APPENDIX

A.1 Antenna Impedance

The antenna is essentially a transducer between the radio or radar systems
and the propagation medium. Therefore the antenna designer must be con-
cerned with the characteristics of the electromagnetic fields transmitted or
received and the characteristics of a load connected to the antenna, Typically
the antenna will be connected to the transmitter or receiver by a transmission
line, which may take the form of wires, coaxial cable, dielectric or metallic
waveguide, or one of the newer forms of transmission line such as stripline.
It is generally desirable to achieve the maximum power transfer from the
transmission line to the antenna, and vice versa, without the distortion of the
information conveyed.

The impedance concept can be very useful for a certain class of antennas in
defining the required characteristics at the input terminal of an antenna. If
the impedance of the transmission line can be defined, then the design ohjec-
tive for the antenna impedance will be to match this value, thereby ensuring
a maximum power transfer on the basis of the power transfer theorem.

The impedance concept can be particularly useful for lower frequency an-
tennaé where a pair of input terminals can be readily defined, the impedance
is single valued and is relatively easy to measure, The concept does not fail
at higher frequencies, but there may be practical difficulties in defining and
measuring this quantity.

For example, at microwave frequencies the antenna may be connected to
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a waveguide transmission line. The impedance of a waveguide is not single
valued since, unlike coaxial cable, the electric and magnetic fields inside the
waveguide are not purely transverse. An impedance concept is based upon
the transverse components of the electromagnetic fields of the fundamental
mode in the waveguide, but in practice the input terminal to the antenna
is often a waveguide flange and it is more convenient to employ waveguide-
matching techniques to measure the voltage-standing-wave ratio (VSWR)
or return loss. These measurements can be converted into an effective input
impedance and displayed on a Smith chart if required.

Where it is applicable the impedance concept is helpful as an aid to the
understanding and design of antenna systems. In these cases the antenna
input impedance can be considered as a two terminal network terminating
the physical antenna. In general this impedance can be considered to be com-
prised of two parts: a self-impedance and a mutual impedance, such that,

input impedance = self impedance + mutual impedance

The self impedance is the impedance which would be measured at the in-
put terminals of the antenna in free space, that is in the absence of any other
antennas or reflecting obstacles. The mutual impedance accounts for the in-
fluence of coupling to the antenna from any source outside. Clearly nearby
objects are potentially greater sources of coupling and for many antennas
the mutual impedance is effectively zero, either because the antenna is suf-
ficiently isolated in space or because the influence of nearby objects is much
legs than the self impedance.

On the other hand some antennas rely on the mutual coupling between ele-
ments to produce the desired specifications. A classic example is the Yagi-Uda
antenna where all but one of the elements are passive and unconnected to any
other elements but have currents induced on them by mutual coupling from
the one driven element. In array antennas the mutual coupling may not be
desired but will often be a significant factor in the total radiation characteris-

tics. The calculation of mutual impedance is usually theoretically complicated
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because the coupled antennas are in their reactive near-field regions and the
geometry of the antennas is often difficult to model analytically.

The self impedance of an antenna has both a resistive and a reactive com-
ponent, i.e. by employing complex algebra it has the form

self impedance = (antenna resistance) + j (self reactance)

The self reactance arises from the reactive energy which is stored in the
near-field region surrounding the antenna, while the antenna resistance ac-
counts for all the power absorhed by the antenna. The power absorbed in-
cludes that which is ultimately radiated by the antenna and thus the antenna
resistance comprises a so-called radiation resistance R, and a loss resistance
R;, which accounts for the dissipative and ohmic losses in the antenna struc-
ture.

Hence

antenna registance = R, + R,
where the radiation resistance is defined as the equivalent resistance which
would dissipate a power equal to that radiated, P, when carrying the current

Iy flowing at the input terminals, i.e.
R, =PI} | (A.1)

For an efficient antenna it is necessary that the radiation resistance be
much greater than the loss registance. For a practical thin half-wave dipole
for example, the radiation resistance may have a value of approximately 730,
with a loss resistance of perhaps 20, On the other hand a high frequency
band notch antenna on an aircraft may have a radiation resistance of 0.01Q
with a loss resistance of several ohms, Many standard textbooks have dealt
with the calculations of the radiation resistance for cylindrical rods and wires.

Measurements of input impedance can be performed using conventional
impedance bridge techniques and this is common practice at the lower fre-
quencies. At higher frequencies measurements of reflection coefficients or

voltage-standing- wave-ratios (VSWR) are favoured. Provided that the char-
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acteristics of the transmission line are known, these measurements can be

converted to an impedance if required.
For example, if an antenna of impedance Z; terminates a transmission line
-of characteristic impedance Z T and an impressed sinusoidal voltage at the
input to the the antenna (V) gives rise to a reﬂected'voltage (V') (see Fig. A.1)

then the reflection coefficient I" of the antenna is simply given by
r=(Iv|/IV])e® (A.2)

where 8 is the phase difference between the transmitted and reflected volt-

rd=> 7z =14 V'T;IZL

ages.

l
_K oM ' _ll Ve ™
Incident wavef Vel® Ve ™ reflacted wave
l ey

Fig. A.1: The voltage and current on the transmission line,

The voltage and current on the transmission line can be expressed as I

V() = V(e 4+ Te /¥ (A.3)
I = -;%(ejk[ e (A.4)

The voltage standing-wave ratio (VSWR) is a measure of the ratio of the

maximum and minimum voltages set up on the transmission line. In terms of

IThe characteristics impedance Zg of a transmission line is defined as the ratio of the volt-

age to the current pstablished on an unlimited transmission line, The wave on the unlimited

transmission line is called traveling wave and no reflection exists on the transmission line.
The incident wave is supposed to come from the region / <0.
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the reflection coefficient the VSWR will have the value
VSWR = (1+|I)/(1 -1} (A.B)

and will take values in the range of unity (i.e. perfect match) to infinity. Typ-
ically microwave horn antennas have VSWR values in the range 1.01 to 1.5,
while a broad-band antenna may operate with VSWR values of the order of
1.5 to 2.5. AVSWR of 5.8 (I'? = 1 /2) implies that one half of the incident power
is reflected from the antenna to the transmission line.

The antenna impedance (Z;) is given by
Z,=Zy(1+T) /(1 -T) (A.6)

and it must be noted that this is a complex quantity which requires that the
phase angle of the reflection coefficient be established. The return loss, which
is often specified as a performance parameter in microwave applications, is

given by
return loss = 20log o|I'| decibels (ALT)

Return losses " IV of -15dB V are typical for many antennas but values of the
order of -30dB V! or more may be demanded for a high performance satellite

communications ground station.

When || = 1/3, VSWR = 2, return loss = -9.54dB.
NWhen || - 0, VSWR — 1, return loss —+ —eo dB.
VWhen return loss = -15dB, |[| = 0.177, VSWR = 1.43,
VIWhen return loss = -30dB, |[} = 1/30, VSWR = 1.07.
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A.2 Antenna Polarization

The polarization of an antenna is the polarization of the wave radiated by the
antenna in a given direction.

If the electric and magnetic field vector of an electromagnetic wave lie in
a fixed plane at all times, it is called a plane polarized wave. The tip of the
instantaneous electric field vector traces out a figure with time; we refer to
this phenomena simply as the polarization of the electric field vector. There
may be a random component to this figure (a nonperiodic behavior), but we
will not consider such randomly polarized wave components because antennas
cannot generate them. For a completely polarized wave the figure traced out
is, in general, an ellipse.

There are some important special cases of the polarization ellipse. If the
path of the electric field vector is back and forth along a line, it is said to be
linearly polarized. See Figs. A.2(a) and A.2(b). An example is the electric field
from an ideal dipole or any linear current. If the electric field vector remains
constant in length but rotates around in a circular path, it is called circularly
polarized. The radian frequency of the rotation is ® and occurs in one of
two directions, referred to as the sense of rotation. If the wave is traveling.
toward the observer and the vector rotates counterclockwise, it is right-hand
polarized. The right-hand rule applies here; with the thumb of the right
hand in the direction of propagation, the fingers will curl in the direction of
rotation of the instantaneous electric field €, If it rotates clockwise, it is left-
hand polarized. Right- and left-hand circularly polarized waves are shown
in Figs. A.2(c) and A.2(d). A helical antenna produces circularly polarized
waves and the sense of rotation of the wave is the same as the sense of the
helix windings, for example, a right-hand wound helix produces a right-hand
circularly polarized wave. Finally, a wave may be elliptically polariied, with
either right- or left-hand sense of rotation, as shown in Figs. A.2(e) and A.2(f).

In the most general case of elliptical polarization the polarization ellipse
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Fig. A.2: Some wave polarization states. The wave is approaching. (a) Lin-

ear (vertical) polarization. (b) Linear (horizontal) polarization. (c) Right-hand

circular polarization, (d) Left-hand circular polarization. (e) Right-hand ellip-

tical polarization. (f) Left-hand elliptical polarization.
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may have any orientation. This elliptically polarized wave may be expressed
in terms of two linearly polarized components, one in the x direction and the
other in the y direction. Thus, if the wave is travelling in the positive z direc-

tion (out of the page), the electric field can be expressed as
E = (fA +7B)e /& (A.8)

The instantaneous total vector field corresponding to the complex eXpres-

sion is
E(z,) = Re[(#A+9B)e/(@—H)
= Zfacos(ot —kz+ o) + jbcos{wt — kz -+ B) (A.9)
where
A=ae’  (a=]A| (A.10)
B=be®  (b=1B)) (A1)

The electric field components in the x and y directions are

E(z,t) = acos(ot—kz)cosa—a sin(et — kz) sino (A.12)
Ey(z,{) = bcos(wt —kz)cosp — bsin{wr — kz) sinf3 (A.13)

Combining A.12 and A.13, eliminating (&t — kz), and rearranging the equa-

tion, we obtain

(2) -2eosta-p (B)(2)+ (%) =swe-n @

Equation A.14 describes a (polarization) ellipse, _
For a.— B = 0, the wave is linearly polarized in the direction determined

by —%ﬁ + %ﬂ = 0; For o — } = &xr/2, the wave is elliptically polarized, and is de-

termined by (%)2 + (%)2 =1, When o~ =7/2, the wave is right-hand el-

liptically polarized, and when o~ = —m/2, the wave is left-hand elliptically

polarized.
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Considering the following circularly polarized waves

R= (8- j§)e (A.15)
L= (2+ jp)e ¥ (A.16)
where R represents a right-hand circularly polarized wave, and L represents

a left-hand circularly polarized wave.

Equation A.8 can be reexpressed as

E=(#A+9B)e~ " = yR+ 1L, (A.17)

where
= dor i) 19
- —;-(A _iB) (A.19)

That means the elliptically polarized wave can be expressed as the com-
bination of the right-hand circularly polarized wave and left-hand circularly
polarized wave (See Fig. A.3, where r and / are plotted). When (o — kz) in-
creases, the end point of the electric field of the right-hand circularly polarized
wave rotates in the direction @) = @ — @ — @, meanwhile, the end point
of the electric field of the left-hand circularly polarized wave rotates in the
direction @' - @' —» @' — @'. When the end points of the two instantaneous
vector fields are at (D, @') or (@ , @), the two vectors are in the opposite di-
rections and the composition of the two vectors becomes minimum, When the
end points of the two electric fields are at (@, @) or (@ , @), the two vec-
tors are in the same direction and the composition of the two vectors becomes
maximum.

Therefore, the axial ratio (AR) can be defined as

AR = (A.20)
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Fig. A.3: The elliptically polarized wave consists of two circularly polarized

waves.

or in decibels (dB)

|42
AR = 20logo (lli%-{i-h) dB (A.21)

The polarization of an antenna is the polarization of the wave radiated by
the antenna in a given direction. Therefore, all of the discussions on wave
polarization apply directly to antenna polarization. Usually the polarization
characteristics of an antenna remain relatively constant over its main beam.
However, the radiation in some side lobe directions may differ greatly in po-
larization from that of the main beam. When the radiation from an antenna
is measured, both Eq and Ey should be measured to be complete. The principal
plane patterns of a linearly polarized antenna, such as a line source located on
the z-axis, are completely specified when a linearly polarized probe antenna
is oriented to respond to Ej.

The polarization of an antenna is determined by the wave radiated from
the antenna, which must, of course, be in the far field where local plane wave

behavior exists. Therefore, the plane polarized wave discussions given earlier
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apply. Furthermore, since the pattern (i.e., the radiation field) is reciprocal,
the polarization of an antenna is reciprocal. In other words, an antenna re-
sponds best (gives maximum output) for an incident wave of given intensity
when the polarization ellipse of the incident electric field has the same axial
ratio, the same sense of polarization, and the same spatial orientation of the
major axis as that of the receiving antenna for that direction, For example, a
right-hand circularly polarized receiving antenna is polarization matched to
a right circularly polarized wave. As a mechanical analogy, let a right-hand
threaded rod represent a right-hand circularly polarized (RHCP) wave and
a right-hand tapped hole represent a RHCP antenna. The rod and hole are
matched when screwed either in or out, corresponding to reception or trans-
mission.

Circular polarization gives a steady power flow, and there is no change
of power densities with time or space, analogous to power fransmi.ssion in a

two-phase system.
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A.3 Convergence Characteristics of the Calcu-

Iation

For a cavity-backed slot antenna, two factors affect the convergence charac-
teristics of the calculation. One is the number of terms Ngy for the cavity
Green’s function (see Fig. 2.16), the other is the segment length AZ (the num-
ber of expangion functions) (see Fig, 2.18).

In this section, a rectangular-cavity-hacked single square loop slot antenna
which has been analyzed in Section 3.1 is used as an example to illustrate the
convergence characteristics of the calculation in this dissertation.

The input impedance and axial ratio convergence characteristics versus
the term number Ngp of the cavity Green’s function are shown in Figs. A.4
and A.5, respectively. We can see from the two figures that both axial ratio
and input impedance are sensitive to the Ngp. By comparing the data in
Figs. A.4 and A5 with the experimental data in Figs. 3.14 and 3.15, it is found
that when Ngp=100, the results become convergent.,

The input impedance and axial ratio convergence characteristics versus
the segment length AZ are shown in Figs. A.6 and A.7, respectively. We can
see from the two figures that the axial ratio is more sensitive to the segment
length AZ than that of the input impedance. The results become convergent
when AZ=0.05);.

For the calculation of the rectangular-cavity-backed slot antenna, the fol-
lowing conclusions can be made:

The axial ratio is more sensitive to the segment length AZ than that of the
input impedance; Both the axial ratio and the input impedance are sensitive
to the number of terms Ngp for the cavity Green’s function.

The convergence conditions are as follows:

1. the number of terms Ngp for the cavity Green’s function = 100,

2. the segment length AZ = 0.052.
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Fig. A.4: Input impedance convergence characteristics versus Ngp, where
Xe=Yc=145mm, Zc=13mm, Xs=Ys=8lmm, W=3mm, Ls=81mm, AZ=0.05M,
Ao=200mm,
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Fig. A.5: Axial ratio convergence characteristics versus Ngp, where
Xe=Yc=145mm, Zc=13mm, Xs=Ys=81mm, W=3mm, Ls=81mm, AZ=0.05g,
Ao=200mm,
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Fig. A.6: Input impedance convergence characteristics versus AZ, where
Xe=Ye=145mm, Zc=13mm, Xs=Ys=81lmm, W=3mm, Ls=81mm, Ngp=100,
Ao=200mm.
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Fig. A.7: Axial ratio convergence characteristics versus AZ, where
Xc=Ye=145mm, Ze=13mm, Xs=Ys=81lmm, W=8mm, Ls=81mm, Ngp=100,
A=200mm.
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A.4 Circular Polarization for Spacecraft Com-

munication

For spacecraft communication, it is important to discuss the antenna’s polar-
ization and why it plays an important role in satellite-antenna design. An
antenna is defined by the polarization of the electromagnetic (EM) energy
that it radiates. It is important to measure this polarization in the far zone
of the antenna, that is, at distances sufficiently far from the antenna so that
a further increase in this distance will not change the measured polarization.
A distance R = 2D?*/) is customarily chosen as adequate for measuring the
antenna’s polarization, where D is the antenna-aperture size and A is the op-
erating wavelength. The electric field direction defines the polarization of the
EM energy.

Although essentially all polarization properties of EM waves play a role
in satellite-antenna design, let us review those that are most important. For
example, a linearly polarized (LP) antenna such as a dipole, oriented with
its axis vertical (with respect to the earth’s surface), will radiate and receive
vertically polarized signals. Convergely, it will neither radiate nor receive
horizontally polarized signals, This phenomenon is cornmonly referred to by
stating that an antenna will not radiate or receive cross-polarized signals, or
that orthogonally polarized signals are rejected. This statement is not lim-
ited to LP antennas; circular and elliptically polarized EM waves and anten-
nas have co-polarized and cross-polarized properties identical to those of LP
waves and antennas [41]. Circularly polarized (CP) waves have a right-hand
sense (i.e., RHCP) if the electric field vector rotates in a clockwise sense as the
wave is propagating away from the observer. The electric field vector of a left-
hand circularly polarized (LHCP) wave rotates in a counterclockwise sense
for receding waves. Changing both the direction of propagation (i.e., receding
to approaching) and the sense of rotation (i.e., clockwise to counterclockwise)

does not alter the polarization. The important point is that co-polarized an-
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tennas couple well to one another and cross-polarized antennas tend to re-
ject one another’s signals. Now consider earth-satellite signal links when the
frame of reference (i.e., vertical and horizontal) of the earth station will not,
in general, coincide with the frame of reference (i.e., north and south) of the
satellite. Since the satellite usually serves many users simultaneously and
its antenna can assume only one polarization at any instant of time, it follows
that when LP antennas are used, the earth station must adjust its frame of
reference to coincide with the satellite’s frame of reference. Although this is
possible, it is far simpler to use CP satellite and earth-terminal antennas and
remove the need to align them in order to maximize coupling between them.
Consequently, it is not surprising that most satellite antennas are circularly
polarized. ‘

When an LP satellite antenna is used, the orientation of the associated EM
waves is altered as they propagate through the earth’s ionosphere [42]-[43], a
phenomenon often referred to as the Faraday rotation effect. This rotation of
LP waves is usually negligible (less than a few degrees) at frequencies above
1 GHz. However, at frequencies below 1 GHz Faraday rotation effects can ro-
tate the wave polarization more than 360°. Fortunately, the polarization of a
CP wave is not altered by the Faraday rotation effect. Change in polarization
due to transverse “static” magnetic fields along the propagation path is much
smaller, therefore, circular polarization is preferred because CP waves prop-
agate through the ionosphere with no essential change in polarization. Most
spacecraft and earth-terminal antennas are shared by the associated trans-
mitter and receiver. The use of antennas that are orthogonally polarized for
transmitted and received radiation enhances the isolation between the trans-
mitter and the receiver. For this and the foregoing reasons it is customary for
satellite antennas to be opposite-sense circularly polarized for simultaneous

transmitting and receiving functions,
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