Chapter 4. RESULTS AND ANALYSIS

4. 1 Complex dielectric permittivity

4.1.1 Dielectric spectra
The comnplex dielectric function e*(w) = &' (@) - ¢” (w) relates the polarization P with
the strength of a macroscopically averaged electricfield E in a medium,
' P = [ex{(w)-1]E = y*(0)E, 4.1

where x*(w) is the dielectric susceptibility. The response of the polarization P to E can be

separated in a fast (v < 10" sec) and slow (T > 10™? sec) electronic contribution which

originates from the orientation of dipoles.

A description of the relaxation spectra in glass-forming materials is still an active topic
despite the great effort made in recent years. There are two well known functions that
slow relaxation obey in frequency and fime domain, so called Havriliak-Negami (HN)
[33] and Kohlrausch-Williams-Watts (KWW) [44] function, respectively.

4.1.1.1 Expression in frequency domain
Assuming a simple exponential decay function of the polarization P(t) = exp(-t/t) , this

results in the Debye formula for the complex dielectricfunction,

E(®) = £+ 5B .2)
l+iwt

where e = &' () for higher limitof @ ) tv'and es = ¢’ (w) for lower limitof ® § t'. *

is the relaxation time and €s - £oo is the dielectricstrength Ae.

Relaxation features are usually broaden and have a distribution of relaxation time. This
can be described quantitatively by generalized relaxation function called the HN equation
{331,

* Eq —E
£ (@) = oy + e 4.3)
T 1+ G D)%Y

where 0. and Y are shape parameters denoting the symmetric and asymmetric broadening
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of the relaxation function. The relaxation fime T depends to some extent on the shape
parameters o and y, respectively. It is closely related to the relaxation time Tmax With tmax
= (2nfmax) !, where finax is the frequency at maximum dielectric loss of the relaxation

function.
The broadband dielectric function is commonly described by the supetposition of some
relaxation processes which can be expressed in terms of HN functions and dc

conductivity odc.

Ag '
€)= et Y, oy 2de 4. 4)
L +(iw)%i)T weg

where i = 1, 2, or 3 etc., and each relaxation time of each relaxation mode has a
relationship of the type t1 < ©2 < 13- - - . The dc conductivity originates from the presence
of charged impurities and is revealed at the lower frequency side of the dielectricloss.

Fig. 4.1 shows the dielectric losses, .e"(f = w/2x), for nPrOH, as an example, at
various temperatures against frequency f. The numbers above the specira represent the

measured temperatures. These spectra were normalized against the values, e"max, at the

maximum peak position, fmax.

4.1.1.2 Expression in time domain
The decay of polarization is linked with the complex dielectric function through a half-
sided Fourier transform,

* o
E@)-80 o it dP(t)
es "Em fe [ dt ]dt’ (4' 5)

where W(t) is the decay function. Assuming non-interacting dipoles in the materials under
study the W(t) is equivaient to the correlation function of a fluctuating dipole p(t),

(Q)p (1) >
Y@ = f.L‘..(....______, (4. 6)
<pOp©) >
where the brackets indicate the ensemble average.

Relaxation which is not described by a simple exponential decay can be often fitted by
the KWW function [44}, which is also called a “stretched exponential “,

$(t) = exp(-/z)Prww @.7
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4.1.1.3 Relationship between HN and KWW functions

To some extent, the HN description in the frequency domain is equivalent to the KWW
approach in the time domain. The connection among the parameters of the HN and the
KWW functional forms has been suggested by the fact that both functions yield an
accurate description of real data [45]. There are following analytical relations,

In[—E] = 2.6(1- 8 gww )" exp(=3B 1eww ). 4. 8)
TRww

for the characteristic times and
ay = Brww ', 4. 9)

for the shape paramelers. It is important to note that the HN function has four independent
variables, while the latter has only three.

4.1.2 Dielectric strength
The temperature dependence of the dielectric strength, Ae(T) = &'s(T) ~ €' o(T), is

shown for iPrOH in Fig. 4. 2 as an example. The dielectric strength is obtained from the
fit of the HN equation. It is the difference of the dielectric constant between the lower and
higher frequency limit or the integrated area of the dielectric loss.

The diclectric strengths obtained from the Impedance/Gain-phase analyzer was
calculated using the earlier reported results and are in agreement with those determined by
the TDR system.

It is found that the main Ag(T) for all kinds of material in this study can be well

described by the modified Onsger equation,
Ae (T)=-A+B/T (4. 10)

According to Eq. (4. 10), it should be noticed that the extrapolation of Ae(T) indicates

no divergence at 0 K due to the existence of A. The case of A = 0 is usually called
Onsager’s law. The negative sign of A in Eq. (4. 10} is an indication that the molecular
behavior of alcohols in this study is not free but cooperative each other, so that the
experimental values are deviated from the prediction of Onsager’s law. If the second term

can be expressed by B/(T-To) or B/(T-Tk), where To = TK, itis called as Curie-Weiss law.

It is not fulfilled for alcohols even if the relaxation frequency looks like diverging at To.
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4.1.3 Temperature dependence of relaxation
As shown in Fig. 4. 1, the loss peak broadens and the maximum shifts to lower
frequency when temperature decreases. Involving the cooperative behavior between

molecules, the shift rate of the fmax against temperature, namely inverse relaxation time -,

is one of the important fopics in the study of liquid-glass transition. The temperature
dependence of the different relaxation frequency is complex and not at present completely
understood. There are common expressions for the temperature dependent relaxation
obtained from the viscosity measurements, NMR system, light scattering, dielectric
spectroscopy [3, 5},

The most widely used empirical expression is that established by VTF [46],

‘ fmax = fo exp [-B/(T-To)], 411
where To (> 0 K) is the Vogel-Fulcher temperature where the relaxation frequency
diverges. This VTF expression was derived theoretically in terms of CRR by Adam and
Gibbs [9] or free volume [7] as explained in detail in the Chapter 2. According to the
Adam and Gibbs, the VIF law is equivalent to the Williams-Iandel-Ferry (WLF)
expression [8].

When To = 0 in VTF expression, it can result in the Arrhenius (ARR) expression,
fmax = fo exp (-E/T), (4. 12)
where E is the activation energy. This ARR expression is the result of thermal activation
feature,
There is an expression which stems from the mode coupling theory (MCT) [17],

fmax = A(T-Te), y>0 (4. 13)

This expression is valid only above Te.

It is very hard to make only a dynamic scenario to cover the entire liquid and
supercooled region. The above Egs. (4. 11), (4. 12) and (4. 13) have their own range of
validity. Which model can well express the behavior in the specific temperature range
unambiguously and precisely? The method of temperature derivative analysis was
employed to determine the temperature dependence of relaxation {47]. For instance, the
VTF expression can be linearized by the following derivative equation:

[-dlog(fmax)/ 1/T)I''? = (T - To)B*?2 4. 14)

The parameters, B and To, and fiting range are precisely determined with the aid of
the representation [-dlog(fmax)/d(1/T)]"'? vs. 1/T. In the case of To = 0, this relationship
is reduced to ARR expression and appears as a horizontal line.

In the observed temperature windows as shown in Fig. 4. 3, an expression of linear
dependence of Eq. (4. 14) against /T in the lower temperature ranges was obtained. In
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the higher temperature range where the line deviates from the extrapolation of the VIF
law, ARR fitting is applied.

4.2 Complex heat capacity

The typical real and imaginary schemes of complex heat capacity Cp*(w, T) = Cp'(w,

T) - iCp"(w, T) for PG and tPG are shown in Figs. 4. 4a) and b), respectively. These

scans were carried out in the condition of 5 K/min underlying heating rate, 100 sec
modulation period and 1.33 K modulation period. The conventional heat capacity with 5
K/min heating rate is identical to the value of iCp*! = (Cp'? + Cp"®)''? in this case.

As shown in Fig. 4. 4 a), the real part of heat capacity has an abrupt increase near Tg
which reveals the increase of the degree of freedom in the supercooled state. The midpoint
of the ICp*l was traditionally defined as the calorimetric glass transition temperature Tg. It
is ambiguous to define the end point of glass transition due to the small increase of {Cp*|
near the end point.

The imaginary part of heat capacity has a peak at Tg as illustrated in Fig. 4. 4 b). The
peak position corresponds to the glass transition temperature. The broadening of the peak
is related to the resolution of the equipment as explained in Chapter 3.

4.3 Glass transition temperature

The glass transition usually can be obtained from the calorimetric measurement. In the
conventional manner, the midpoint of the ICp*| is Tg. In MDSC version, on the other
hand, the peak of imaginary heat capacity can be defined as Tg. This Tgis called as the
calorimetric glass transition temperature,

There are other kinds of definition for Tg from the mechanical or relaxation point of
view. The temperature, where the viscosity reaches 10" poise or the relaxation time is
100 sec, is also defined as the glass transition temperature for the engineering use.

Fig. 4. 5 shows the relationship between the calorimetric Tg and dielectric Tz where
dielectric relaxation time is 100 sec. The dielectric Tg was calculated from the
extrapolation of the VTF fitting in the lower frequency range. Whereas the calorimetric Tg
includes total degree of freedom such as rotation or diffusion, the dielectric Tg originates
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only from the a relaxation. Two glass transitions lie within the experimental uncertainty.

This strongly indicates that the glass transition in alcohol is related to the o relaxation

phenomenon.

4.5 Combination of Adam-Gibbs theory and the domain model

Domain model proposed by Matsuoka et al. {10] originated from the idea of
cooperative motion between molecules and supports the VTF law. From the identification
of the VTF expression from Adam-Gibbs theory and domain model, the parameters in
these equations may be determined by comparing them. The VTF expression from Adam-
Gibbs theory contains the calorimetric information and the VTF from the domain model
contains dielectric information.

The VTF equation for relaxation frequency comes from the following equation,

lnfm_ax_ = —M——-l———, (4. 15)
fo R T-Tg

where Ap* is the activation energy for independently relaxing conformers or Vogel-

Fulcher energy in kcal/mol, which is expressed as the repeat chain unit in the case of

oligomers or polymers and R is the gas constant. Ap* is related to the Ap which is the

total activation energy including intermolecular interaction with the following relationship:
T *-To
T* '’
where T* is the temperature where the relaxationtimeis 3 X 10™"! sec.
From the comparison between Eqs. (4. 11) and (4. 15), the parameter B is related to
the activation energy in following way:

Ap* = Ap (4. 16)

*
B= 2K

R

é_}_l_T*“.TO
R T*

The relationship between the heat capacity change at Tg, AC(Tg), and the fragility was
discussed by Angell [2, 13] and Hodge [48]. For VTF equation, the Adam-Gibbs relation
between AC(T g) and B is

(4.17)
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T-Tp  RISH(T)

where s* is the minimum configurational entropy required for the rearrangement larger
than RIn(2), Ap is the activation energy hindering the rearrangement of one mol of
conformers and Se¢(T) is the configurational entropy. To calculate Sc(T), the hyperbolic
postulation, ACp(;T) = TgACp(Tg)/T, was used, i.e., the configurational entropy is

So(T) = fr ACp(T) fr TgACp(Tg)

For the linear approximation of heat capacity at glass and liquid state, Cpg(T) = Ag +
BT énd Cpi(T) = A1+ BIT, the difference in heat capacity is ACp(T) = (Al - Ag) + (B1 -

(4. 19)

Bg)T. For the several calorimetric fitted values by both ACp(T) = TgACp(Tg)/T and

ACp(T) = (A1 - Ag) + (B1 - Bg)T, it is noted that there were no significant differences in
either the quality of the fits or the values of the fitting parameters [49].

From the Egs. (4. 18) and (4. 19), the parameter B is

s* Audp
RTgACp (T g)

From the comparison between the two equations, i.e., from both dielectricand thermal,
Egs. (4. 17) and (4. 20), s* can be derived,
TgAC,(Tg) T * ~Ty

(4. 20)

s* = 4.21
T = (4.21)
The minimum configurational entropy for a mol of conformer s* is
s* = R In (W), (4. 22)

where W is the number of states that a conformer can take.
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