular connections to be achieved by the [2+2] cycloaddition mechanism. A possible structural picture has been proposed on the basis of the structural models of the C₆₀ photopolymer. The noncrystalline random structure of the photo-irradiated C₆₀ was tunable by magnitude of the applied pressure at photo-irradiation. The random network would expand not only into one- and two-dimensions, but also into three-dimensions. We have investigated the iodine and alkali metal doping effects on the photo-induced structural transformation of C_{60} by means of Raman scattering measurements. Firstly, there was no indication of the charge transfer or formation of chemical bonds between iodine and C_{60} molecules in Raman spectra under pressure and after the PIHP treatments, although incorporation of guest species into C_{60} lattice was expected to modulate the bonding structure and electronic property of C_{60} polymers. The presence of iodine molecules suppressed the photo-polymerization of C_{60} lattice. The polyiodine molecules in I_xC_{60} partially dissociated and moved from the vicinity of the dimerization area by thermal effect due to absorption of light by the I_xC_{60} . The photo-irradiated I_xC_{60} formed only C_{60} dimer irrespective of the structure of the C_{60} lattice and the pressure at the photo-irradiation. In other words, iodine molecules play a role of a structural template for C_{60} dimerization. Secondly, alkali metal doping has completely suppressed the structural change of C_{60} molecules in contrast to some previous studies bringing a hopeful view on the new polymeric C_{60} compounds. We have investigated the structural transformation of C_{60} which originates from the cooperative effects. We conclude that the tunable photo-polymerization which reaches to three-dimensional network structure is a new phenomenon achieved by the combination of pressure and photo-excitation.