Chapter 3

On Analogical Reasoning

3.1 Introductory remarks

The knowledge acquisition bottleneck in expert system development arises
from the human nature that a person is unaware of the existence of her/his
own knowledge. It is effective in overcoming this to support human creativ-
ity so that knowledge engineers or experts can consider the whole domain
and can make the initial knowledge base sparse[13]. Knowledge acquisition
techniques according to top-down methodology would work more effectively
if this was done.

At Toshiba, we are studying on the difficulty of acquiring user needs in
the context of software development. According to Toshiba’s standpoint,
it is effective to support human creativity for acquiring user needs, thus
the author is developing an creativity support system called Chie-no-Izumi'.
This is because this difficulty also arises from the users’ lack of awareness of
the existence of their own knowledge.

The features of Chie-no-Izumi are as follows[61].

e To model a human cognitive process of getting an idea
e To implement the model
e To support human creativity based on the model

The author is mainly studying the first and second items[60]. A model
of human cognitive process of getting an idea is formally defined in this
chapter. In order to do so, a general process of creative thinking? is defined

! Japanese term meaning “the fountain of wisdom”.
2The author could not find any single word to describe the human cognitive process
of getting ideas in English, in contrast to do that in Japanese, which is done by hassou.
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32 CHAPTER 3. ON ANALOGICAL REASONING

and next analogy-based creative thinking is defined as special case of it.
Then, a definition of paraphrasing-based analogical reasoning(PAR) is given
as an algorithm to implement a sort of analogy-based creative thinking, and
it is shown that PAR is a valid form of analogical reasoning in some sense.
At the end of this chapter, some extensions to PAR are made, which are
important from a practical view and their effects are shown with examples.

3.2 Creative thinking as machine learning prob-
lem

What is creative thinking? If we had no perspective on this (somewhat philo-
sophical) question, we cannot discuss whether some algorithms implement
creative thinking or not. Here is the definition of creative thinking.

Definition 3.2.1 Assume a consistent theory v over an appropriate language
L. When v which is a subset of v and information® on ¢ are given, to infer
some sentences belong to the difference set between 1 and v is called creative
thinking.

This definition assumes that there is an ideal knowledge base ¢, and that
the knowledge base v which a human or a computer has is a subset of it,
namely, v has no knowledge which does not belong to ¢. Intuitively, creative
thinking is an action that is made by a human or a computer to make their
own ~ similar to ¢.

This is a very general definition. We can characterize creative thinking
with relations between ¢ and 7 or with oracles. The following example is one
aspect of creative thinking.

Example 3.2.2 Suppose that a consistent theory ¢ consists of Horn clauses
over the first order language L with finite function symbols and predicate
symbols. Assume an oracle which tells the truth values of arbitrary ground
atoms with respect to a model of . Obtain ¢.

Although there are words for what is got by it (inspiration, discovery, idea,...) or ability
to do it (creativity), the process itself is not given a word. It is merely regarded as a
special case of thinking. Thus in the thesis the author uses creative thinking to describe the
process. Hereafter the phrase will be also used to express an English concept corresponding
to hassou for references originally written in Japanese. In the previous paper[63], abduction
was used instead, which might cause confusion in the thesis where abduction will be used
to describe a particular mathematical form of logical reasoning.
3This is often called an oracle.



CHAPTER 3. ON ANALOGICAL REASONING 33

This is the very problem of model inference[70]. We can regard this as
creative thinking according to definition 3.2.1. Indeed, a study in creativity
engineering[29] shows the discovery of the periodic law by Mendeleev as an
example of such creative thinking®. In this case, there are functions such
as atomic weight etc., predicates such as many chemical properties, ordering
relations on numbers etc. and atoms as constants. Mendeleev could have
obtained the truth values of chemical properties on atoms by experiments.
Here, these played a part of oracles. And Mendeleev got an idea(:) that
chemical properties appear in the order of atomic weight.

A study in creativity engineering gives analogical reasoning, universaliza-
tion and reasoning to limit as well as systemization as the four patterns of
creative thinking. Among them, analogical reasoning is regarded as the most
important one. According to the scheme of definition 3.2.1, analogy-based
creative thinking is defined as follows.

Definition 3.2.3 Suppose a consistent set v of sentences over an appropriate
language L, where |t| > 2. For i, let Dy,...,Dy(n > 2) be non-empty sets
such as t =Dy U...UD, and D; N D; = ¢(i # j). {D1,..., Dy} is called a
partition®. Elements of a partition are called a domain. For some i # j, if
s; such that belongs to a deductive closure of D; and s; such that belongs to
a deductwe closure of D; are identical upon a theory Th, we say D; and D;
are analogous with respect to s;,s; upon Th, or D; and D; are analogous by
the evidence s;,s; on Th.

Suppose that L is the whole of the Horn sentences and that D; and D;
are analogous with respect to Si;,...,Smi and Sij,...,Sm; upon Th. Let D;-
be the subset of D; such that sij,...,5m—1; can be deduced, but s,; cannot
be deduced from it. When D; U D are given, to obtain a set of sentences S,
included by D; and not included by D, such that sm; can be deduced from
D; U S and S is identical to a set of sentences in D; upon Th, is called
analogy-based creative thinking.

4This is called “systemization-based” creative thinking.
5The concept was called division in the previous paper[63]. The change has been made
in accordance with a suggestion by Professor Bipin Indurkhya.
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We can characterize analogy-based creative thinking by the form of S® or
relations between D; and D;. Let us consider the following example.

L = D U Dy
Y o= D1 U DIZ
D, = {f(d,d) (1)
g(a',c) (2)
r(d,d) < p(d,c) (3)}
Dy = {y(a,0) (4)
f(a,d) (5)
p(d, ) (6)
p(d.c) « [(a,d),g(a,c) (1)}
D, = Dy U Ar(c,d)«pld,c) (8)}

In this example, 7(c, d) can be deduced from ¢ but not from . Since we
can see identity between (1) and (5), and between (2) and (4) upon theory
Thy such that (a' = a) A (d' = d) A (¢ = ¢) upon it where =~ represents
the identity relation, D; and D), are analogous. Here, the sentence which is
identical to (3) upon Th; is (8). If we infer (8) from ~, we can deduce r(c,d)
from it.

The reason why 7(c,d) cannot be deduced from # is the lack of implica-
tion(8) which belongs to ¢. Haraguchi[21] gave a formal definition to these
cases of analogical reasoning. We can also regard them as creative thinking
according to definition 3.2.3.

Now we introduce another case of analogy-based creative thinking.

Example 3.2.4 Assume a set ¢ of sentences with the form

Vay, o o (0@, ) © (@1, T) Ao A Qu(X, o T)). We call
sentences with this form paraphrasings on p. Assume that ¢ can be partitioned
into domains D; and D;, where D; and D; are analogous with respect to
paraphrasing on p; and p; and paraphrasing on q; and q; upon the same
theory T'h, where paraphrasing on q; has the symbol p; and paraphrasing on
q; has the symbol p;. When v = D; U D;- (where D;- = D,;—{paraphrasing on
q;}) is given, obtain .

A study in creativity engineering gives an episode of the discovery of
natural selection by Darwin as an example of such creative thinking. Namely,

6To specify the form of S corresponds to bias in inductive inference[22].
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suppose y such as

L = l)Z U Dj

D, = {improve_breed(z) <

artif variant(z) A survive(z). (1)

artif variant(z) <

variant(source(x), x) A make(man,x).  (2)}
D; = {natural_selection(z) <

natural variant(z) A survive(z). (3)yu D
D) = {natural variant(z) <

variant(source(x), x) A make(nature, x). (4)}

are given. Since (2) and (4) are identical upon the theory such that artif _variant
and natural_variant are identical and man and nature are identical upon it
(we denote this theory as T'hy), we can say D; and D) are analogous with re-
spect to (2),(4) upon Thy. In this example, we want to infer (3) from D;U D;
by transforming (1) using theory Thy. While this case is similar to the last
one in that v has information on partitioning of + and has evidence that the
two domains are analogous, this case is different from the last one because vy
does not have all the predicates in ¢. This seems to be a special case because
many machine learning studies assume that all predicates needed to form
an objective theory are known’. In this case, the learning system may infer
what sort of predicate the missing one is, but cannot name it—it is done only
by an oracle.

The author thinks that a model of human creative thinking is a combi-
nation of various models. We cannot say that we should always infer impli-
cations or paraphrasings by analogy between domains. But it is considered
important to formulate individual models because they can be regarded as
some aspects of human creative thinking.

Observing brainstormings®, the author is led to believe that the pair of an
eye-catcher and a catch phrase® invite creative thinking by the brainstorm-
ers. This is well explained by the hypothesis that the evidence of analogy
between domains of ¢ is the pair of an eye-catcher and a catch phrase, namely
paraphrasing. Therefore, we can model an aspect of human creative think-
ing in brainstorming by a framework of analogical reasoning which obtains
evidence of analogy from paraphrasing. In this chapter, we formulate this as
paraphrasing-based analogical reasoning.

"For example, in MIS with theoretical term, all predicates can be divided into an
experimentable one or an a priori known one[70].

8 A method to generate ideas within a group.

9A short explanation for the eye-catcher.
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3.3 Paraphrasing-based analogical reasoning
(PAR)

3.3.1 Definition of PAR

In PAR, an object is a theory consisting of paraphrasings, such as a subset
of the Horn theory. First we will define some fundamental terms. Some of
them follow AST[25]. The author will also describe the relationship between
PAR and AST.

Definition 3.3.1 Constant symbols, predicate symbols and function symbols
are all called tokens.

Definition 3.3.2 (Vocabulary[25]) let T be a countable set of types
{fo, f1,---D0,P1,---}. Here, f, shows a function with n arguments, while
Pn Shows a predicate with n arguments. For a set of tokens V' and mapping
¢:V =T, we call a pair [V, (] vocabulary.

Definition 3.3.3 For token t with type p,(n > 0) and atoms Ly, ..., Ly, a
set of Horn clauses with the following form is called a paraphrasing of ¢.

{t(x1,...,2n) < Li(x1,...,T0),. ., Lin(x1, ..., 2p).
Li(z1,...,2,)  t(xg,...,2,).
Lm(xlu ,.’L'n) «— t(xl’ ,Z‘n)}
where no variable is in Li(x1,...,2n), .-, Lm(x1, ..., Z,) other than x4, ..., x,
and t does not occur in Li(x1,...,2Zp), .., Lin(21, ..., 2p).

Here, we call {Ly(x1,...,2n), - Lin(x1,...,2,)} the body of the para-
phrasing. We use the following notation for this paraphrasing.

t(l‘l,...,l‘n) <:>L1,...,Lm.

Paraphrasing is a special case of derivation in AST such that it has restric-
tions on the right hand side of the equivalence symbol. We denote a set of
tokens included by S as T(S), for a body of paraphrasing or a set of para-
phrasings S.

Definition 3.3.4 Assume that a finite set W of paraphrasings and a parti-
tionC = {Dy,...,D,} of it are given, where |W| > 2. We denote U T({u})

ueW
as Ty,. We make a distinction between two subsets of T,,, namely Ty,. and T;,

where T,e = {ele € Ty A3, j(i # jAe € T(D;)Ne € T(D;))}, Twi = Top—Tope-
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Elements of Tye are called external tokens of C. Elements of Ty; are called
internal tokens of C''°. We denote {t|t € T,,; ANt € T(D;)} as I.

In the remaining part of this chapter, we assume that all sets of para-
phrasings are finite and have more than two elements, and that for a partition
C ={Dy,...,D,}, there is at most one i such that I; = ¢.

Definition 3.3.5 For vocabulary [V, (], let us consider the following condi-
tions among an equivalence relation R over V and a partition C = {Dy, ..., Dp}
of set W of paraphrasing over [V, ].

Va,y(R(z,y) > ((z)=((y))
Ve, y(R(xz,y) D (x=yA(zx € Ty V Ii(x € I;))V

(x#ynJi,jlee LAy el Ni#j)))

If and only if these conditions hold true, R is called a correspondence of
tokens on C' over [V, (].

Definition 3.3.6 For a partition C = {D, ..., Dy} of set W of paraphras-
ings over [V, (], we denote an equivalence class of token t according to the
correspondence of tokens R as T, R(t).

Theorem 3.3.7 For t € T,, there exists at most one u such that u €
T.R)NL(i=1,...,m), for alli.

Proof By definition 3.3.6. u

We can regard the correspondence of tokens as the extension of admis-
sible mapping[25]'* so that it can deal with three or more domains. This is
because all the external tokens are equivalent only to themselves according
to definition 3.3.5. The equivalence classes of tokens give some sets of tokens
that are identical among domains upon a given correspondence of tokens
over a given vocabulary. The function which picks out a token belonging
to a given domain from an equivalence class is regarded as an extension of
T-MAP. Now we define such a function as the mapping of tokens.

Definition 3.3.8 For a partition C = {Ds,...,D,,} of set W over vocabu-
lary [V, (] and an equivalence class T.R(t) of t € T,, upon the correspondence
of tokens R over [T, (], the mapping of tokens T.R; to D; upon R is a par-
tial function from U I; UTye to I; UT,,. that is only defined for t such

1=1,....m

as Ju(u € T.R(t) N (I; UTy.)) and has such u as a value.

10These definitions of internal /external tokens are somehow different from [25].
1 Type-preserving mapping from internal tokens to internal tokens.
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For a body of paraphrasing or a set of paraphrasing S, when T.R; 1is
defined for all the elements in T(S) we denote a set such that all the tokens
in S are replaced by its image of T.R; as T.R;(S).

Two correspondences of tokens Ri,Ry are said to be consistent when the
following condition holds true.

V7, t(t eTl,D (TCRl(t) N Ij = Qb)
V(T Ra(t) NI = ¢) V (TeRy;(t) = T.Ry;(t)))

When Ry, Ry are consistent, we denote the relation represented by the
following graph as Ry U R,.

GRyUGRy, U{(z,y)|(z,2) € GRL A (2,y) € GRy}
U{(y,x)|(z,2) € GRy A (2,y) € GRy}

where GR1,GRy are graphs of Ry, Ry respectively.

Theorem 3.3.9 For consistent correspondences of tokens Ry and Ry, R; U
Ry is a correspondence of tokens.

Proof Evident according to the last two definitions. u

Definition 3.3.10 For the correspondence of token R on the partition C of

set W of paraphrasings over [V, (], U {T.R;({s})} is called the equiva-
7j=1,....m

lence class of s upon R where s is an arbitrary paraphrasing over [V, (].

Definition 3.3.11 For the partition {D1, ..., D,} of set W of paraphrasings
over [V, (], both of the followings are called T-equivalence.

1. The relation represented by the graph U {(t,t)}.
t€Tu

2. For two different domains D; and D;, suppose s1 € D; and sy € D,
are paraphrasings of t1 and ty whose bodies are by and by, respectively,
and 3z,y(y € T.R(x) Nz € T(by) Ny € T (b)) holds true for a given
T-equivalence R. If a correspondence of tokens 6 such as 1s consis-
tent with R can make equivalent s; and ss in the equivalence class of
paraphrasings upon R U6, then RU 60 is such a T-equivalence.

We define the size of T-equivalence R with respect to D;, D; as
H{(z,y)|(z,y) € GRAz € I; Ny € 1;}| where GR denotes a graph of R. We
denote this as |R|;;. Sometimes we represent T-equivalence by a graph such
that symmetric and reflexive relations are eliminated.
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There are the following features in the definition of T-equivalence. The
second item of the definition claims that if we want to make a new T-
equivalence based on a given one, we should take two paraphrasings such
that contain equivalent tokens upon the given one. Thus, at first we can
make T-equivalence only from two paraphrasings such that contain the same
external tokens. The syntactic support for the validity of T-equivalence is its
type-preserving property. Semantic supports for the validity of T-equivalence
are the identity of external tokens and that only such extensions are allowed
that extend the semantic supports for the validity of basic T-equivalence by
making equivalent the two paraphrasings that are partially identical upon
the basic T-equivalence.

Before defining PAR, we assume an oracle. Suppose a set ¢ of paraphras-
ings over a given [V, (] which includes a given set W of the paraphrasings as
its proper subset. We call ¢+ an intended theory. Here, the oracle accepts a
set Y of atoms consisting of tokens ¢ € T;, and variables, and returns a token
of type p, in V — T, whose paraphrasing in ¢« — W, if it exists. It is called a
godparent.

Definition 3.3.12 We assume that the following formula holds true, for a

set W of paraphrasings over [V, (]| ,its partition C and given T-equivalence
on C.

3, 7,b,t,t'(b € Dy At € T(b) At = T.R;(t))

Here, a paraphrasing-based analogical reasoning from b with the base domain
D; and the target domain D; are defined by a procedure reason(b, 1, j, R).

Algorithm 3.1 reason(b, i, j, var R)
1 Suppose b = (t(x1,...,z,) & PARA)

2 PARA' « inner(PARA,i, j, R)

3 if (¢(z1,...,2n) © PARA’) € D; then

4 t' + godparent(PARA')

5 end

6 0 < relation represented by graph {(¢,t'), (¢',t)}
7 if R and @ are consistent then

8 R+ RUY

9 return ' (x1,...,z,) & PARA’

10 else

11 return FAIL

12 end
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Algorithm 3.2 inner(PARA,i,j, var R)

1 if 3t € T(PARA) AN T.R;(t) is not defined then
2 k+0

3 let L as a list of all tokens with same type as ¢, and L’s element € T'(D;)
4 if such a token does not exist then

5 return FAIL

6 end

7 repeat

8 cand <+ FAIL

9 k+—k+1

10 if length of L < k then

11 return FATL

12 end

13 let t' as k-th element of L

14 6 « relation represented by graph {(¢,t'), (¢',t)}
15 if R and 6 are consistent then

16 R+ RU#

17 cand < inner(PARA, i, j, R)

18 end

19 until cand #FAIL

20 else

21 return T,R;(PARA)

22 end

The procedure godparent shows an oracle introduced above.

Theorem 3.3.13 For a set W of paraphrasings, its partition C = {Ds,...,D,}
and given T-equivalence R on C, if a PAR from b with the base domain
D; and the target domain D; infers b/ # FAIL and renew R into R', then
T.R;({b}) = {b'} where {D,...,D;_1,D;U{b'}, Dj1,..., Dy} is a partition
of WU{V'}.

Proof According to the definition of inner, it is evident that PARA' =
T.R;(PARA) holds where PARA is a body of b and PARA' is a body of
b'. Due to the definition of reason we can see that T.R}(t) = t' where tokens
t and t' are paraphrased by b and V', respectively. Therefore, we can say

T.R;({b}) = {¥'}. u

Theorem 3.3.13 shows that PAR is valid with respect to given T-equivalence
because it extends the size of analogy represented by T-equivalence between
the domains. Here, we regard |R|;; as the size of analogy between D; and
D; upon T-equivalence R. Notice that we use the concept consistency of
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correspondence in order to guarantee the conservativeness of the new anal-
ogy against basic analogy, instead of using logical consistency between the
new sentence and the target domain, which is often used by other analogical
reasoning systems. The former is decidable, but the latter is not. A set of
paraphrasing is always consistent'?. And we can show that we need not to
consider the consistency of object theories in order to discuss the validity of
PAR using the following theorem. This claims that a set obtained from a
set of paraphrasings by PAR has a model such as a conservatively extended
one of the old set.

Theorem 3.3.14 For s set W of paraphrasings over [V, (], its partition and
given T-equivalence R and model M of W, when PAR from b with the
base domain D; and the target domain D; infers a paraphrasing b’ of token
t', MUI is a model of W UV, where I is an appropriate interpretation of
t.

Proof If b' belongs to W then W = W U b'. In this case, we can pick
an interpretation of ¢ € M, so that M U I] is a model of W U ¥'. This is
because M = MUI] and M is a model of W. If b’ does not belong to W, we
can make I; as assignments of truth values for instantiations of conjunction
of the body of o over the arguments of t’. So we have I] such that makes the

theorem hold. [ |

3.3.2 Related works

Now, augmentation with respect to predicates on AST will be introduced.
Augmentation with respect to predicates is defined as follows. If f, which is
consisting T-MAP!, is defined for all the tokens in Y of derivation
V..., xn(i1(x1, ..., 2,) & Y) and not defined for iy, then add s, corre-
sponding to i1, and a derivation Va1, ..., x,(i2(x1, ..., 2,) < f(Y)) into the
target domain.

If we restrict ourselves to consider only the conjunctions of atoms as Y,
this is similar to PAR with two domains. But there are some differences.

1. The semantics of external tokens. In AST, external tokens are defined
as such tokens that are internal tokens of other domains but occur in

12Maybe some predicates have no extension.

13We assume that a model of the theory is represented by a set of interpretations of
tokens.

14 A pair of admissible mapping f and a set of sentences in the base domain such that
all internal tokens have an image of f.
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the domain. They are used to make relationships between domains. In
PAR, external tokens are external for any domain. This is related to
a practical extension of PAR which is mentioned in the next section.

2. The difference between T-MAP and T-equivalence. These two concepts
are similar like admissible mapping and the correspondence of tokens.
While T-MAP requires the coherency®® in order to keep itself valid,
it need not consider consistency in PAR, as we can see in the last
part of the last section. The existence of paraphrasings syntactically
corresponding to each other in each domain guarantees the validity of
PAR.

3.4 Discussions

When PAR can infer all the paraphrasings belong to ¢« — W from W such
that it is a subset of the intended theory ¢, we can say PAR is valid as a
model of creative thinking. To realize this, we should make a constraint to
W and ¢. In this section, some necessary conditions for it are considered.

3.4.1 Input to the system

Evidently, all the paraphrasings belonging to ¢« — W should belong to some
equivalence classes on a partition C' of ¢ which has more than one element, and
at least one element of those should belong to W. Moreover, a given partition
C'={Di,...,D.} of W should satisfy the condition Vidj(D; 2 D)) against
C ={Dy,...,D,}. This condition claims that C' is a partition obtained by
a natural restriction of C, so to speak, we can get a partition on ¢ with the
same form. This seems to be too optimistic. Now, we show that to specify a
subset of T,, such as external tokens in ¢ is equivalent to satisfying the above
requirement.

Let us see the definition of domain and internal tokens from another view-
point. Intuitively, internal tokens are proper to the domain, while external
tokens are used among domains. Therefore, we can regard a domain as a
classified theory on internal tokens. We can obviously construct a parti-
tion C = {Dy,...,D,} when we are given a set W of paraphrasings and
L,..., 1%

Next, let us relax the restriction. When we are given W and a set T}, of
external tokens of unknown partition C' = {Ds,..., D,}, how about recon-

15 Logical consistency between f(S) and the target domain.
16Because there exists at most one ¢ such that I; = ¢.
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structing the partition? Suppose that T(D;) and T'(D;;1)(where 1 < i < n)
has no token belonging to 7T,,.. A set of external tokens of C' and a partition
C'"={D1,...,D;i—1,D; UD;y1,D;o,...,D,} are the same. So, we cannot
decide which is the original partition, C' or C".

Definition 3.4.1 When a partition C = {Ds, ..., D} of W whose external
token set is € satisfies the following, we call C' a canonical partition with
respect to W and ¢.

‘v’n( <DZ € C) D)
VI(ICL)D {s|ls€ D, \NT;(s) CI}+#
{s|]s € D; AN3t(t € Ty(s) Nt € I)}))

where T;(s) denotes {t|t € T(s) Nt € e}.

A canonical partition is the finest partition among a family of partitions
with the same external token set, such that all domains in it cannot be
partitioned any more.

Theorem 3.4.2 A canonical partition with respect to W and € 1s unique, if
1t exists.

Proof Suppose that C = {D,...,D,},C' ={Dj,..., D! } are canon-
ical partitions with respect to W and . According to the definition of internal
tokens, the following holds for 1 < i < n.

D;={rlre WAT,(r) CL}={rlre WATt(teT,(r) "t € L)} (1)

Let s be an arbitrary paraphrasing in D; and assume s € D;-. According
to the definition of domains, j is unique. The following holds true.

Di={rlre WAT(r) CL} ={rlre WAt e Ti(r)Ate )} (2)

Let us consider the following procedure check(k) where ¥; = {s} and
k=1

Algorithm 3.3 check(k)

1 Z+ |J T
rEY}
if Z = I} then
return k
end
Y1 < {rlr € Dy A3t(t € Ti(r) At € Z)}
return check(k+1)

Sy O W N
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We can say from (1) and (2) that Z C I: A Z C I is always true during
the execution of check(k), and therefore Y, C DiAY} C D; for every k. Since
C' is a canonical partition, an assignment statement to Y, in the procedure
always gives a Yy such that Y C Yii1. Accordingly, check(l) must halt.
When the procedure halts, it is true that Z = Ii. So we can say I; = Z,
because C'is a canonical partition. Therefore, we can see that [; = I}. From
this and the definition of internal tokens, we have D; = D;. Here, we can
say Vidj(D; = DY), because i is arbitrary. Using a symmetrical argument,
we can show Vidj(D} = D;). So we have C' = C". u

Theorem 3.4.2 claims that we can construct a partition C' of W from
the given W, and the external token set ¢ if C' is a canonical partition with
respect to W and e. This is done by the following procedure div(W, e, ¢).

Algorithm 3.4 div(W, e, ¢)

1 if W = ¢ then
2 return D
3 else
4 k = |D|
5 b := one paraphrasing in W
6 i ={th e T{b}) Nt &e}
7 Suppose that D = {Dy,...,D,}
8 if 3j(I; 2i)(1 < j <k) then
9 Dj = Dj U {b}
10 else
11 IfVj(I;Ni=¢)(1 <j<k)then
12 k:=k+1
13 Dy, := {b}
14 else
15 let L as a list of j such that I; N7 # ¢
16 D':=D-|]J D
JEL

17 Renumber suffix of D' and suppose that D' = {D{,...,Dj}
18 k=14+1
19 D} = | D;u{p}

jeL
20 D:=D
21 end
22 return div(W — b, e, D)

23 end

Theorem 3.4.3 If a partition C is a canonical one with respect to W and
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g, then div(W, e, @) returns C.

Proof Details are eliminated. The main points are:

e If div(W ,0) returns a set which has two or more elements then it is
a canonical partition.
e Also by theorem 3.4.2.

Theorem 3.4.4 Assume that a partition C = {Ds, ..., D,} of set v of para-
phrasings is a canonical one with respect to v and €. For a subset W of ¢
and a given Ty such that {t|t € T, Nt € ¢}, we have Yidj(D; 2 D}) where
C'={Di,...,D. } is returned by div(W, T, ¢).

Proof Using mathematical induction on [ — W|. If |t — W| = 0,
then C' = C' so we can show that the theorem holds because div(W, T, ¢)
returns C' according to theorem 3.4.3. Next, we assume that when [:—W| =k
the theorem holds for k£ < [¢|. When |t — W| =k + 1, we can consider three
cases on C" = {DY ..., D'} returned by div(W U b,T,. U E, ¢), where
bet—W,E,={tlt e T{b}) ANt €c}.

1. Case of |C"| = |C']. We can say Vidj(Dj 2 D;) from the definition
of div and the assumption of induction claims Vidj(D; D DY), and
therefore the theorem holds.

2. Case of [C"| > [C"]. We can say Vidj(D; = Dj) A 3i(D}' = {b}) from
the definition of div and the assumption of induction claims Vi3j(D; D
DY), and therefore the theorem holds.

3. Case of |C"| < |C"|. We have Vi(3j(D{ = Dj) Vv (Di = U Dy)), where
keL

L={k|({tlt e T(D}) Nt & Te U Ep} N{t|t € T({b}) At & Ep}) # 6},

from the definition of div and reason Vidj(Dj 2 Dj) from this, and

the assumption of induction claims Vi3j(D; D DY), and therefore the

theorem holds.
[ |

Theorem 3.4.4 claims that if the partition C' is a canonical one of the
intended theory ¢, we can obtain a set C’ of subsets of W naturally reduced
from C in the sense mentioned at the beginning of this subsection, where
given W such as a subset of + and T,.. A partition is not always made,
because div can return a set with a single element.
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The result of this subsection is interesting mainly in a practical sense.
Suppose that a set W of paraphrasings is given. Unless we have information
on the partition of the intended theory, we may try to make a partition with
an arbitrary T, and perform PAR on it. It is possible for PAR to give a
different result on a different partition. To give T, is regarded as giving a
viewpoint for partitioning. Suppose that a person has two intended theories
that has W as a common subset. To partition from plural viewpoints gives
PAR a way to reach plural intended theories from one W. The example
described in the next section will illustrate this point more clearly.

3.4.2 Examples when PAR does not work well

In this subsection, some examples in which PAR suffers will be given. In
the remainder of this subsection, the author will introduce a new notation of
paraphrasing. We denote a paraphrasing by a tree. A node shows a token.
A node with a label of a capital letter is an external token. The others are
internal tokens. In all subtrees of tree, a root node of subtree is paraphrased
by its immediate descendants. We show an example of tree representations
in figure 3.1 for W as follows.

W = {a(z) & bz),c(z).
b(z) < d(z),e(x).
flz) & g(a), h(z).}

VAN

@ ¢ (b)

Figure 3.1: Tree representation of set of paraphrasings



CHAPTER 3. ON ANALOGICAL REASONING 47

Mutual recursive paraphrasing

In figure 3.2, we can obtain the part of the broken lines by PAR. from (1)
with the base domain (a) and the target domain (b), where T-equivalence
{(a,d’),(b,0')} are given. On the other hand, if we are given T-equivalence
{(a,h'), (i,i")}, we can extend the T-equivalence to {(a, h’), (¢,4’), (d,d')} by
PAR from (4). Next, T-equivalence can be extended to {(a, k'), (i,),
(d,d"), (b,b')} by PAR from (3). Finally, PAR from (2) is tried, but it fails
because {(a,a’)} is inconsistent with the given T-equivalence.

Figure 3.2: Mutual recursive paraphrasing problem on PAR

This is an example that two domains, which are analogous at a relatively
higher level, are reduced their analogy by discovering correspondence at a
lower level. T-equivalence detected at a lower level is a useless and harmful
analogy (UHA) for PAR . In this case, UHA is detected because there are
mutual recursive paraphrasings on a and b in the base domain. The size of
T-equivalence is a similar concept to the mazimal analogy by Haraguchi, but
a large T-equivalence is not always useful for PAR because such situations
can happen. We think it is related with the systematicity principle[16] that
T-equivalence detected at a lower level comes to UHA.

Multiple paraphrasing

In figure 3.3, we can obtain the part of the broken lines by PAR from (1) with
the base domain(a) and the target domain (b), where T-equivalence{(b,t'), (d,d’)}

are given. On the other hand, if we are given T-equivalence{(f, f')}, we
can extend T-equivalence to {(f, f'), (b,h'), (4,7)} by PAR from (2), but
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this PAR gives nothing new to the target domain. Moreover, because
of inconsistency between the correspondence(b,b’) and this T-equivalence,
we cannot make PAR from (1), which is possible for a relatively small T-

equivalence{(b,0'), (d,d')}.

Figure 3.3: Multiple paraphrasing problem on PAR

In this case, UHA is found since there exist two paraphrasings of b in the
base domain. And also because the structures of the paraphrasings to be
identical for a large T-equivalence are too similar, there is no new knowledge
given to the target domain. This is another example of useless large T-
equivalence.

3.5 Examples

In this section, the author shows the behavior of PAR system with two
examples. The PAR system has been implemented on J-3100SGT UX/386,
with IF /Prolog and C. The PAR system accepts a set of paraphrasings and
a set of external tokens as input, and making dialogues with an oracle(user),
performs PAR.

3.5.1 “Meat and fish” partition

Figure 3.4 shows an input file for an example used in this subsection. An
input file is a list of external tokens followed by paraphrasings.
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[block,uncut,slice,boil,unboiled,pan,roast,unroasted,frying pan].

meat_block(x) < meat(uncut(x)),block(uncut(x),x). (1)
meat_slice(x) < meat(uncut(x)),slice(uncut(x),x). (2)
fish block(x) < fish(uncut(x)),block(uncut(x),x). (3)
fish slice(x) < fish(uncut(x)),slice(uncut(x),x). (4)
bouillabaisse(x) <« fish_block(unboiled(x)),
boil(unboiled(x) ,x,pan). (5)
steak(x) < meat_slice(unroasted(x)),

roast (unroasted(x),x,frying pan). (6)

Figure 3.4: Input file 1

Two domains are obtained from this. One is {(1),(2),(6)}(called the meat
domain), and another is {(3),(4),(5)}(called the fish domain).

The PAR system detects T-equivalence between the domains from (1)
and (3). Although a token fish can correspond with the p;-typed token
other than meat, The PAR system chooses it because it assumes that (1)
and (3) belong to the same equivalence class of paraphrasings. Therefore, T-
equivalence {(fish,meat), (fish block,meat block)} are detected. Next,
the PAR system tries to make PAR from (5) with the base domain fish and
the target domain meat. So, it sends the following question to an oracle.

I know the term <<bouillabaisse(X)>>
in context of

bouillabaisse(X) <=> fish_block(unboiled(X)),

boil(unboiled(X),X,pan)

(belongs to domain FISH)

is transformed into the term <<izUNKNOWN (X)>>
in context of

izUNKNOWN (X) <=> meat_block(unboiled (X)),

boil (unboiled(X),X,pan)

(belongs to domain MEAT).

Please complete this:

izUNKNOWN shows that the PAR system does not know the corresponding
token. Here, this is the very concept of stew. So, the user may respond to
the question above as follows.

stew(X) .

The PAR system is satisfied with this answer and searches the next
question.
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3.5.2 “Block and slice” partition

It is a feature of PAR that its analogical reasoning can be controlled by
external tokens even when the same paraphrasings are given. Let us give the
PAR system an input file as in figure 3.5.

[meat,fish,uncut,boil,unboiled,pan,roast,unroasted,frying pan].
meat_block(x) meat (uncut (x)),block(uncut(x),x). (1)
meat_slice(x) meat (uncut (x)),slice(uncut(x),x). (2)
fish block(x) fish(uncut(x)) ,block(uncut(x),x). (3)
fish slice(x) fish(uncut(x)),slice(uncut(x),x). (4)

bouillabaisse(x) fish block(unboiled(x)),

boil (unboiled(x) ,x,pan) . (5)

meat_slice(unroasted(x)),

roast (unroasted(x),x,frying pan). (6)

teeoe

steak(x)

i

Figure 3.5: Input file 2

We obtain two domains from this also. One is {(1),(3),(5)}(called the
block domain), and another is {(2),(4),(6)}(called the slice domain).

This time the PAR system detects T-equivalence {(slice,block),
(meat_slice,meat_block)} from (1) and (2). Then, the PAR system tries
to make PAR from (6) with the base domain slice and the target domain
block. So, it presents the following question to an oracle.

I know the term <<steak(X)>>
in context of

steak(X) <=> meat_slice(unroasted(X)),

roast(unroasted(X) ,X,frying_pan)

(belongs to domain SLICE)

is transformed into the term <<izUNKNOWN(X)>>
in context of

izUNKNOWN (X) <=> meat_block(unroasted(X)),

roast(unroasted(X) ,X,frying_pan)

(belongs to domain BLOCK)

Please complete this:

Here, this is the very concept of dice steak'”. So, the user may respond
to the question above as follows.

dice_steak(X).

17Grilled small blocks of beef. This is a very popular dish in a Japanese family restaurant.
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The PAR system is satisfied with this answer and searches the next
question.

3.6 Summary

The author has regarded creative thinking as a process which can be dealt
with by machine learning theories, and have defined paraphrasing-based ana-
logical reasoning as a framework for creative thinking on theories consisting
of paraphrasings. We have implemented a prototype system according to this
definition, and have confirmed the effect of PAR. A method to make parti-
tions based on given external tokens are practically useful as shown in section
3.5, and discussed in subsection 3.4.1. But there are still many problems in
PAR as mentioned in subsection 3.4.2.

The current largest problem in PAR is that the size of T-equivalence does
not ensure its usefulness for PAR. Perhaps a domain-dependent measure of
the usefulness of T-equivalence should be implemented.

When we regard PAR as a practical creativity support system, we can
assume other oracles than the godparent. For example, an oracle accepts
some internal tokens and gives corresponding tokens to them under limited
conditions. This sort of oracle is called a ferryman. Now we are studying on
the extension of PAR with ferryman with respect to internal tokens without
its paraphrasing.



