Chapter 5

On Abduction

5.1 Introductory remarks

Abduction is reasoning to build an explanation for an observation assum-
ing appropriate hypotheses from incomplete knowledge, which is sometimes
incorrect due to inconsistency, when the observation is not explainable by
complete knowledge, which is always true[32]. Recently abduction on logic
programs and its semantics are widely studied[33, 14], probably because of
relationship between nonmonotonicity of abduction and meaning of negation
in the logic programs. However they have not found any unique applications
yet, in contrast to abduction on propositional logic that is being applied to
diagnosis and design[9, 10, 11, 43]. In this chapter, the author is creating an
application of the approach by implementing analogical reasoning, one form
of common sense reasoning, by means of abduction.

Analogical reasoning has long been a subject of study[74]. Recently, nu-
merous studies have focused on the theoretical aspects of analogical reasoning
from a logical viewpoint[20, 19, 8]. Among these, the formulation using de-
termination rules[8] has the advantage of offering clear semantics, as it is
defined within deduction. The determination rule is a deductive rule as the
following.

Y[z,y] = Xlzx,z] iff
Yy, z(Fz(Z[x, y] A Xz, 2]) D Ve (X[z, y] D Xz, 2]))

At the same time, however, ordering of analogy[19] cannot be discussed
within this framework. Under [8], all analogically inferred facts are equally
plausible, so that the concept of plausibility ordering does not apply.

The special feature of analogical reasoning is that it has a duplicated
manner of interpretation. The meaning of analogical reasoning in the given
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theory is determined depending on the meaning of the theory, which is in-
terpreted without analogical reasoning.

The meaning of the determination rule is “if there is x, which has a
value y for an attribute X and has a value z for an attribute X, then all
the individuals which have the value y for ¥ have the value z for X”. In
the determination-rule formulation, this semantic information is crystallized
into the determination rules. The intuition on analogical reasoning shown
above gives a more important suggestion on formulating analogical reasoning.
Namely, it suggests the method to define the meaning of analogical reason-
ing as the meaning of the theory which is extended from the original one.
The extension is performed by adding some knowledge which is determined
depending on the meaning of the original theory.

In this chapter, a method for regarding analogical reasoning as abduction
is proposed. First, an intuitive illustration of the basic ideas is provided.
The simplest analogical reasoning is described by the following example[8].

p(s) A q(s) p(t)
q(t)

The inference here might be interpreted as “If you know p(s) Ag(s) for an
individual s, then you can conclude p(z) D p(x) A ¢(z).” The determination
rules are a natural formulation of this intuition. The justification for ana-
logical reasoning is provided by the presence of the determination rules|8].
But this formulation of analogical reasoning is unsatisfactory, because the
determination rules are too strong deductive rules. Furthermore, it seems to
be difficult to find practically useful determination rules.

P qq

Figure 5.1: Intuitive meaning of analogical reasoning

Let us consider the above example in the following way. “Something,
which is p, will seem to be ¢, except in the case I know that it is p and that it
isn’t ¢.” Namely, defining predicate Vz(ab(z) < p(x) A ~¢(x)), we can infer
q(t) by supposing —ab(t). This is obvious because Yz (p(z) A —ab(x) D ¢(z)).
This coincides with minimization of the shaded area in figure 5.1.
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The intuitive meaning of predicate ab is “That which is p is almost always
q; exceptions may exist, however, which we call ab.” The meaning of ab is
determined according to the meaning of the original theory and it affects
the meaning of analogical reasoning in the theory. This coincides with the
intuition for analogical reasoning described above.

Based on this viewpoint, we can say that analogical reasoning involves:

e adding definitions of ab-like predicates, together with new knowledge
that use negations of ab-like predicates (i.e., Vz(p(x) A—ab(x) D q(z))),
into the original theory;

e reasoning hypothetically using hypotheses composed of negated ab-like
predicates.

It is necessary to be able to handle negation within the framework. Here,
the framework of abduction proposed in [33] is employed. In this approach,
the meanings of abductive frameworks are given by their generalized stable
models (GSMs). If we can regard analogical reasoning as a form of abduction,
then we can give meaning of analogical reasoning by the GSMs.

The analogical reasoning represented by this formulation has the follow-
ing meaning: If two individuals share an arbitrary attribute, then all other
attributes possessed by one individual are also shared by another (there may
be some exceptions). This can be said as a loose framework, because this
allows much analogical reasoning with relative small amount of ground. Con-
sequently, it will face the justification problem. But to study which result
of analogical reasoning in this formulation is justifiable is effective to clar-
ify the nature of the justification problem, because all styles of analogical
reasoning are included by this formulation. Employing the framework of ab-
duction, all assumptions used during analogical reasoning are explicitly kept
as hypotheses, which help those studies.

The idea to formulate analogical reasoning by minimizing difference be-
tween two attributes are shown in [3], which is based on circumscription.
This study differs from that work in the point that it is utilizing hypotheses
employed during minimization, in order to clarify the property of analogical
reasoning.

In this chapter, it is first described that the method to give semantics for
analogical reasoning as GSMs. Several properties of such GSMs are inves-
tigated. The procedure for an analogical proof is introduced, and relation
between the procedure and justification methods is discussed. This suggests
to acquire knowledge by adjusting hypotheses generated by the procedure.
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5.2 Analogical reasoning as a form of abduc-
tion

In this section, we briefly review the framework of abduction given in[33].
Then the method for representing analogical reasoning by means of the ab-
ductive framework is illustrated, defining ab-like predicates such as described
in the previous section. The object theory is locally stratified logic programs
that only use unary predicates. This simple object is suitable for the chapter,
which is not to construct practical systems but to investigate characteristics
of analogical reasoning.

5.2.1 Generalized stable model semantics for abduc-
tion

Definition 5.2.1 (Abductive framework[33]) An abductive framework
is a triple (L, A, IC), where L is a normal logic program[42] which has no
head with a predicate in A; A is a set of abducible predicates; and IC are
integrity constraints, which is a set of closed formulae. All ground atoms
composed of the element of A are abducibles.

Definition 5.2.2 (Pre-GSM for an abductive framework[33]) Let
(L, A, IC) be an abductive framework and A be a set of abducibles. Then a
pre-generalized stable model(pre-GSM), M(A), is a stable model[15] of LUA.

A pre-GSM is a stable model of the program L, where L has been extended
by the hypotheses A. IC is not taken into account.

Definition 5.2.3 (GSM[33]) Let (L, A, IC) be an abductive framework and
A be a set of abducibles. Then a generalized stable model(GSM), M(A), is
a pre-GSM such that for each i) in IC, M(A) = 1.

The semantics of (L, A, IC) is the set of all of its GSMs[33].

An interesting relation between abduction and negation as failure is shown
in [14]. In [33], a new abductive framework(L*, A U A*, IC U IC*)! is con-
structed from (L, A, IC'), where L* is a program in which all occurrences of
—p in L are replaced by p*; A* is the set of such p*s; and IC* is the set of
closed formulae VYo—(p(x) A p*(x)), Vz(p(x) V p*(z)) for all elements p* of A*2.
Intuitively, p* represents the negation as failure of p. [33] shows that there

1Referred to as the transformed framework of the original.
2In the remaining part of this chapter, we call integrity constraints with this form as
integrity constraints of A*.
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exists a one-to-one correspondence between the set of GSMs of (L, A, IC)
and the set of GSMs of (L*, AU A*, IC U IC™).

We will show an example of GSM semantics. In the example, because L
is a locally stratified program[66], L’s unique stable model is identical to its
perfect model([15], Corollary 1). Note that the GSM semantics gives mean-
ing to the effect that the predicates which occur in the body with negation
represent unusual cases, just as with perfect model semantics[66].

Example 5.2.4 Suppose the following logic program L 1is given:

robin(a)

robin(b)

injured(a)

fly(x) « robin(x), —~injured(x)

Transformed framework for L is F = (L*, A*, IC*) where L* is the program

robin(a)

robin(b)

injured(a)

fly(z) « robin(z),injured*(x)

and

A* = {injured*}
1C* = {vIﬁ(znjured(w) N injw“ed* ($)),
Va(injured(x) V injured*(x))}

Pre-GSMs for F' are:

M(AAl) = gobm(a), robin(b), injured(a)}

M(As) = {robin(a), robin(b),injured(a), injured*(a), fly(a)}
Ay = {injured*(a)}

M(A3) = {robin(a), robin(b),injured(a), injured*(b), fly(b)}
Az = {injured*(b)}

M(A,) = A{robin(a),robin(b),injured(a), injured*(a), injured*(b), fly(a), fly(b)}
Ay = {injured*(a),injured*(b)}

Only GSM for F is M(As3).
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5.2.2 How to convert analogical reasoning into an ab-
ductive framework

This subsection shows how to deal with analogical reasoning for a given logic
program by means of abductive framework. The basic idea is to apply GSM
semantics to the transformed framework of extended program by means of
the rules which has negation of ab-like predicates (as introduced in section
5.1), thereby obtaining models in which ab-like predicates represent unusual
cases.

For the remainder of this chapter, we will assume that the given logic
program L is locally stratified[66]. This means that L possesses a unique
stable model([15], Corollary 1). Thus, by definition of GSM, the abductive
framework F = (L, ¢, ¢) possesses a unique GSM.

Because there exists a one-to-one correspondence between the set of GSMs
of abductive framework and the set of GSMs of its transformed framework,
we can show the following corollary.

Corollary 5.2.5 If logic program L is locally stratified, then the transformed
framework F = (L*, A*, IC*) of the abductive framework E = (L, ¢, $) has a
unique GSM.

The uniqueness of the GSM of given program’s transformed framework
is important. In the subsequent formulation of analogical reasoning, we will
determine the abductive framework that takes analogical reasoning into ac-
count according to the meaning of the program. Therefore, if there are several
meanings of the program, then we will get plural abductive frameworks for
analogical reasoning. Although it would be interesting to consider how we
might select, from among several possible meanings for the program, the
meaning on which we would analogically reason, and the way in which this
selection would affect the result of the reasoning, we will not deal with these
issues here.

Through the reminder of this chapter we will not distinguish between the
logic program L and the abductive framework (L, ¢, ¢).

Definition 5.2.6 (A list of attributes, LA) Let L be a given logic pro-
gram, and let M be the GSM of L’s transformed framework (L*, A* I1C*). If
there exists a set of predicates P = {p1,...,pa}(n > 2) in L and M = pi(h)A
... Apn(h) for a ground term h, then P is called a list of attributes(LA)? of
L by h.

3LA was called as class in the previous paper[64]. The name of this concept is changed
in order to avoid confusion in terminology.
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A LA denotes attributes which are possessed by specific individuals.

Definition 5.2.7 (Analogical addenda) Let L be a given logic program.
If P={p1,...,pn} is a LA of L, then the analogical addenda for L with
respect to P are as follows.

U {aPpi<x) — pl(m)a s apifl(x)api-i-l(m)a s ,pn(x),p;‘(x)} U
U {pz <_ pl ) v 7pi—1<x)7p’i+1<x)7 v ,pn(x),a}pi(x)}

(where apy, is a predicate which does not occur in L)

Let G be the union of all analogical addenda for L with respect to all
LAs of L by each indiwvidual constants, let Ag be the set of predicates in G
with *, and let IC4, be the integrity constraints for Ag[33]. Then (L* U
G,A*UAg, IC*UIC,,) is called a framework with analogical addenda upon
L, and is denoted by FA(L). app, is referred to as a predicate representing
pi-exception with respect to P.

Analogical addenda with respect to P are composed of the following.

1. The definitions of predicates app,, which represents unusual cases with
respect to P.

2. The rules which conclude attributes p; in P, using negation of ap,, and
other attributes.

Definition 5.2.8 (Strongly analogical addenda) Let L be a given logic
program. If P ={p1,...,pn} is a LA of L by h, then the strongly analogical
addenda for L with respect to P are as follows.

U pi(@) = p1(@), .. pica (@), piri (@), -, pa(2), 0y, (2)}

p;EP

(where app, is a predicate which does not occur in L)

Let G be the union of all strongly analogical addenda for L with respect
to all LAs of L by each individual constants, let Ag be the set of predicates
in G with *, and let IC4, be the integrity constraints for Ag. Then (L U
G,Aq,ICy4,) is called a framework with strongly analogical addenda upon
L, and is denoted by FSA(L). apy, is referred to as a predicate representing
pi-exception with respect to P.
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Strongly analogical addenda with respect to P are rules which conclude at-
tributes p; in P, using negation of ap,,. When P has three or more elements,
the rules, which is used to reason an existing attribute using two or more hy-
potheses, seem to lack in the above definition. In fact, such cases are covered
by the (strongly) analogical addenda with respect to subsets of P, which are
also LAs. Namely, the effect of the rule

p(x) «— p1 ('/Ll)’ a?p1,p2,p}p<x)’ a’?pl,pg}pz ('r)

is accomplished by rules

pa(x) < pi(2), a?PI,PZ}Pz ()
p(x) < pi(x), p2(), a?phpz,p}p(x)

Example 5.2.9 Suppose the following logic program L is given:

p(a)

q(a)

p(b)
The GSM of L’s transformed framework is {p(a), q(a),p(b)}.
Only LA for L is P ={p,q}.
Analogical addenda G for L with respect to P are:

ap(x) < q(z), p*(2)
aq(r) + p(z),¢*(x)
p() < q(x), a;(z)
q(x) + p(x), ay(x)

AG: {p Q> p>
ICag =1 Ya(p(z) A (35)), vz (p(x) V p*(x)),
Ve=(g(z) Agi(z)),  Va(g(z) V¢ (z)),
Vz—(ay(z) Aag(z)), Va(ap(z) Vay(z)),
Va(ag () A (x))a Va(aq(x) V ag(x))}
FA(F)= (LUG, Ag,ICAG>

Strongly analogical addenda SG for L with respect to P are:

p(x) = q(x), ap(x)

q(z) < p(z),a q(w)

Asg = {ap, q}
ICase =1{ Va—(ay(z) A a;(x)), Va(apy(r)
Va(ag(z) Aag(z)),  Va(ag(z)
FSA(L)= (LUSG,Asg,ICaq,)

The meaning of analogical reasoning for logic program L is given by (a subset
of) the set of GSMs of FA(L).
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5.3 GSM semantics for analogical reasoning

5.3.1 Basic definitions

Generally, a framework with analogical addenda has plural GSMs. For the
ground atom p(h) whose truth value is not decidable only from LU D U G,
these GSMs correspond to a case that ap,(h) is hypothesized and a case that
p*(h) is hypothesized.

Example 5.3.1 In the example 5.2.9, FA(L) has the following two GSMs.
{p(a), p(b), q(a), q(b), az(a), a;i(b), aZ(a), ag(b)}

(corresponds to A = {a*(a),a;(b) a;(a ) 2(0)})
{p(a), p(b), q(a), ¢*(b), ay(a),a () a) q(b)}

(corresponds to A = {q*(b),a (a) (b ),a (a )})

As described intuitively in section 5.1, analogical reasoning minimizes
unusual cases with respect to LAs. Semantics for analogical reasoning must
identify such cases. For the above example, a,(b) holds in the second GSM
but does not in the first GSM. We can say the first GSM gives the semantics
for analogical reasoning.

Definition 5.3.2 (Analogical GSM) Let L be a given logic program and
F = (L*, A* IC*) its transformed framework. Also let FA(L) = (L* U
G,A*UAG, IC*UICy,). Let M be a GSM of F. If a GSM of FA(L) M’
is a superset of M U{u}, such that u € B+ and v ¢ M, then M’ is an
analogical GSM of FA(L). (Bp+ stands for the Herbrand base for L*.)

There are two intuitions in the above definition.

First, M’ D M guarantees conservativeness of analogical reasoning. For
FA(L), its GSM M’ is called conservative, iff M' O M, where M shows
GSM of L’s transformed framework.

Second, existence of u means that there is at least one atom which is
analogically inferred, and cannot be deductively inferred.

Example 5.3.3 In the ezample 5.3.1, FA(L) has the following unique ana-
logical GSM:

{p(a), p(b), q(a), ¢(b), ay(a), ay(b), ag(a), ag(b) }
(corresponds to A = {a;(a ) (b), az(a),a;(b)})
Note q*(b) € Bp-.

Definition 5.3.4 (Analogical extension) An analogical GSM for FA(L)
15 called an analogical extension of L.
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The analogical extension does not always exist.

Example 5.3.5 Consider the following program L:

~—

p(x) + —~q(z)

(
(a
(b
(

’U’E

a

Q9

The unique GSM for F = (L*, A*, 1C*) is {p(a),p(b),q(a),q*(b)}. The only
LA of L is {p,q}. L’s all analogical addenda is G:

p(x) < ¢(2), a}, 0, (T)
q(z) + p(2),a, 4,(2)
ap,g3p(T) + q(x), p*()

(
(fp,q}g(2) < p(), ¢ ()
FA(L)’s GSMs are:

{p(a), p(b), q(a), 4" (b), a7, 1,(a); Ay 414(0)s Ay 01 (B), Agpg1a (D)}
{p(a), p(b), 9(a), 4(b), a?p,q}P(a)’a?p,q}q(a)’a?p,q}P(b)’a?p,q}q(b)}

Both are not analogical.

We are interested in when an analogical extension of given program exists.
Next theorem shows a sufficient condition of the existence of the analogical
extension. First, the concept of “saturation” is defined.

Definition 5.3.6 (Saturation) Suppose P = {p1,...,p.} is a LA of pro-
gram L by h. If and only if M = pg,(t) A ... A pg,,(t) implies M |=
P1(t) A Apu(t) holds, for allt, every subset P' = {pk,, ..., Dk, }(m < n) of
P and a GSM M of L’s transformed framework, then P is called saturated.

If given program L has a LA with a predicate which occurs in L as a
negated literal, then GSM of FA(L) may be not conservative. In the next
theorem, we utilize the fact that any GSMs of FFA(L) are conservative until
L has such a LA.

Theorem 5.3.7 Suppose logic program L’s transformed framework F =
(L*, A*, 1C*) has unique GSM M, L has at least one LA, there is no predi-
cate in LAs of L which occur in L* with *, and for at least one LA P, P is
not saturated. Then L has an analogical extension.
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Proof The outline of the proof is followings. We first show that the
pre-GSM of FA(L') is also the pre-GSM of the FA(L), where L' = LUY
and Y denotes a set of atoms which are going to be analogically inferred?.
Next we show that this pre-GSM is indeed a GSM of FA(L).

By assumption, there is a not-saturated LA of L. Let P = {p1,...,pn}
be such an LA. By definition of saturation, there is a term h and a subset
P = {pk,,...,pr,} of P such that M (= p;(h), where i & {ki,... , kn}.
Let W be an union of all such p;(h) and let Y be a non-empty subset of .
Because Y is a set of ground atoms without * and L is locally stratified, LUY
is locally stratified. Let F' = (L* UY, A*, IC*) be a transformed framework
of LUY. Consequently, F’ has a unique GSM. We will call this M.

Let L' = LUY and suppose FA(L') = (L*UY UG, A*UAg, IC*UIC,,).
Let G(Q) be analogical addenda with respect to the LA Q = {q1,...,¢;}
By definition, G(Q) = G1(Q) U G2(Q), where

GiUQ) = [ {aou(@) & (@), -, 4im1(2), gini (@), .., 5(), ¢} ()}

G€EQ

U {QZ <_ QI ) .- qul{x)ﬂqi-i-l(x)a s ’qj(x)aaaqi<x)}

%GEQ

We now make the following subsets of the Herbrand base:

{p*(h)|M [ p(h) Ap* € A*}
{agq (M) F(agqe (7) + (=), ..., qi1(2),
Gi+1(2), - .-, q;(z), ¢} (z)) € G1(Q)
where Ml ):ql(h)a"'v%'— (h) Qz—l—l( ) "'7QJ( )

AMy# qi(h)}
m3(Q) = {ap, (h)FHagy (@) < ¢:(2), .., g (@),
Git1 (), -, 45

my

ma(Q)

(7). ¢i () € G1(Q)
where My = q1(h),...,qi-1(h), q2+1( )s ---,CI]( )
VM = aq(h)}

Now, if My Um; Umy(Q) Ums(Q) = ap, (h), then either M; U my U
ma(Q) Ums(Q) = ¢1(h) A ... Agii(h) A gixa(h) A ... Agj(h), or else My U
my Ums(Q) Ums(Q) = p(h).

In the former case, the premises of rules ¢;(x) < ¢1(x), ..., ¢ 1(x), gir1(x), . ..

qj(x),a%,, (x) in Go(Q) cannot be satisfied for x = h. In the latter case,
M = q(h)A...Ag;(h) for the h which satisfies these premises. So we can
say that any atoms with the predicates in F’ cannot be in the least model of
L*UY UG(Q), except for such atoms in M;.

4Such atoms are indicated as u in definition 5.3.2.
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According to above argument, it is clear that M7 Um; Umo(Q) U ms(Q)
is the least model of L* UY U G(Q) U my Ums(Q). And we can say M; U

my U UmQ(Q) u Umg(Q) is a pre-GSM of FA(L'). This is because ag,,

Q Q
and ag,, do not occur in G1(S), G2(S) for which S # Q.
Next we show that this pre-GSM is in fact a GSM. Obviously, M;Um U

Umg ) U Um3 ) = IC4,. And M, = IC*, because M, is a GSM for
Q

F'. So we can say that M;Um; UU mQ(Q)UU m3(Q) is a GSM for FA(L').

Q Q
We denote this GSM by N’ and assume that N corresponds to the set of
hypotheses A. In fact, A = m; U U m3(Q)

Q
Note that the premises imply that, for an arbitrary atom p;(h) in Y, there

exists a LA P = {p1,...,p,} that contains p;, and that M E pi(h) A ... A
pi-1(h) Apis1(h) A ... Apn(h). From the way in which we construct F’, we
have My = pi(h) A ... Api_1(h) Apiyi(h) A ... A py(h). For such P and p;,
there exist

app; () < p1(2), - -, pic1(7), Pig1 (), .. ., pu(2), P} () € G1(P)
pZ(l‘) (—p1<$),...,p¢_1($),p¢+1($),...,pn( )7a>1k3p ( ) S GZ(P)

Clearly N' = pi(R) A ... Apici(h) Apigi(R) A .. Apa(h) and N' = ap,, (h).
From this, together with the subset of GQ(P) shown above, we can derive
pi(h). This results that if N is the least model for L*UY UGUA then it is also
the least model for L* U (Y — {p;(h)}) UG U A. Since p;(h) is an arbitrary
atom in Y, we have shown that N’ is a least model for L* UG U A. By
definition, this is a GSM for FA(L). Because N is obviously an analogical
GSM of FA(L), the theorem is proven. u

Example 5.3.8 Ezample 5.2.9 satisfies the premises of theorem 5.3.7.

Unfortunately, it is impossible to show the converse of theorem 5.3.7. The
counter example of the converse of theorem 5.3.7 can be seen in example 5.2.4.

Example 5.3.9 Ezample 5.2./ doesn’t satisfy the premises of theorem 5.5.7,
but there 1s an analogical extension shown as the following.

{ robin(a),injured(a), fly(a), robin(b),injured*(b), fly(b),
a?robin, Fly} fly (a), a?robin, Fly} fly (b), a?robin, Fly}robin (a),

* * *
a’{robin,fly}robin(b)7 a{robin,injured}robin (a)’ a’{robin,injured}chin (b)’
*
a’{robin,injured}injured(a’)7 Q{robin,injured}injured b) }
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Because an analogical model requires conservativeness, any atoms with
the predicate which occurs in L as a negated literal cannot be analogically
inferred. It seems too restrictive, but this is indispensable. In the above
example, we could analogically infer injured(b) if we abandoned conserva-
tiveness requirements. In that case, we don’t longer have a ground to in-
fer fly(b). This relaxation affects the LA on which analogical reasoning is
based. According to our standpoint, such mutual dependencies should not
be allowed.

Definition 5.3.10 (Strongly analogical extension) A strongly analogi-
cal GSM for FSA(L) is called a strongly analogical extension of L.

Theorem 5.3.11 Let F' be a transformed framework of logic program L. If,
for each predicate belonging to LA of L, the predicate formed by attaching
* to it does not occur in I, then the strongly analogical extension of L is
unique, if exists.

Proof Suppose F' = (L*, A*, IC*) and let M be its GSM. Since an
analogical extension is conservative, L’s strongly analogical extensions are
identical to those of L' = L U M, if it exists. Since there is no rule whose
head has a exceptional predicate, all a*Pp(h) must be hypothesized, for all LA
P, p € P and ground term A, in order to satisfy the integrity constraints.
There is only one way to select hypotheses. Therefore, a pre-GSM of the
framework with strongly analogical addenda for L’ is unique. By definition,
strongly analogical extension of L’ is unique, if it exists. u

Theorem 5.3.12 If ' = (L*, A*,IC*) satisfies the premises of theorem
5.3.7, then a strongly analogical extension of L exists, and is an analogi-
cal extension of L.

Proof Assume that, in the proof of theorem 5.3.7, W is selected for
Y. In this case, for any LA P of L, the premises of the elements of G1(P)
are never satisfied. Consequently, the N constructed in this case is identical
to a GSM for FSA(L). |

Theorem 5.3.13 The interpretation, which is obtained by removing atoms
with predicates representing exceptional and atoms with predicates with * from
L’s analogical extension, is a model for L.

Proof L’s analogical extension is clearly a model for L (which is ex-
tended by extra vocabulary) because it is a model for FA(L). So, the inter-
pretation, which is obtained by removing atoms with predicates representing
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exceptional and atoms with predicates with * from L’s analogical extension,
is a model for L, because there is no clause in L which has predicates repre-
senting exceptional or predicates with * in its head. u

Definition 5.3.14 (Analogical model) When an analogical extension of
L exists, the interpretation obtained from L’s analogical extension by remov-
ing all predicates representing unusual cases, together with all predicates with
*, 48 a (non-minimal) model for L. Specifically, it is called an analogical

model for L.

Theorem 5.3.15 Let SAM(L) be an analogical model of L which corre-
sponds to L’s strongly analogical extension, and AM;(L) be an analogical

model of L. If SAM(L) exists, then SAM(L) = UAMZ-(L).

Proof The existence of SAM(L) implies that there is a model of
FA(L) free of any atoms with exceptional predicates without *, except those

which hold within the GSM of L’s transformed framework. Because
Fi(SAM (L) = AM;(L)), SAM(L) C | JAM;(L) is obvious. Next, we must

show SAM(L) D UAMi(L) to prove the theorem. Suppose that there is

an analogical modezl which is not included by the analogical model which
corresponds to a strongly analogical extension. Let M be an analogical
extension which corresponds to such an analogical model and let A/ be the
strongly analogical extension. Then there is at least one atom which belongs
to M and does not belong to N. Obviously, there is a LA which contains
a predicate of this atom. So this atom must be contained by N, which is
made by the way shown in the proof of theorem 5.3.7 under the condition
that W =Y. This leads contradiction. u

Definition 5.3.16 (Analogical explanation) Let L be a given logic pro-
gram and let F = (L*, A*, IC*) be its transformed framework. Goal Q has an
analogical explanation iff there ezists an analogical GSM M and M = Q.
If this M corresponds to a set of abducibles A, then we say that @ has an
analogical explanation with a set of hypotheses A.

As described by theorem 5.3.15, a strongly analogical extension is equiv-
alent to applying as much analogical reasoning as possible. So it is unique,
if it exists. But applying as much analogical reasoning as possible may
cause violations against integrity constraints. In contrast, in FA(L) =
(L*UG@G, A*,1C*), let G' be a program obtained from G by replacing all p*(z)
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by —p(x). L UG" is not locally stratified. The priority for minimization|[66]
is undecidable. Consequently, for a GSM M of (L*, A*, IC*) and arbitrary
LA P, predicate p, and term h such that p € P, M ¥ p(h), it is possible
to selectively hypothesize either p*(h) or ap,(h). These correspond to (gen-
erally plural) analogical extensions of L. There is no domain-independent
solution on the selection, and we must employ new knowledge to select an
appropriate model[14]. Specifically, we will require knowledge on plausibility
of the sets of hypotheses to which each analogical GSM corresponds.

5.3.2 Active usage of p-exception

It is assumed that we can allow rules whose head contain predicates rep-
resenting p-exceptions with respect to P. These rules are used to decide
whether it is possible to make a hypothesis or not. Namely, a},,(t) is hypoth-
esized iff ap,(t) cannot be proven. This convention can be quite useful: for
example, we can reflect the constraint “birds almost fly, but penguins don’t”
into the analogical reasoning by the following program.

penguin(p)
A{bird, fly} fly ()

But it must be noted that the unlimited usage of such rules causes a
problem. A framework with such extensions is not guaranteed to have a
unique GSM — even if we employ the strongly analogical extension — be-
cause whether atoms with exceptional predicates should be hypothesized or
not becomes the problem which is not trivial.

This fact could be troublesome to construct the analogical proof proce-
dure. To cope with this problem, we restrict ourselves to use such rules only
as unit, clauses, in order to ensure that the program is still locally stratified.

5.4 Analogical proof procedure

Suppose we only deal with programs that satisfy the premises of theorem
5.3.7. Those programs have unique GSM for their frameworks with strongly
analogical addenda, by theorem 5.3.11 and 5.3.12.

Therefore, if we want to construct a procedure which proves whether a
goal has an analogical explanation or not for the given logic program, it is
sufficient to construct the procedure corresponds to the strongly analogical
extension of the given program, by theorem 5.3.15. The logic program, which
corresponds to the framework with strongly analogical addenda upon the
given one, is locally stratified, because each predicate belonging to the LA of
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L does not occur in its transformed framework attached by *. So we can use
the procedure introduced by [14] which is shown in figure 5.2 and figure 5.3.

An abductive derivation from (G; A;p) to (G, A,) is a sequence
(G1 A1),(Gy Ag)y...,(Gn Ay)

such that, for each i, 1 < 4 < n, G; has the form < [,I', where
(without loss of generality) computation rule R selects [, and I’ is
a (possibly empty) collection of atoms, and

abdl) if | is not abducible then
Giv1 = C; A1 = Ay
where C is the resolvent of some clause
in the program with the clause (; on the selected literal [

abd2) if [ is abducible and [ € A; then
Giv1 = <15 Ay = Ay

abd3) if [ is abducible, [ € A,
[ has the form k*, and
there is a consistency derivation
from ({«+ k} A;U{k*}) to (¢ A’) then
Gig1 =« U'; Ay = A}

A refutation is an abductive derivation to a pair (O ~A’).

Figure 5.2: Abductive derivation

This procedure is a natural generalization of SLDNF. The special feature
of the procedure is that it records used hypotheses to prove a goal.

This procedure is correct for locally stratified programs. Therefore, pro-
vided that the framework with analogical addenda has already been estab-
lished according to the definitions, this procedure can be used to decide
whether goal (2 has an analogical explanation.

Now we consider a procedure by which we can analogically prove goals
without the framework with analogical addenda. To do so, the mechanism
to select a LA including an attribute in the goal is required. When the goal
has variables, it is needed to determine their value temporarily in order to
find the appropriate LA.

The proof procedure for this framework is obtained by attaching a pro-
cedure in figure 5.4 to that in figure 5.2.
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A consistency derivation from (F; A;) to (F, A,) is a sequence
(Fi AD(B As),...,(F Ay)

such that, for each i, 1 <i < mn, F; has the form {« k,k'} UF/, where
(without loss of generality) the clause ¢ k,k' has been selected
(to continue the search), computation rule R selects k, and

conl) if k is not abducible then
Fiz1 = C'UF]; Ajpr = Ay
where C' is the set of all resolvents of clauses
in the program with the selected clause on
the selected literal, and O & C’

con2) if k is abducible, k€ A; and k' is not empty then
Fip1 = {«K}UF]; Aipr = Ay

con3) if k is abducible, k ¢ A; and
k has the form [* then
if there is an abductive derivation
from (« [ A;) to (O A’) then
Fiy1 = F; A1 = A
else if no such derivation and k' is not empty then

Fipr = {<F}UF; Ay = A U{l"}

Figure 5.3: Consistency derivation

5.5 The related work

Iwayama et al.[30] proposes a formulation of analogical reasoning for logic
programs, which is in similar manner to the thesis. They also add clauses
to the original program to implement analogical reasoning and employ the
stable model semantics. The main differences are the treatment of negative
information and the standpoint for justification.

In this chapter, negative information on analogical reasoning can be dealt
by p-exception predicates. In [30], because their object program is Horn
program with integrity constraints, negative information can be dealt in more
direct manner.

[30] assumes that analogical reasoning should be done only when the
causal relation from similarity to projected property is consistent with orig-
inal program. Therefore, if there is one exceptional individual for analogy,
then analogical reasoning must be given up. To implement this viewpoint,
they remove the variable from the head of the rules, which coincide with
analogical addenda.
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abd4) if [ is not abducible and ! has the form p(¢) then
if ¢ is not a variable then
if there is an abductive derivation
from ({< p(s)} ¢) to (¢ ¢) and Analog(P,p,t) is true
for an appropriate set of predicates P Z p,P # ¢ then
GH1=4_V§AH1=A““$wmA@§
if ¢ is a variable then
label: get a new term t' from the Herbrand term enumerator;
if s =1 then goto label;
if there is an abductive derivation
from ({< p(s)} ¢) to (¢ ¢) and Analog(P,p,t') is true
for an appropriate set of predicates P Zp,P # ¢ then
Giy1 = « 1, Ajy1 = AIUG};U{p}p(l‘);
else
goto label;

Analog(P,p,t)
begin
if for all ¢ in P
there is an abductive derivation from ({«< c(s)} ¢) to (¢ ¢),
there is an abductive derivation
from ({< c(t)} A;) to (¢ A’) and
there is a consistency derivation

trom ({t apuip(t)} @) to (6 6) then
return true;
else
return false;
end

Figure 5.4: The addendum for the analogical proof procedure

5.6 Summary

Analogical models for locally stratified logic programs were given as ana-
logical GSMs for their transformed framework. This yields a semantics for
analogical reasoning over these programs. A sufficient condition that an ana-
logical extension exists was shown, and the strongly analogical extension was
shown to be unique under this condition. In general, analogical extensions
are not unique; there is one state in which unusual cases with respect to the
LA are minimized, and the other state in which predicates which already ex-
ist in the original program are minimized. The choice among these must be
based on another piece of knowledge. This would seem to be a quite natural
result from the intuitive viewpoint of analogical reasoning.
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Because a proof procedure for the transformed framework exists, we can
construct a procedure for analogically proving the goal, provided that we
first create the framework with analogical addenda for the given program.
We then construct a procedure for proving the given goal by introducing
appropriate LAs or unusual cases as needed. In this case, we can use a fact
which contains a predicate representing an exceptional case.



