Chapter 2. THEORIES OF GLASS TRANSITION AND
SLOW DYNAMICS

The volume and enthalpy of glass-forming liquids are continuous function of
temperature even in the supercooled-glass transition region. However, their temperature
derivative, thermal expansion coefficient and the specific heat, change in a discontinuous
manner at Tg. The relaxation properties such as relaxation time and viscosity have
features of gradual transition at Tg. The explanation of this gradual transition from liquid-
like to solid-like properties is very complex and still not well understood and remains as
an open problem.

This glass transition is ascribed to the slowing down which is caused by the increase of
the density of molecular packing and the reduction of the thermal energy which occurs
during the cooling. The geometrical aspect of molecular rearrangement in a densely
packed state made an appearance of the concept of cooperativity which is advocated by
Adam and Gibbs {9]. It means that the molecular rearrangement occurs by cooperative
movement in an extended region than by independent motion of individual molecules.
This cooperative region is known as cooperatively rearranging regions (CRR), domain,
cluster or spatial heterogeneity.

The basics of several theories or models will be introduced in this chapter with relation
to the cooperativity and slow dynamics.



2.1 Free volume theory

Fox and Flory first postulated that the liquid-glass transition resulted from the decrease
of the free volume of the amorphous phase below some critical value ve [27]. The
subsequent derivation of Doolittle’s fluidity equation [28] within the free volume theory is
based on four simple assumptions [7] which can be summarized as follows:

1) It is possible to associate a local volume v of molecular scale with each other.

2) When v reaches some critical vatue vo, the excess can be regarded as free.

3) Molecular transport occurs only when voids have volume greater than some critical
value v* formed by the redistribution of the free volume.

4) No energy is required for free volume distribution,

From these assumptions, the Vogel-Taramann-Fuicher (VTF) law was first derived
from the free volume assumption in 1959 and has been developed for the glass transition
probiem | 7].

2.1.1 Vogel-Tammann-Fulcher (VIF)law
The free volume vr can be defined by,

Vi = <v> - V(, (2.1
where <v> is the average volume per molecule in the liquid and vo is the constant
molecular volume which is independent of temperature, For the system with N molecules
of total volume V, the average free volume fraction f to total volume is given by,

L 2.2)
\'
where VT is the total free volume.
It is assumed that the free volume fraction has a linear temperature dependence above
the glass transition temperature Tg,

f = fg + af(T-Tyg), 2.3)
where af is the difference between the thermal expansion coefficients of the liquid and

glass.

From the assumption 3), the diffusion coefficient D is proportional to the fraction of
molecules having a free volume larger than the critical v* {28}, then D is given by,
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The diffusion coefficient D can be derived by inserting Egs. (2.2) and (2. 3) into Eq.
(2. 4) as follows,
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This equation is well-known VTF law which well explain the relaxation behavior of

supercooled liquid.

2.1.2 Molecular weight effect on glass transition temperature

The molecular weight (Mw) affects Tg. The free volume is proportional to the chain
ends.

A polymer can be represented by

A(X)uB, 2.6

where X is the repeat unit which there are n in the chain and A and B are the chain ends.
When n = 1, the monomer can be represented as AXB. For this system, the molar volume,
v(n), at constant temperature may be divided into two types of volume, namely occupied
volume and free volume, the latter allowing mobility of the molecules. The volume of -
chain end may be assigned to free volume. It is assumed that total V(n) with any repeat
chain n can be given by,

Vin)=Vm X n+ Vi, 2.7
where Vm is the volume of a X unit in the chain and Vt is the total volume of the both
chain ends. Similarly, the molecular weight Mw will be given by,

Mw=mm Xn + mf, 2.8

where mm is the weight of a X unit and mf is the combined weight of the two chain ends.
The molar volume v(n) can be obtained by dividing Eq. (2. 7) by Eq. (2. 8):

V() = V(va_-;;m’ @.9)
W

where V(%) = Vm / mm is the limiting specific volume for a chain with infinite length. Eq.
(2. 9) is able to be written for the monomer which Mw = mm + mf,
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v(n) - (@) = [v(1) - v(w);‘—“igdii“-i , (2.10)
w

where v(1) is the specific volume of the monomer.
It is assumed that the specific volume changes linearly with temperature T,

v(n)} = vo{n) + aaT, (2. 11)

where vo(n) is the extrapolated specific volume at T = 0 K and an is the slope, dv(n)/dT,

of the v(n) vs. T curve. For the limit cases for both monomer and infinite chain, it follows
that,
v(1) = v(®) = [vp(l) -vp(®)] + [a] -axlT
= Avg + AaT
The temperature dependence of specific volume can be obtained from Egs. (2.10), (2.
P and (2. 12},

(2. 12)

(mpy, +mg X Avg + AaT)
My

This equation expresses the relationship among volume, temperature and molecular

v(n) = vp(®) + ael + 2. 13)

weight of a polymer.

The specific volume at Tg has a linear relationship with Tg given by,

vg = Vg () - B{Tg(e0) - Tel, 2. 14)

where vg() and Tg(0) are the values of specific volume and Tg of infinite chain and B is
a constant.

The Eq. (2. 13} for infinite chain with infinite molecular weight at Tg, vg (=), is able
to be substituted into Eq. (2. 14), then Ty can be written in this form,
_(my + my )Avq

am-‘
) To(o)My -
- g
’I‘g Tg(oc)[a B. (Mg + mf)Aa J
’ Mw (2. 15)
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My
Atsufficiently high Mw, this relationship reduces to,

K
Tg Ex Tg(oo) —-—M—;, (2. 16)
(mp + mef AT (o) + Av
where K = = g( ) ol is a constant.
Qo - B
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From Ty in Eq. (2. 16) and To in Eq. (2. 5), the ratio Tg/T0 is given by,
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2.2 Adam-Gibbs theory

- Configurational entropy model

Adam and Gibbs introduced the temperature variation of the size of the cooperatively
rearranging region (CRR) to explain the temperature dependence of relaxation behavior in
glass-forming liquids [9}. It is assumed that the supercooled liquid consists of CRR
which grows to infinite size at Vogel-Fulcher temperature or Kauzmann temperature. The
fraction of regions where cooperative rearrangement is possible is then proportional to the
transport coefficient,

2.2.1 Transition probability

A subsystem of the sample which can rearrange into amother configuration
independently of its environment is defined as CRR. The number of molecules or
monomer segments in polymer in CRR is denoted by 2. The size of z depends on the
sufficient fluctuation in energy or enthalpy.

To evaluate the transition probability of cooperative rearrangements, we assume N is
independent, equivalent and distinguishable. Since the subsystems are in both mechanical
and thermal contact with each other, N subsystems is an isobaric-isothermal ensemble.
Each subsystem has z molecules. Only n subsystems, however, are in states of allowing a

cooperative rearrangement.

The Gibbs free energy of ensemble is given by G = zp = - kBT In A(z, P, T). Here k8

is the Boltzmann constant, T is temperature and A is isobaric-isothermal partition function
which is given by,
E
A@PT) = T wi E, Vyexpl=) expl-—) 2. 18)
&5 KT KT

where w is the degeneracy of energy E and volume V of the subsystem with pressure P.
In the same manner, the Gibbs free energy for allowing a cooperative rearrangement

subsystem is G = zp' = -kT InA’(z, P, T).
Then the fraction of the states permitting rearrangement arong all subsystem is given
by,
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where Ap is the potential energy hindering the cooperative rearrangernent per molecule or

monomer segment and independent on T and z.
The transition probability W(T), which permits cooperative rearrangement, is
proportional to /N and then given by,

y = AR L _p
W(T) WAN = Aexp | kT} (2. 20)

The transition probability <W(T)> is the sum over all possible corresponding to
different z. There is a critical lower limit z* to the size of cooperative regions that can
yield nonzero transition probabilities. Thus <W(T)> is given by,

<WD> = T Aexp [-—7‘3—;—‘-]

z=z (2. 21)
= — 2 exp 20 |
1 - exp(-—— kT
p( kT)

A,
As exp (- E%) in the denominator is nearly equal to zero, the denominator is negligibly

dependent on temperature in comparison with the numerator. Eq. (2. 21) can be rewritten

with new frequency factor A’,

z* Au

KT

The results state simply that the overwhelming majority of transitions are undergone by

regions whose size differs negligibly from the smallest size z* that permits a transition at

all. It is an expression of the fact that the transitions of these smallest cooperative regions

involve the smallest number z* of monomer units surmounting, essentially and

<W(T)> = A' exp(- ) (2.22)

simuitaneously, the individual barriers restricting their arrangement.

2.2.2 Critical size of CRR
In order to evaluate a critical lower limit z* to the size of cooperative regions, we
consider the configurational entropy Sc given by,
Sc=klnW, (2.23)

where W is the number of configurations of the macroscopic supersystem.
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On the other hand, the configurational entropy Sc of a macroscopic supersystem
composed of N subsystem is generally given by,

S¢ = Ns¢, (2. 24)
where sc represents the configurational entropy of a subsystem of z monomer units. The
configurational entropy of a cooperative subsystem can be expressed by combining Egs.
(2. 23) and (2. 24),

s = kln (W/N) (2. 25)
For the macroscopic system to consist of a mole of monomers or segments, the
number of subsystem is given by z = NA/N, where NA is Avogadro’s number. Then from
the Eq. (2. 25), sc can be written as the function of z,
sc = kin (WZNa) (2. 26)
It means that the configurational entropy of a subsystem increases monotonically with the
size of the subsystem for a given temperature and pressure.

There must be a lower limit z* to the size of a cooperative subsystem that can perform
a rearrangement into another configuration. For this lower limit, the available number of

configurations of this subsytem is Wcz"‘/N A . Then, the critical configurational entropy

*
s¢ of the representative CRR with size z* is given by,

sg = klIn (W2*N 4y, 2. 27)
and then the cnitical size z* can be expressed in terms of the molar configurational entropy
Se,

2% = NAso/Se 2. 28)

Substituting this result into the expression for the average transition probability, Eq. (2.
22), yields new equation,

*
<WT)> = A exp(- NkngA‘”) 2. 29)
C

2.2.3 VTFequation
The temperature dependence of Sc(T) can be evaluated from the general equation

relating the entropy and specific heat capacity,

T ACH(T)

Se(T) - S¢(To) = f, —E—dT, (2. 30)
[}

where ACp(T) is the difference in specific beat capacity between equilibrium liquid and
the glass. It is assumed that the system is frozen at To, called ideal glass transition
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temperature or Vogel-Fulcher temperature, therefore,
T AC,(T)

T, T (2.31)

Sc(T) =

To calcujate S<(T), the hyperbolic postulation, ACp(T) = TgACp(Tg)/T, was used {29,

30}, i.e., the configurational entropy is

Se(T) = fr —-——2——d = '1",;,'13(31,(rg)—-—Q (2.32)

Substituting this equation into Eq. (2. 29) yields another relationship,

ToNaseAn 1 |
KTgACH(Tg) T-To

i

< W) > A' exp(-
, (2.33)

i

A exp(- ___1}__“)
T-To
*
where B = W .
galp(lg)
As the diffusion coefficient D is related to the transition probability, i.e., IXT) cc
<W(T)>, diffusion coefficientis given by,

IXT) = Dg exp (- -T-%()-) (2.34)

This equation is the VT¥ one.
This theory links the refaxation properties with thermal properties through diffusion
coefficient and entropy and results in the VTF equation.
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2.3 Domain model

The cooperative domain model for the polymers was proposed in 1991 [10]. This
model proposed that a segmental relaxation requires intermolecular cooperativity to
discuss the molecular and thermodynamic factors that affect the relaxation behavior

around Tg.

2.3.1 Domain and conformer

The smallest segmental unit of rotation is calied as conformer. The domain size of
cooperativity is the number of conformer that must relax simultaneously with its close
neighbors. As the volume is decreased by change of temperature, the domain size grows
and the conformational entropy decreases.

At an enough high temperature, most conformers are allowed to relax independently
each other by the expanded volume. The temperature of this limit is defined as T*, where
the domain size is unity. At an extreme low temperature, on the other hand, there is a
temperature where the domain size has grown infinitely so that all conformers move
together. The conformational entropy disappears at this temperature called To. Between
these two limit temperatures, T* and To, the domain size denoted Z has a finite value and
is dependent upon the temperature, i.e., Z=Z (T).

Now, we suppose that a conformer can take the value of Wz as the number of states.
As each conformer refaxes individually at T*, the conformational entropy, s*, of 1 mole
of conformers is,

s* = Nakg In W, (2. 35)
where NA is the Avogadro's number and k8 is the Boltzmann constant. One domain
contains Z conformers. When there are Nz domains in a mole of conformers, the

conformational entropy, S, is given by,

Se= Nzks In Wz (2. 36)
AsZ=Na/Ng, '
XK
7 - Nﬁ kﬁ InWz, _ s 2. 37)

N7z kg InWz §;—

On cooling below T*, the conformational entropy Sc will decrease and reach 0 at To
with meshing of the conformers. On the other hand, when each conformer relaxes
independently without cooperativity, Sc reaches 0 at 0 K. The comparison between the
cases of relaxations without cooperativity and with cooperativity is represented in Fig. 2.
1 in terms of excess enthalpy vs. temperature. Curve A represents the temperafure
dependent excess enthalpy, b*(T), for the former and Curve B, Hc*(T), of the latter.
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Fig. 2.1 The temperature variation of excess enthalpy in cases that molecules relax a)
without cooperativity and b} with cooperativity

If we assume that curves A and B have similar shape but differ only in the temperature
scale, curve B can be obtained by compressing curve A through a change in the
temperature scale from [0 > T*] to [To -> T*], i.e. AXOT* ~ AXToT*, so that the

relationship can be obtained,

ey e 1

¢ -0

O~ e
ofT*)

There is another relationship between enthalpy and entropy,

He()  TSc 2.39)
ho(T)  Ts*

Form Eqs. (2. 38) and (2. 39}, we obtain,
"o )
. TN (2. 40)
s* (T* - To) T
This equation follows the temperature dependent domain size, Z, combining with Eq
(2.37),

T* -Tg) T
Ty (2. 41)

Z =

which shows the properties of Z such as Z = 1 at T* and Z->%0 atTo.
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2.3.2 Derivation of the VIFlaw

If each conformer can relax independently, the activation energy barrier Ap. would be

constant. The retaxation time v would follow the Arrhenius-like temperature dependence,

A Ap

o = == -

T* kT KT *’

where t* is the relaxation time at T*. When Z conformers in a domain can relax

(2. 42)

simultaneously, their relaxation time grows at a faster rate with temperature than shown
by Eq. (2. 42). The transition probability for the simultaneous relaxation is then the Zth
power of the probability for a independent conformer. The relaxation time at T is obtained
by the formula,

L - ZAr Ap

% KT Xr*
Ap  s* 1
= (- - = 2. 43
¢ Tse ~ T 2. 43)
M Ty L1

AtT-> ©0, Eq. (2. 43) is given by,

e . ML (2. 44)

T* k T*
Combining Eqs.(2. 43) and (2. 44) to eliminate v* term gives the VTF law,
T Au T* - Ty 1

In — - =5 )
%o kT T-Tg 2,45
Au* 1 ’ '
kg T - Ty

T
) is the activation energy for an independently relaxing

where Au* A,u(

conformer. The well- known VIF law is derived from the temperature dependence of
domain size Z.
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2.4 Two order parameter model

Two order parameter model is based on the Ginzberg-Landau type model and connects
the physical picture of structural glass and spin glass in a natural way [11, 12). According
to this model, the frustration in glass-forming liquids can be clarified by two order

parameters, density order parameter p and bond order parameter S. As a demonstration of

this model, the unusual thermodynamic behavior of water has been explained [12].

2.4.1 Frustration of two order parameter
It is focused on the effective aftractive interaction potential between molecules. The
potential is generally given by the superposition form of isotropic part of the interaction

V and its anisotropic part AV,

Vir, Q) = V(1) + AV(r, Q) (2. 46)
where r is the distance from the center of mass of the molecule and £ represents the

orientation. The latter anisotropic part causes a locally favored structure which consists of
a molecule and its neighboring n molecules. Two different types of symmetry are

generally favored in a liquid. One is favored by V and the other is favored by AV. The
former maximizes density and represents the long-range density ordering, while the latter
maximizes the local bonds. In liquid, the locally favored structure by AV is not identical

with any crystallographic symmetry. The local bond formation causes fluctuation in the
intermolecular interaction and symmetry-breaking random fields. It plays the role of
random disordering field against crystallization and favors vitrification.

The density p and the bond order S of liquids can be expressed by the fluctuation

form,p=p + 6p andS =S5 + S, respectively. The Hamiltonian associated with

density fluctuation dp is given by,
a
BHp = [alZopt)” - 2op’ + 2Lopw™), (2. 47)

where T = a2(T - T*p) and T*p is the density ordering temperature. In the same manner,

the Hamiltonian associated with bond ordering fluctuation AS is also given by,
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where € = b2(T - T*s) and T*s is the bond ordering temperature. For the physical feature

of the phase transition of liquids, the gradient terms and the couplings between p and §
are added to the above Hamiltonians, so that the following Hamiltonian is obtained,
K
BHT = BH, + .-2_“’_ fdr 1 Vp(r) 12 + BHg +5‘2§ fdr 1 6S(r) 12
¢ (2. 49)
- [drderp 6pOSM+ c15 PO + -—£€-6p(r)25(r) +532§—p(r)a3(r)2)

The coupling terms between p and S indicate the frustration effects between them. There

are two types of frustration. One is the negative coupling with ¢i < 0. It means that the
formation of bonds leads to a decrease of density and also to the decrease of the ordering
temperature. The other is the positive coupling with ¢i > 0. For this case, the formation of
bond leads to an increase in density and to an increase of the ordering temperature. For

example, the ordering temperatures, T**p and T**s, are shifted up or down according to
positive or negative coupling of c2p or ¢2s by the relations of T**p = T*p + (c2p/a2)S and

T**s = T*s + (cas /b2) p, respectively. The sign of coupling between p and S gives a

criterion on whether molecules crystallize or vitrify. For the positive coupling, molecules
should crystallize without vitrification, while for the negative coupling, vitrification can
QCCur.

There are two types of origins about the glass-liquid transition: (1) the anisotropic
interactions that are not consistent with the crystallographic symmetry and (2} the
quenched disorder in structures of particle or molecules. The temperature and strength of
disorder path of the vitrificationis shown inFig. 2. 2.

2.4.2 Relaxation features
Fig. 2. 2 is the schernatic phase diagram of the liquid-glass or liquid-crystal transition

[11]. S is the measure of disorder strength. This value is the spatially averaged value of S,

given by § = S0 exp (nAV/ kBT), where n is the number of near neighboring molecules,

AV is the bonding energy and kB is the Boltzmann constant. The density-ordering

temperatures, Tm*(0) = Tm* and Tm*(S ), represent the melting temperature of a real

21



defect free crystal formed as a result of density of ordering and that of a hypotheﬁcal
crystal with disorder. The relaxation behavior of liquid above Tm* obeys the Arrhenius

law, T =10 exp (AE/kBT) where AE is the activation energy, and the relaxation function is

exponential, &(t) = exp (-t/t).

Between Tm* and ToS), the relaxation is characterized by the slow dynamics. It
comes from the spatial islands having a higher molecular density than the liquid in the
valley of free energy hypersurface. The valleys whose state are metastable are separated
by the finite barriers. In order to complete the slow relaxation, the molecules must
overcome the barriers. This phase is similar to the Griffith phase known in spin glass
system. The relaxation in this Griffith-like phase can be characterized by the KWW

function, usually called stretched exponential, &t) :exp[(-t/r)ﬁ KWW 1 instead of the
exponential relaxation. The parameter is a monotonically increasing function of

temperature and reach Bxww = 1 at Tm*. The slow dynamics of Griffith-like phase may

be completely freezing-in at the Vogel-Fulcher temperature To due to the infinite energy
barriers. Therefore, the relaxation time diverges at To. To is equivalent to the Kauzmann
temperature TK. The glass transition occurs at the temperature where the metastable
islands having sufficiently high energetic barriers do percolate. Therefore, the glass
transition temperature exists between Tm* and To.

This model predicts some relaxational features. (1) Below Tm*, the energy barrier

gives us well-known VTF law. The

BT
height EB between islands given by Eg ToT

crossover from Arrhenius to VT'F at Tm* (near Tm) is predicted. (2) The disorder strength

S determines the temperature interval between Tm* and To. (3) A stronger glass suffers
from stronger disorder effects. It is consistent with the fact that a) the change in specific
heat across Tg is weaker for a stronger glass, b) a longer interval between Tg and To and

c) the larger PKWw at Ty for a stronger glass.
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2.5 Mode coupling theory

The development of mode coupling theory (MCT) leads to the topics of recent research
on liquid-glass transition. This theory pointed out that crucial point of structural glass
transitions in simple liquids is the transition from ergodic to non-ergodic dynamics of
density fluctuations with wave vectors of microscopic scale. The density correlation

function ®(t) at the wave vector q is given by,

*
< Opg (1) dpy (0)
by = —A— DA 2. 50)
< 6pq(0) épq (()ES

For liquid, it shows an ergodic dynamics. In other word, the density correlation

function of liquid reaches zero at the infinite time. On the other hand, the density
correlation function of glags has a finite value even when t -> «, which means non-

ergodicity.
The theory is successfully applied to the understanding of dynamical behavior in the

fragile glass-forming liquid. According to MCT, the fast B relaxation process is assigned

to the rapid motion of a molecule inside the cage and o relaxation is usually assigned to

the lifetime of cage. This theory predicts a dynamical glass transition from an ergodic to
nonergodic behavior at a critical temperature Tc. The existence of the crossover
temperature Tc was supported by the anomalous decrease in the Debye-Waller factor at Tc
[17, 31]. The critical temperature Tc, however, is not consistent with the calorimetric
glass transition temperature Tg. Tc is usually 30 - 50 K above Tg.
This theory evaluate the temperature dependence of the viscosity given by,
n=m0(T-Te)" (2. 51)

It reveals that viscosity diverges at Tc, bowever, it is inconsistent with the experimental

results.
it also predicts that the shape parameters in Havrilliak-Negami (HN) function [33] are

independent on the temperature so that the BKWW in stretched exponential relaxational

function does not depend on the ternperature. However, the value of Prww is an

increasing function of temperature.



