Chapter 6

Bounding Clusters of Zeros of

Analytic Functions

6.1 Introduction

In the previous chapter, we applied a verified method to calculate a validated polynomial
factor of an analytic f{z) which has a cluster of zeros around the origin. The number
of zeros in the cluster and the radius of a disk which contains the cluster were assumed
to be given in the computation. The purpose of this chapter is to present a method to
determine the number of zercs in the cluster and compute a disk containing all the zeros
in the cluster.

On locating the zeros of an analytic function in some regions of the complex plane,
some methods based on numerical computation of contour integrals were proposed in
(8, 11, 26, 29]). These methods reduce the problem to the easier problem of finding a
polynomial having the same zeros as f(z) in the given region. Sakurai and Sugiura [64, 65]
proposed a verified factorization method to locate the cluster of zeros which are lie inside
a small disk around the origin in the complex plane. In these papers, the number of zeros
in the cluster and the radius of a small disk containing the cluster were supposed to be
given by the user. Therefore, the results of this chapter can be used by these methods to

further locate the zeros in the eluster,

— 74 —



Chapter 6. Bounding Clusters of Zeros of Analytic Functions

On the other hand, a number of methods were proposed to detect and bound clusters
of zeros of polynomials [21, 42, 60, 77]. Rump [60] proposed a hybrid method to compute
an enclosing disk of the cluster of polynomials, and the guality of the radius of the disk
can be of the order of the numerical sensitivity of the root cluster.

Since the zeros in a cluster of the n-degree Taylor polynomial df f(2) converge to the
zeros in a cluster of f(z) as n tends to infinity, in this chapter, we present a method to
bound the cluster of zeros of f(z} by bounding the cluster of the Taylor polynomial of
J(z). First we perform a validated computation of the n~degree Taylor polynomial p{z)
of f(z) using circular complex arithmetic, and get an interval coefficient polynomial p{z)
which contains p(z). Then we apply some well known formulae on bounding clusters of
zeros of a polynomial to compute a disk containing the cluster of zeros of p(z}. Based on
a validated computation of the upper bound of the remainder of the Taylor series of f{z),
a theorem based on Pellet’s theorem [32] and Rouché’s theorem is used to verify that the
disk contains the cluster of zeros of f(z). In this way we reduce the problem of bounding
the cluster of zeros of an analytic function to the problem of bounding the cluster of zeras
of a polynomial. Because of the efficiency of the methods used in bounding cluster of zeros
of polynomials, the resulting disk is almost optimal, Numerical examples are presented

to illustrate the effectiveness of the method.

6.2 A Method to Bound Zeros of Analytic Functions

Let f(z) be analytic in a circular region D = {z : |2| < p}, where p > 1 is a positive
real number smaller than the analytic radius of f(z). Then f(z) has the following Taylor

expansion in D.
flz) = Eckz’”’, z€D. (6.1)
k=0

We assume that f(z) has a cluster of m zeros around the origin and the cluster is distinctly

separated from other zeros of f(z). Let p(#) be the n-degree Taylor polynomial of f {z).

p(z) = i cpat. (6.2)
=0
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If n is large enough, then p(z) also has a cluster of m zeros around the origin, the cluster
is distinctly separated from other zeros of p(z) and the zeros in the cluster converge to
the zeros in the cluster of f(z) as n tends to infinity. Now we consider the problem of
bounding the cluster of zeros of p(z). The following Pellet’s theorem [32] can be used to

calculate a disk containing the cluster of p(z).

Theorem 6.2.1 (Pellet) Let polynomial p(z) be defined by (6.2), with caeq # 0. If the

polynomial

) m—1
0@ =Y lad —lele™ + Y ol (6.3)
k=0

k=m-+1
has two positive roots v and R, v < R, then p(z) has ezactly m zeros in or on the circle

A= {z:]2] < r} and no zeros in the annular ring {z : r < |2| < R}.

From Theorem 6.2.1 we see that given the Taylor polynomial p(z) and the number m of
zeros in the cluster of f(z), we can obtain the disk A containing the cluster of p(z) by
calculating the smaller positive root of g(z). If the cluster of p(z) is sufficiently near the
cluster of f(2), then the disk A contains the cluster of f(z). For two functions P(z) and
Q(z), the following Rouché’s theorem [32] can be used to verify whether they have the

same number of zeros in a given region.

Theorem 6.2.2 (Rouché) If P(z) and Q(z) are analytic interior to o simple closed

Jordan curve C and if they are continuous on C and
|P(z)| < [Q()], 2€C, (6.4)

then the function F(2) = P(z)+ Q(2) has the same number of zeros interior to C as does

Q(z).

Using Theorem 6.2.2, we can calculate whether f(z) and p(z) have the same number of
zeros in the disk A. In order to do this, we should take account of the influence of the
remainder of the Taylor series of f(z). From Theorem 6.2.1 and Theorem 6.2.2, we have

the following theorem.
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Theorem 6.2.3 Let analytic function f(z) be defined by (6.1), let p(2) be the n-degree
Taylor polynomial of f(2)and be defined by (6.2). Let r be the smaller positive root of
q(z) defined by (6.8). If the following inequality

o0
5 o

s=ppef- 1

holds for |z| =, then f(z) has ezactly m zeros in A= {z: 2] < r}.

< |p(2)| (6.5)

From Theorem 6.2.3, we see that if the inequality (6.5) holds, then the disk A calculated
by Theorem 6.2.1 is an enclosing disk of the cluster of f(z). In the next sections, we
will first use the verified method proposed in the previous chapter to calculate the Taylor
polynomial p(z), then we use some existed methods to calculate a disk containing the
cluster of p(z), finally we perform a validated computation of the Taylor remainder of

F(#) and use Theorem 6.2.3 to verify that the disk contains the cluster of f(z).

6.3 Validated Computation of p(z)

From the discussions in the previous section, first we consider the computation of the
Taylor polynomial p(z) of f(z} in this section. Becanse of the roundoff errors in finite
arithmetic computations, the exact Taylor polynomial of f(2z) can not be calculated.
Therefore, we use the verified method proposed in the previous chapter to calculate an
interval coefficient polynomial p(z) which contains p(z). Circular complex arithmetic [50]
is used in the computation.

Let interval coefficients polynomial p{z) be
n

plz) = }:ckz’“, (6.6)
k=0

where ¢, are calculated by (5.33) and (5.34). Since ¢x € e, £ = 0,...,n, We say that

p(z) is contained in p(z) and we denote this by p(z) € p(2).
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6.4 Bounding Cluster of Zeros of p(z)

6.4.1 Computation of the Number of Zeros in the Cluster

In this section, we use circular complex arithmetic to compute a validated bound for
the cluster of zeros of p(z). According to Theorem 6.2.1, given the number of zeros in
the cluster, the bound for the cluster of p(z) can be obtained by calenlating the smaller
positive root of ¢(2). First we consider the problem of computing the number of zeros in
the cluster of p(z}.

Several methods on determining the number of zeros in the cluster of a polynomial
were discussed in [60]. A simple way is to evaluate the values |e;/ep ], £=0,...,n L.
If the cluster of p(2) is distinetly separated from other zeros, then the value of |e,/cmyt |
will be much larger compared with |cx/cr41| for & < m where m is the number of zeros
in the cluster.

According to error analysis theory [71, 75], an arbitrary small change of the coefficients
of a polynomial may lead to the disintegration of a multiple zero into a cluster of distinct
zeros, On the other hand, the location and multiplicity of a cluster of zeros in a certain
domain of C is a stable phenomenon: all sufficiently close polynomials have a zero cluster
of the same multiplicity in that domain [25, 37].

Therefore, for interval coefficient polynomial p(z) which contains p(z), if p(z) has a
cluster of zeros which is distinetly separated from other zeros and the radius of the coeffi-
cients of p(z) is sufficiently small, then any polynomial p*(2) € p(z) will have a cluster of
zeros which is distinctly separated from the other zeros of p*(2) and the value |c}, /¢, 4|
will be much larger compared with |¢}/c},,| for k& < m where ¢} is the coefficients of
p*(2). Therefore, from the fundamental property of interval arithmetic, we can calculate

the number of zeros in the cluster of p(z) € p(z) by evaluating the following inequalities.
|ck/ck+L|>> |Ck——1/ck|: km]_,,.,,n-—-]_, (6-7)
where |al 1= max lal for a disk @ in the complex plane. If {6.7) holds for k = m, then m

will be the number of zeros in the cluster of p(z).
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6.4.2 Validated Computation of the Smaller Positive Root of
q(2)

Let interval coefficient polynomial g(z) be

() m—1
q(z) 1= Z byt — b,z™ + Z bez”, (6.8)
k=m-1 k=0

where m is the number of zeros in the cluster of p(z) and the coefficients by, are calculated
by

mid(by) = |mid(ey)|, k=0,...,n, k#m,
mid(b,) = ~|mid(cn)}, (6.9)

rad(by) = nrad(eg), k=0,...,n.

Then from the fundamental property of interval arithmetic, if the radius of by, is sufficiently
small, then |cx) € by, £ =0,...,n, le, q(2) € g(z).

In the following, we consider the problem of computing an upper bound of the smaller
positive root r of g(z). For an interval coefficient polynomial v(z), in the case that
each polynomial v*(z) € v(z) has only simple zeros, Petkovié¢ [51] proposed an iterative
method to calculate some pair-wise disjoint intervals Zy,..., Z, with the property that
any v*(z) € v(z) has exactly one zero in Z; for j = 1,...,n. In this chapter, we apply
interval Newton method [19] on g(2) to compute a sequence of disks 7*) such that any
q*(z) € g(z) has its smaller positive root in 7¢*), Since ¢(z) < 0 for r < z < R, therefore,

if the following inequality
mid(g(r™)) + rad(q(r®)) < 0 (6.10)
holds, then an upper bound § for 7 can be calculated by

§ = |mid(r®)| + rad(r®), (6.11)
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6.4.3 Computation of Initial Value

In the computation of d, one problem is how to choose initial approximation. Since the

unique positive root of the following Cauchy polynomial

m—1
8(2) = ~cn2™+ Y 2", (6.12)
k=0

is a good approximation of r, we apply interval Newton method on the following interval
coefficient polynomial 8(z) which contains s(z) to compute a disk # which contains an

approximation of r.

8(z) = =bmz™+ > by2¥, (6.13)
k=0

where by, are calculated by (6.9). The initial value used in the calculation can be calculated
by

I/k
=2 Jnax |Brn—k /b (6.14)

6.5 Validated Computation of the Bound of Remain-
der of the Taylor Series of f(2)

For the upper bound § of r, according to Theorem 6.2.3, if the inequality (6.5) holds for
|z| = &, then the disk Q = {0;8} contains the cluster of f(2). In this section, we use
circular complex arithmetic to perform a validated computation of the upper bound of
remainder of the Taylor series of f{z) on the boundary I' : {2 : |z| = 8} of Q.

Since

o0 00 0o
Yoafl < > lallf = > |alst, 2 €00 (6.15)
k=n+1 k=n+1 k=n-+1

From Cauchy’s theorem (Theorem 5.3.4), we have

5 o

k=n+1

-1
<M, ‘Vp)é/ 7z €00, (6.16)

where p > 1 is a real number smaller than the analytic radius of f(z), M, := max |£(2)|.
z|=p
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Next we consider the problem of computing p and the maximum value M, of |f(2)|
on I'. Using circular complex arithmetic and from the fundamental property of interval
arithmetic, we can calculate a real number smaller than the analytic radius of f(2) by
computing the interval extension of f(z) for some input disks. In this section we use
Cdomain circular arithmetic system [72] to determine the analyticity of functions in input
disks.

Eble [13] and Neher [39, 40] proposed a method based on global optimization methods
[67] to calculate the maximum value of {f{2)| on T’ with rectangular complex arithmetic.
In this section, we use circular complex arithmetic. We use the method proposed in the
previous chapter to calculate the maximum value of |f(z}| on T,

Using a similar method as above, we also perform a computation of the lower bound
of the minimum value of |p(z)| on I". Based on these results, it is possible to perform a,

verification of the inequality (6.5).

6.6 Algorithm

From the discussions in the last sections, we give the following algorithm to calculate the
number of zeros in the cluster of f(z) and compute a disk containing the cluster. We

assume that f(z) is analytic in the unit disk, this condition can be satisfied by scaling

£(2).

Algorithm :
Input: f(z), J, k.
Output: m, number of zeros in the cluster.
§, radius of the enclosing disk of the cluster.
Compute a real number p > 1 such that f(2) is analytic in {0 p}.
Compute the maximum value M, of | f(z)| on |z] = p.
Compute ¢; by (5.33) and {5.34).

Compute the number m of zeros in the cluster by (6.7).

AN S o

Compute an initial value 7 by (6.14).
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6. Perform j iterations by interval Newton method on s{z) with initial value 7 to get a
disk 700,

7. Perform k iterations by interval Newton method on ¢(z) with initial value 7U) {0 get
a disk »(®,

8. If |mid(g(r®)}| - rad(g(r®)) < 0 then compute § by (6.11).

9. Compute the upper bound of Z cpz®| on |z| = § by (6.18).
k=n+1
10. Compute the lower bound of the miniroum value of [p(2)] on |z| = 6.

11. If the vesult of step 9 is smaller than the result of step 10, then stop, else goto stepl,

Where § and k are the number of iterations in step 6 and step 7, respectively.

6.7 Numerical Examples

Numerical examples were carried out in Matlab Ver. 6.5 with interval arithmetic package
INTLAB [61, 62]. The determination of the analyticity of f(z) was performed by using

the Cdomain circular complex arithmetic system [72)].
Ezample 6.1, Suppose that

filz) = (2% —27.042° 4 208.08052* — 413.2935022* + 16.3035542° — 0.202914z + 0.00081)

><e:'cp(-§z2 +2).

Note that fi(z) has a cluster of 3 zeros: 0.01,0.01,0.02. The maximum value of | f;(z)]
on the boundary of the disk {0; g} and the analyticity of f,(2) in the disk are calenlated,
the results are shown in Table 6.1, where M = M, /n.

Table 6.1 Maximum value of |f;(2)| and analyticity of f1{2).

- ~

p M, M(n=14) M(n =20) Analyticity
2 21x10® 13x10t  20x 107! yes
4 17x10®* 63x10' 1.5x 10 yes
6 74x10'% 94x10° 20x10* yes
8 3.0x10% 6.8x10° 26x 1072 yes
16 5.1x 101 7.1 x10%® 4.2 x 10% yes
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The center mid{c;,) and radius rad(cy) of the validated Taylor coefficient ¢ of fi(z)
are shown in Table 6.2. The underline shows the different digits of the results compared
with the results calculated by Mathematica with multiple precision arithmetic, N is the

number of sampling points of FFT,

Table 6.2 Taylor coefficients of f,(z). (V = 32)

k mid({cy) rad(cg)

0 5.985135440393919 x 10~% 1.1 x 10—
1 —1.499342929258345 x 10 5.4 x 10712
2 1.204698701630926 x 10% 2.2 x 10712
3
4

—3.054348652577926 x 10° 8.0 x 10~1%
L.577674778473713 x 108 4.0 x 10712

20  6.409284877224497 x 107% 3.8 x 1012

From Table 6.1, when p is large, M is also large, we take p = 4 and n = 20 so that M

is small. The calculated results are shown below.
m =3,

§ = 0.051,

(6/p)"+! ot
ML =,
Mo =575 1.1 x 107%,

Since 1.1 x 10721 < 0.15, it implies that the disk {0;0.051} contains 3 zeros of fi(z).

Erzample 6.2. Suppose that

]
falz) = (2 =75x1072" 375 x 10772+ 1.25 x 107') x [ (z — k)log(z + 6).
k=1

Note that fo(z) has a cluster of 3 zeros: 0.001,0.0005,0.00025. The maximum value of
| f2(#)| on the boundary of the disk {0; p} and the analyticity of fa(#) in the disk are shown
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in Table 6.3. The center mid(ey) and radius rad(cy) of the validated Taylor coefficient ¢,

of fo(z) are shown in Table 6.4.

Table 6.3 Maximum value of |f2{z)| and analyticity of fa(z).

P M, M(n=14) M(n =20) Analyticity
2 28x10¢ 1.7x10° 2.7 x 1072 yes
3 21x10° 44x107%2 6.0x107® yes
4 1.1x10% 41x107% 1.0x10°¢ ves
5 49x10% 80x107% 51x10°® yes
6 - - - no

Table 6.4 Taylor coefficients of fa(z). (N = 32)

mid(eg) rad(eg)
—2.687639766296704 x 108 4.4 x 10713
8.068804391208366 x 107° 5.4 x 10713
1.610817044685495 x 10~ 3.4 x 10718
—2.153642094347368 x 102 6.8 x 10713
4,712089124244720 x 102 9.4 x 10713

LR LI - = o

20 —2.424940248602070 x 10~ 9.4 x 10713

The calculated results for p = 5 and n = 20 are shown below.
m =3,

§ = 0.00116,

n+1
IYAUL Y IS

F1-48/p
lp(z}] > 5.2 x 1078, |z| = 6.
Since 2.3 X 1077% < 5.2 x 1078, it implies that the disk {0;0.00116} contains 3 zeros of
fz(Z)
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6.8 Conclusion

A validated computation of the n-degree Taylor polynomial p(z) for analytic function f(z)
is performed using circular complex arithmetic. A disk containing a cluster of zeros of
p(z) is found by a method based on Pellet’s theorem. By a validated computation of the
Taylor reminder series on the boundary of the disk, Rouche’s theorem is able to be used
to verify that the resulting disk contains a cluster of zeros of f(z). Numerical examples

show the applicability of this method.
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