4. DISCUSSIONS

4.1 Local structure of the photo-irradiated C_{60} single crystals under high pressure

In this section, we attempt to make the structural picture of the PIHP materials clear. The main feature of the photo-induced structural transformation of C₆₀ single crystals is a consecutive increase in the intermolecular bonds per C₆₀ with an increase in the pressure applied at photo-irradiation. The experimental results presented in section 3.2 are markedly new phenomena concerning to the C₆₀ polymer. In spite of the novelty of the experimental results, it is difficult to visualize the structure of the PIHP materials. The difficulty arises from the fact that the photo-polymerization proceeds into random directions. The randomness is naturally understood because the C₆₀ molecule contains 30 double bonds which have the ability to form intermolecular bonds tangential to the C₆₀ ball surface. There are 30×30=900 favorable configurations for the [2+2] cycloaddition mechanism between two freely spinning C₆₀ molecules. Additionally, the basic requirements for the initiation of the [2+2] cycloadditional reaction are the intermolecular distance being less than ~ 4.2 Å with the parallel configuration of C=C bonds and the presence of photochemical assistance. Furthermore, the solid C60 including C₆₀ polymers has several kinds of metastable structures due to the ductility of the lattice of molecular solid and flexible character of sp^2/sp^3 carbon.

We compare the frequency of the p-A_g mode of the PIHP material with that of the HPHT crystalline polymer which has the same number of the intermolecular bond. The PIHP treatment at about 20 GPa has been estimated to introduce 4 intermolecular bonds onto a C₆₀ molecule on average whose number is equal to that of the two-dimensional T polymer. The frequency of the p-A_g mode of the PIHP material at 20 GPa was 1463 cm⁻¹. This frequency of the p-A_g mode is 17 cm⁻¹ higher than that of the T polymer (1449 cm⁻¹). The difference in the frequency of the p-A_g mode between the PIHP and HPHT materials suggests that the contraction of intermolecular distance in the PIHP material is greater than that in the two-dimensional HPHT polymer. The shift to the higher frequencies can be attributed to three-dimensional expansion of the intermolecular bonds of the PIHP materials. The intermolecular bonds of the PIHP

materials could prevent the structural relaxation of C₆₀ lattice as observed in the c-axis (normal to the polymer plane) of 2D HPHT polymers. Meletov et al. have reported the in situ high pressure PL and Raman spectra of the T polymer under pressure [76]. They have determined the pressure dependence of the p-Ag mode of the T polymer as 6.1 $\mbox{cm}^{\text{-1}}\!/\mbox{GPa}.$ According to the pressure coefficient, the frequency of the p-A $_g$ mode of the PIHP material at 20 GPa can be reproduced by the application of ~ 2.5 GPa on the T polymer. The PL spectra obtained after the PIHP treatment at ~ 20 GPa is very similar to the PL spectra of the T polymer at ~ 2.5 GPa as shown in Fig. 4-1 [76]. The peak energy of the main PL band of the T polymer at around ~ 1.4 eV is close to the PL energy of the PIHP material obtained after the photo-irradiation at 20 GPa. As already discussed in section 3.2, the electronic properties of C₆₀ polymers are mostly governed by the intermolecular distance rather than deformation of the C60 cage due to the formation of the intermolecular bonds. The coincidence of the PL peak energies between PIHP material and the T polymer under ~ 2.5 GPa indicates that the average environment of the C₆₀ molecule is similar each other. This result is consistent with the Raman data and specifies the expansion of intermolecular bonds in the PIHP materials not only into one-, and two-dimensions but also into three-dimensions.

For graphical understanding, we suggest the local structural model of the PIHP material. So far, structural analyses of the C_{60} photopolymer have been carried out from theoretical approach [16,17,18] because of the experimental difficulty arising from the inherent disorder in the bonding pattern of the C_{60} photopolymer. However, the polymerization will start with formation of the C_{60} dimer with the nearest neighbor molecule. We can imagine the structure of the C_{60} single crystal at the beginning of the photo-polymerization as the partially distorted FCC lattice of C_{60} single crystal where C_{60} dimer is formed between C_{60} molecules which are initially positioned at (0,0,0) and (1/2,1/2,0) while other molecules still are situated at initial lattice points. There are 18 isolated C_{60} molecules which are capable of adducting the dimer to form C_{60} trimers at the FCC lattice points in this configuration. From symmetrical consideration of C_{60} molecule, four of the C_{60} molecules will lead to an angle of 60 ° between the centers of the molecules which form C_{60} trimer, and four to 90 °, eight to 120 °, and two to 180 °. Porezag and Frauenheim [18] have investigated the structure, enegetics, and vibrational properties of C_{60} oligomers, C_{60} no legale to 120 °. They calculated the cohesive energies of

the structural candidates of C₆₀ trimers whose approximate angles between the centers of the molecules bounded by ordinal [2+2] cycloadditional four-membered rings are 60°, 72°, 90°, 108°, 120°, 144°, and 180°, and also C₆₀ tetramers including linear chain, square-, zigzag-, T-, and star-shape. They predicted that all C₆₀ oligomers are more stable than the non-interlinked C₆₀ monomers and the energy differences among different oligomer structures are very small. From experimental approach, Pusztai et al. have investigated the structure of the C₆₀ photopolymer with DSC, IR, and XRD measurements [84]. They observed doubled XRD pattern which could be assigned to the superposition of two FCC lattices having slightly different lattice constant. A lattice constant of 14.15 Å was attributed to the pristine C₆₀ crystal and 13.90 Å to the C₆₀ photopolymer. They also evaluated the number of the [2+2] cycloadditional bonds per C₆₀ from transformation enthalpy during the decomposition of the C₆₀ photopolymer into monomeric C₆₀ from DSC measurements, and concluded that two intermolecular bonds per C₆₀ were created out of possible 12 nearest neighbors. As structural pictures of the C₆₀ photopolymer, they suggested closed triangle- and square-shaped oligomers which localized around FCC lattice points, in order to keep consistency between the results from DSC and XRD investigations. These are the possible structural models of the C₆₀ photopolymer.

The structural transformation of C_{60} single crystals by PIHP treatments can be considered as an extension of the photo-polymerization at ambient condition. The intermolecular connections formed by the PIHP treatments would be achieved through the [2+2] cycloaddition mechanism at least at 3 GPa because the activation energy of the photo-polymerization at 3 GPa was equal to that of the photo-polymerization at ambient pressure. It can be considered that the external pressure applied during photo-irradiation increases the probability of the C_{60} interconnection and enlarges the size of the C_{60} oligomers. The three-dimensional structure of PIHP material would be achieved by the large-scale random polymerization as derivatives from the C_{60} oligomers formed at ambient pressure. This model can explain the continuous changes in the electronic and vibrational properties of PIHP materials which were treated in mild PIHP conditions. The PIHP materials with the 2 \sim 3 intermolecular bonds have the quasi three-dimensional structure of the aggregated small C_{60} clusters in entangled fashion. The photo-induced structural transformation of C_{60} single crystals under high

pressure can be summarized as follows:

"Three-dimensional C_{60} network structure can be achieved by the photo-irradiation under high pressure. The number of intermolecular bond increases with the pressure applied at photo-irradiation and reaches to ca. 5 bonds with the applied pressure of 25 GPa. The three-dimensional C_{60} network can be considered as randomly bounded C_{60} metastable phase."

4.2 Doping effects on the photo-induced structural transformation of C_{60} under high pressure

In this section, we discuss the doping effects on the structural transformation of C_{60} . A main focus is made on the schematic understanding of the structural transformation of iodine doped C_{60} compounds. Secondly, possible reasons for the complete suppression of photo-induced transformation of alkalis doped C_{60} are addressed.

At first, we discuss the structure of the photo-irradiated I_xC₆₀ compounds and the mechanism of the photo-induced transformation of the I_xC₆₀ compounds. As presented in section 3.3, the I_xC₆₀ was insensitive to the photo-irradiation in contrast to the C₆₀ single crystal. The Raman investigations for the compounds which had been subjected to the PIHP treatments up to 37 GPa revealed that the frequency of the p-Ag mode of neither fcc-I_xC₆₀ nor hex-I_xC₆₀ did depend on the pressure applied during the photo-irradiation. The average frequency of the p-A_g mode was 1463 cm⁻¹ for both fcc-I_xC₆₀ and hex-I_xC₆₀. It is well known that the frequencies of the p-A_g mode in neutral C₆₀ materials sensitively depend on the number of the intermolecular [2+2] cycloadditional bonds per C₆₀ molecule. The frequency of the p-A_g mode of the HPHT C₆₀ dimers has been determined to be 1462 cm⁻¹ [33,34]. This value is very close to the average frequency of the p-Ag modes observed after PIHP treatment for the iodine doped C₆₀. Furthermore, there was no charge transfer or formation of chemical bonds between iodine and C₆₀ molecules. Therefore the number of intermolecular bond of the I_xC_{60} compounds can be estimated from the frequency of the p-A_g mode in the same way as neutral C₆₀ polymers. As a result, it can be said that the photo-irradiated I_xC₆₀ compounds consist of C₆₀ dimers and iodine molecules. The iodine molecular vibrations give us an insight into the mechanism of the photo-transformation of I_xC₆₀ compounds as well as the p-A_g mode. The appearance of the isolated I₂ molecules will originate from the irreversible polyiodine chain breaking followed by the polymerization of C₆₀ molecules. We consider the structural transformation taking place in the I_xC₆₀ during the photo-irradiation under pressure as follows. The polyiodine molecules $(I_5, (I_2)_n)$ are thermally activated by the absorption of photon by the hex-I_xC₆₀ and partially decompose into I2 molecules. Then the photo-polymerization of C60 lattice occurs and

prevents I_2 molecules from forming polyiodine chain again. The problem is how the isolation of I_2 molecules is kept in the C_{60} dimers. On analogy of the fact that the Raman band of the isolated I_2 molecule is dominant in the fcc- I_xC_{60} , thermal activation by photo-irradiation might drive iodine molecules from the vicinity of the photo-polymerized region and decrease iodine molecules from the C_{60} interstitials. Consequently, the isolation of iodine molecules is kept after PIHP treatments in the hex- I_xC_{60} .

Secondly, we consider the photo-induced graphitic transformation of the fcc-I_xC₆₀. In order to elucidate the iodine doping effects on the photo-induced graphitization, important features of the graphitization of C₆₀ single crystal [20,85] are briefly addressed. The photo-induced graphitization of C₆₀ single crystals is dependent on the crystallinity of solid C₆₀, presence of O₂ molecule in the lattice, and sample temperature. In a high quality C₆₀ single crystal without air exposure, photo-induced structural transformation of the C₆₀ single crystal is governed by Jahn-Teller distortion of C₆₀ molecule: The distorted C₆₀ in the excited state due to the electron-phonon interaction would be recovered by emitting light. In the solid form of C₆₀, however, Jahn-Teller distortion would remain semi-permanently in the electronic ground state without formation of chemical bonds. Metastable states of C₆₀ could exist in the solid state with modification of the lattice in the crystal. On the other hand, once oxygen molecules are introduced into the interstitial of the C₆₀ crystal, the Jahn-Teller distortion of the C₆₀ molecule was completely suppressed at low temperature. At the room temperature, the photo-induced graphitization of C₆₀ single crystals occurred. The presence of oxygen is considered to promote the destruction of C₆₀ molecule by the photo-excitation of C₆₀-O₂ configuration in which the oxygen forms carbonyl-like bonding with C₆₀ molecule. In addition, the electron in the excited state could non-radiatively decay to the ground state of an sp^2 amorphous graphite by getting over the activation barrier when the system possessed sufficient thermal energy. Temperature and the photo-oxidization cooperatively promote the destruction of C₆₀ molecule. The grain size of the C₆₀-derived sp² amorphous graphite reportedly increased up to 250 Å by the photo-irradiation with the 514.5 nm of 1.9 kW/cm². In the present study, estimated grain size of the photo-transformed fcc-IxC60 saturated at about 80 Å by the 90 minutes of irradiation with the 514.5 nm of 750 W/cm². The grain size for the fcc- I_x C₆₀ was one-third of that for the C₆₀ single crystal. However, the grain size of 80 Å correspond to the 5~6 times of the lattice constant of the fcc- I_x C₆₀. The photo-induced graphitization of fcc- I_x C₆₀ at ambient pressure involves larger number of C₆₀ molecule than the photo-polymerization of the fcc- I_x C₆₀ under pressure. It contradicts to the photo-polymerization of C₆₀ sub-lattice which could not expand beyond the dimer structure due to the presence of iodine molecules. The photo-graphitization would occur through desorption of iodine molecules followed by incorporation of oxygen molecules, because existence of oxygen is favorable for the graphitization of C₆₀ molecules through formation of carbonyl-like C₆₀-O₂ bond. Since the photo-irradiation for the photo-graphitization is performed in the atmosphere, desorption of I_2 molecule effectively take place. Consequently, the graphite grains could grow up to ~80 Å.

We next present explanations for the insensitivity of the alkali doped C₆₀ compound against the photo-irradiation under HPHT conditions. The potassium doping effect on polymerization has been suggested to increase the photo-absorption efficiency of C₆₀ molecules due to the reduction of the molecular symmetry to C_{2v} symmetry of ${C_{60}}^{3}$, that is, the removals of the degeneracy of the t_{1u} (LUMO) and t_{1g} (LUMO+1) levels into a₁+b₂+b₁ and b₂+b₁+a₂, respectively [50]. The activation of Stone-Wales rearrangement has also been suggested for enhancement of the reactivity of the C₆₀³anion which promotes the formation of C_{120} peanuts structure. The stability of $(C_{60}^{n})_N$ poly-anion isomers (0≤n≤6) have been calculated by Pekker et al. [86]. They showed that the [2+2] cycloadduct polymers are the most stable in the neutral and low-charge states while singly bonded polymers are favored in the high charge states. They also showed that the singly bonded $(C_{60}^{n-})_N$ isomers (n=3, 6) are more stable than the neural C₆₀ dimer and/or C₆₀ one-dimensional polymers. Therefore, the combination of photo-irradiation, HPHT treatments, and alkali doping was a potential candidate for a new network structure. However, no structural change of A_xC₆₀ was observed by photo-irradiation under several HPHT conditions and with the application of pressure. A serious problem for the polymerization must be expansion of C₆₀ sub-lattice because of presence of alkali ions. Alkali ions would interrupt formation of intermolecular bonds due to geometrical restriction and short range repulsion between ion core and π orbital of C₆₀ molecule. The doping effects on photo-induced structural transformation of C₆₀ under high pressure are summarized for iodine and alkali metals as follows:

"Thermally activated polyiodine molecules are dissociated into isolated iodine molecules and driven from the vicinity of the C_{60} lattice where the photo-dimerization proceeds. Alkali metal doping completely suppresses the structural transformation of C_{60} lattice."