Chapter 3

A Method for Finding the Zeros of
Polynomials Using a Companion

Matrix

3.1 Introduction

In computing zeros of polynomials using the companion matrix method, Smith’s method
[69] and Fiedler's method [15] use the values of a polynomial at approximate zeros to
construct a companion matrix and can provide very accurate results in calculating simple
zeros, but the approximations are not sharp in the case of multiple or close zeros. In this
chapter, we consider the problem of finding polynomial zeros using a companion matrix,
First we review several related companion matrices. We then propose a new companion
matrix, which has a high efficiency in finding multiple zeros of a polynomial. It is also
efficient when calculating the arithmetic mean of a cluster of zeros and the total number
of zeros in the cluster. With this method we can obtain good approximations for multiple
zeros as well as for simple zeros, and we can obtain the multiplicities of the zeros with
a high accuracy. Numerical examples are presented to illustrate the effectiveness of the

method.
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3.2 Finding Polynomial Zeros Using a Companion

Matrix

3.2.1 Fiedler's Companion Matrix

Fiedler proposed a method to construct a symmetric matrix to be the companion matrix
of a given polynomial [15]. The matrix can be real for polynomials with only real roots.

For monic polynomial
p(z) = 2"+ a,_ 12"+ +ag, (3.1)

let z1,...,2, € C be n distinct approximate zeros such that lz) £ 0fork=1,...,n.
Set

a(z) = [[ (= - =),
k=1
B = diag(z, ..., 2z,) € C***, (3.2)
di=(di,...,d)T, di = \/Bx,
where p;, is the Weierstrass correction:
pe=p(z)/d (=), k=1,...,n. (3.3)
Then Fiedler’s companion matrix F is defined by
F:=B-dd". (3.4)

Since a real symmetric matrix has many beneficial algebraic ‘properties and it is a
simple process to solve its characteristic equation, Fiedler’s method works well when the
polynomial only has real zeros. However, this requires explicit knowledge of the set of

points separating the zeros.

3.2.2 Smith’s Companion Matrix

Smith proposed another method to construct the companion matrix of a polynomial [69)],

which can be described as the following theorem.
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Theorem 3.2.1 (Smith) For monic polynomial p(z) of degree m, suppose m distinct

approzimale zeros zy, . .., 4y € C and their respective multiplicities vy, k= 1,2,...,m be
gwen. Foreach k=1,2,...,m and each j =1,2,..., v, let
1 d i1
”“=(p4y(£) P, .

and

1 d \ve—g s
hygj = (Ve — 1)! (E) ];-!;(z — %)

In addition, let pT and hT be the row vectors

=z,

(p113p12: Py Pary ;pmum) and (h'lla hl?,: e :h'lvu h?l: v :hfmum):—
then the zeros of polynomial p(z) are the eigenvalues of the matriz
R=J - ph™, (3.5)

where

JL 1 2k
X Tl X Mg

If the polynomial p(z) has only simple zeros, then from Smith’s theorem, it is easy to

verify that the zeros of p(z) are the eigenvalues of the following matrix

R
R R

R= q(a) ’ ?’(22) ) . (3.6)
pa) _pe) L pla)

z
\ T e " GG /
Fiedler’s method and Smith’s method work well when the polynomial has only simple
zeros. In cases where the polynomial has multiple zeros or clusters of zeros, the multi-

plicities or the number of zeros in the clusters are needed to be known in advance and
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the zeros can not be calculated accurately. Fiedler's method and Smith’s method use the
values of the polynomial at approximate zeros to construct the companion matrices, these
companion matrices can be regarded as the combination of a diagonal matrix and a sym-
metric perturbation matrix(Fiedler’s method) or a rank-one perturbation matrix(Smith’s
method). When the approximate zeros are very close to the zeros, the companion matrices
are approximate to the diagonal matrix of zeros. Thereby Fiedler’s method and Smith’s
method can be used iteratively by taking the newly calculated eigenvalues as the new
approximate zeros and all the zeros of the polynomial can be found simultaneously. As
an iterative procedure, Newton method needs the initial value to be near the zeros of the
polynemial to get good results. Conversely, when using Fiedler's method recursively, the
starting values can be taken randomly or equally distant on a large circle in the complex
plane or provided by the eigenvalues of other companion matrices [68).

A recursive application of Fiedler’s method and Smith’s method converge rapidly to
simple zeros. In the case of multiple zeros, the iterations reached a saturation point after
several steps, Malek and Vaillancourt [31] proposed an iterative method based on Fiedler’s
companion matrix which used an extended-precision arithmetic in the calculation, the
method can produce fast convergence to simple zeros, but in the case of multiple zeros,
the method can not work well unless multiple precision arithmetic was used in eigenvalue
computation and an averaging procedure was taken in the computation,

Fortune [16) proposed another iterative method to approximate the zeros of a polyno-
mial to floating-point accuracy. The method is based on Smith’s companion matrix and
uses extended-precision arithmetic to construct the companion matrix and then performs
a floating-point eigenvalue computation of the matrix. This method works well when the
polynomial has only simple zeros, but the results are not accurate in the case of multiple
zeros or clusters of zeros.

It is noted that the approximations of a multiple root tend to approach that root from
uniformly spaced positions around a circle with center at the multiple zero [75]. Hence,
we can take points equally distributed on a circle to be the initial value when iteratively

calculating the multiple zeros, where the radius of the circle can take the maximum
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absolute value of the roots. We can get the estimate of this value from formula [50]

o <2,max. en s, (87

where a5, £ =0,1,...,n — 1 are coefficients of (3.1).
Malek and Vaillancourt [30] proposed a three-stage algorithm to find the zeros of
a polynomial, which is based on Fiedler's method and calculates the zeros and their

multiplicities separately. Malek’s algorithm is summarized as below.
Algorithm 3.1(Malek’s algorithm)

(1) Find the greatest common divisor(GCD) of p(z) and p'(z). Reduce the polynomial

p(z) to a polynomial p;(2) having only simple roots.
(2) Compute the simple roots of p;(2) by applying Fiedler's method recursively.

(3) Calculate the multiplicity of each root of p(z) by means of Lagouanelle’s modified

limiting formula.

Theoretically, in step (1), the GCD of p(z) and p'(2)can be calculated accurately. In
practical computation, however, it may be difficult to determine it. The method also can

not give a good result in the case of clusters of zeros.

3.3 A New Method for Finding Multiple Zeros of

Polynomials

3.3.1 A Reduced Polynomial with Only Simple Zeros

In this section, we present a new companion matrix with which we can obtain good
approximations for multiple zeros. Some classical methods fail in caleulating multiple
zeros because they treat a multiple zero as simple zeros and hence always lead to ill-
conditioning when solving characteristic equations. This is considered to be the wrong
way to set the computational objective, that is, we should compute the distinct zeros of

the polynomials and their multiplicities separately. The companion matrix proposed in
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this section has only simple eigenvalues, which are given by the distinct zeros of the given
polynomial, and the multiplicities of the zeros can be calculated separately. This method
has the advantage of the efficiency of other companion matrices for finding simple zeros,
and both zeros and their multiplicities can be computed. Let

m

m
fz) =2 +opz™ 4 g = an(z — &), ZVk =n, ¢, #0, (3.8)
k=1

k=1
be a polynomial of degree n with all n zeros located inside the circle T' : {z : |z — | < p}
in the complex plane, and &,...,6m be m(m < n) mutually distinct zeros of f(z) with
multiplicities #, ..., vy, respectively. Since it is possible for us to shift and scale the
polynomial so that all the zeros are located inside the unit circle, then for the sake of
simplicity, we consider the case that all the zeros are located inside the unit circle &, Tt

follows from the theory of complex variables that v, ..., vy, are residues of f'(2)/f(z) at
fk. Let

_ L [ 0 _
pp 1= Qm,fczp ) dz, p=10,1,2,.... (3.9)

The residue theorem implies that the z,’s are equal to the Newton sums of the unknown
7e108,

m
,upm—-Zukgg, p=0,12,.... (3.10)
k=1

Let H,, be the m x rn Hankel matrix

Ho R |
m—1 f"l’l T . E
Hm = (,Llp.*.q) -0 = . . ’ (311)
= . ‘v Mom—3
Hm—1 =+ =0 Ham—2

and let Hy be the m x m shifted Hankel matrix

P’l ,U:z - #’m
m ”2 o . E
Hy = (Np-i—q) e . , : (3.12)
D= : "o Hom-2
Bm ottt Hom—

— 924 —



Chapter 3. A Method for Finding the Zeros of Polynomials Using a Companion Matrix

Lemma 3.3.1 If§,...,&, are mutually distinct zeros of f(z), then H,, is nonsingulor.

Proof. Let Vi, be the Vandermonde matrix

1 1
m—l,m gl e Em
o [P _
V= ,E)M’k:1 - - it (3.13)
& -1 .. (_c‘g*l
and let
Dy, = diag(v, ..., vy). (3.14)
Then it follows from (3.10) that
H,, =V, D, V.2,
Since &y, ...,&y, are distinct and v,...,u, # 0, Vi, and D,, are nonsingular, H,, is
nonsingular. O
Let ¢,(2) be the polynomial
m
O (2) 1= 2™ + by 2™ by = H(z — &), (3.15)
k=t
where £,..., €y, are the distinct zeros of f(z), then the problem of finding the n zeros of

f(2) reduces to the problem of finding the m simple zeros of ¢,,(z) and then computing
the multiplicities of these zeros. Usually, in practical computation, the pelynomial Om(2)
may be ill-conditioned such as the well-known Wilkinson’s polynomial, which means that
the small changes of the coeflicients of the polynomial may produce large changes in
the zeros of the polynomial. This ill-conditioning of the map between the coefficients
of a polynomial and its zeros is discussed in [75]. Therefore, instead of computing the
coefficients of ,,{2), we use a companion matrix to compute the zeros of it

We have the following theorems.

Theorem 3.3.2 Let &1,...,&n bem distinet zeros of f(z) and Cp, € C™*™ be the Frobe-

nwus companion matriz of (pm(,z), then

HHS =Cp . (3.16)
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Proof. Let
m~—1
Ty = Prtm + Doy gy + o+ Dot =Mk+m+zbi#k+i, k=0,1,....m—1.
i=0

Then it follows from (3.10) that

m
I, = Zy,gf(gzn NN Y o SO bo)

i=1

m
= ZViffme(fi)=0, k=0,1,...,m—1.

i=1
Hence
m—1
Brtm = — Zbiuk+i, k=0,1,...,;m— L
i=0

Therefore, from (3.11) and (3.15)} we have

( Ho M1 v fme 0 0 v =
. . L .
HoCp = | M S
H2m—3 L
\ HBm—1 o 0 Hom-2 0 - 1 —bpa
( m—1 \
M Mg o — E b
k=0
— #2 .
m—1
T Z Hntk-10% )
\ k=0
/ B M2 v Hm
Ho o :
= ) . = Hrfr, .
: " Hom—2
\ Hm—1 ' Hopp—1
Since H,, is nonsingular, the theorem is proved. O

- 926 —



Chapter 3. A Method for Finding the Zeros of Polynomials Using a Companion Matrix

3.3.2 A New Companion Matrix

Theorem 3.3.3 Let z,..., 2z, bem distinct approzimate zeros of (2}, and define

Then the m distinct zeros of f(z) are the eigenvalues of the matriz

( 2 ~ pm(zl)

Proof. Since

Prol2) 1= det(H — zH, )}/ det(Hy,),  @m(2) = ﬁ(z — Zr).
k=1

\

(21
_pi?zl)
(I;rt(zl)

____'prr.&(zl)

(1)

Pm(2)

_Pm (52)
1 (23)

Z — P (Z‘Z)

Q_Tin(zz)

pﬂ’;(ZE)
T (%2)

_DPm (zm)
g
_ Pm\Zm

Q;n.(zm)

_ ?;m(zm)

o @ (#m) }

det(HS — zHy,)/ det(H,y,)
det(H;") det(HS — zH,,)

det(H-'HS — 2I),

then it follows from Theorem 3.3.2 that

Pm(2) = det(Crn — 2I) = (1) (2),

(3.17)

where Cl, is the Frobenius companion matrix of ¢, (z}. Therefore, the zeros of p,,(z) are

given by &i,...,&y. From (3.8), the m distinct zeros of ¢, (2) are the eigenvalues of the

matrix

\

(-

_ om(#1)

ar(21)
_Pm zl)

ql,(21)

__9011;(31)
0h(21)

This proves the theorem.

_Pm (22)

KA

b (22)
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Matrix A is considered to be a new companion matrix, and all the eigenvalues of A

are simple. The distinct zevos &,...,&y, of f(2) can be caleulated from the eigenvalues
of A.

3.3.3 Numerical Computation of u, and an Error Analysis

The integrals p, can be approximated via a numerical integration method. Here we
calculate it using the K-point trapezoidal rule on the unit circle. Let J be a positive

integer and wy,...,wr- be the Kth roots of uﬁity, ie.,

ATRES exp(%j), §=0,1,...,K—-1.

Then from (3.9), we have

1 2% ; . fr(eit))
- pd 204 A= T — o
Ep 271'./0 e?e HED) dg, p=0,1,

We obtain the approximations of u, via the trapezoidal rule,

1 —iffmf'(wj) M p=0,1,...,K —1 (3.19)
#P—I( f(w)wj y P=U0 . ' .
i=0 7

Define
m—1L

H, = [ﬂk+l]r_l and ff,ﬁ = [ﬁl+k+t]

$=

s 3.20
k=0 ( )

then f,, A, ﬁ,ﬁ are approximations of p,, Hy,, H, respectively. A more detailed error
analysis was presented in (26, 63].

Then we have the following theorem.

Theorem 3.3.4 Let £,,...,&n be m distinct zeros of f(z), then the corresponding mul-

tiplicities vy, ..., vy are the solutions of the linear system of equations
™ p
Z( kK)vkzﬁp,p=0,1,...,m-—-1. (3.21)
k=1 1-&

Proof. Since
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then it follows from (3.19) that

1 K—-1 400 7

~ — +1 i
Hp = EZ%‘ ( wl+1)
F=0 =0

-+oa 1 K-1

= D m (E > wﬁ-’_’)
=0 F=0
400

= Z HpirK-

=0

The last step follows from the fact that
K-1 .
“}“pr"l_{l, ifp—I1=rK forr € Z;
K =0 ’ 0, otherwise.

It follows that

™m

fp = > v+ EX+E +.. )

k=1
Vi p
1 _é}{{ k?

for p=10,1,.... The theorem is proved. O

I
NgE

=
]l

1

From Theorem 3.3.4 we have the following lemma.,

Lemma 3.3.5 If&,...,&, are distinct zeros of f(z), then A, is nonsingular.
Proof. Let
1 1
1_61 1"Em
§m
Up 1= ( i )m—l,m = 1‘21 1-£3
T=¢F )y = | ;
Em—-l m—]
1—¢K "O1-gE
"Then it follows from (3.21) that
Hp = UnDnVE, (3.22)

where V;, and Dy, are defined by (3.13) and (3.14), respectively.
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Since &y, ..., &, are distinet and inside the unit circle, U, V;, and D,, are nonsingular,

H,, is nonsingular, -

From ‘Theorem 3.3.4 and Lemma 3.3.5, we have the following theorem.

Theorem 3.3.6 Let £,,...,&, be m distinct zeros of f(z), and let Cp, € T™™ be the

Frobenius companion matriz of o (2). Let Hy, and I:I,f,, be the m X m matrices defined by
(3.20), then

~

B HS = Gy

Proof. Let,

el
Ty o= P+ bt flemey + -+ bofig = flgm + D bifigrs, £=0,1,...,m~1,
=0

where fi,, p=0,1,...,2m —1 are defined by (3.19). Then it follows from (3.21) that

f

k
A ]}i. _
i, 21_5*K(§;n+bm_lg“+---+bn)

m ng
D rem&) =0, k=0,1,...,m—1

Hence
m~1

Prm = —Ebiﬁkﬁ} k=0,1,...,m— L
i=0

Then by a similar way as the proof of Theorem 3.3.2, we have

~

H G = HE,

Since I-}m is nonsingular, the theorem is proved. O
Theorem 3.3.6 implies that the error of numerical integration of i, does not affect the

results.

3.3.4 Cluster of Zeros

In the case that the polynomial has one or several clusters of zeros, suppose that 21, z3, -+ -, 2,

form a cluster of zeros, Let zg be the arithmetic mean of the cluster, then z; = zg+¢;, j =
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1,2, -+, v, if we set € = max |¢;|, then from [26], we have
i<i<v

v 4

zj — zgw‘ O 2
;1—23( vl—-zg+ ()

If the size of the cluster is sufficiently small, then we can take the center of the cluster as
one multiple zero and the number of zeros in the cluster as the multiplicity of the multiple
zero. This makes it possible to calculate the center of the cluster and the total number

of zeros in the cluster by our method.

3.3.5 Algorithm

From the discussions in the above sections, we give the following algorithm to calculate the
distinct zeros of a polynomial and their respective multiplicities. From the definition of
H,, and f{,fl, we have to calculate 2m integrals g, ..., flgm—1. Therefore we take K = 2m
in the calculation. To apply the algorithm to a general case that all the zeros of f(z)
are located inside I', we set F(z) := f(y + pz) and use F(e¥) in the computation. Let
Ay and & be zeros of F(z) and f(z), vespectively. If the eigenvalues of the companion
matrix A associated with Pul(z) are Ay, ..., Ay, then &,...,&, can be calculated by
Ei=v-+pr, 7=1,2,...,m. Since

A "(w;) L+1 pr"Y'*ng Bl L1
H

|
= ,2m -1
o 2”";01“(&) T F Oy ) 0 T

and the zeros of F'(z) have the same multiplicities as the zeros of f(z), the multiplicities

of & can be calculated by solving the following equations

m

A )
Z(l_)@m)y’czﬂp; P"—"‘O,---,m—l.
k

Algorithm 3.2 |
Input: ay,...,a,, polynomial coefficients.
m, the number of distinct zeros.
v, p, the center and radius of the circle which contains all the zeros.

21,...,%m, mutually distinct approximate zeros,
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Output: distinct zeros and their respective muitiplicities.

()set w; = e2i2m 5= 0,... 2m— 1.

L= pf o+ pwj)
@)set fip = —— S 2L A)
2m g Fly+pw;) 7

- . m~1 - . i
3)set Hy, = (J“p+q) o HE = (P’Mq)

D= pg=1

k=0,...,2m — 1.

4)compute the companion matrix A by (3.17).

G)set &5 =+ pAj, 7=1,...,m.

m p
A

(3)

(4)

(5)compute Ay, ..., A, by evaluating the eigenvalues of A.

(6)

(7)compute vy,..., vy, by solving the system AZ (W) vy =flp, p=0,...,;mm— 1.
o=l

In step (4), in order to compute py,(2), we have to calculate the determinant of Hankel
matrix Hp,, generally this can be performed with O(n?) arithmetic cperations. Because of
the special structure possessed by the Hankel matrix, recently a number of fast methods
were proposed (28, 56, 74] which reduced the number of arithmetic operations to O(n?)

or O{nlog’n).

3.4 Numerical Examples

As described in the previous sections, some classical methods can be applied only for sim-
ple zeros, even when good starting values are given. In this section, we present examples
to show the efficiency of our method in computing multiple and close zeros compared with
some existed methods,

The computations presented in this section were performed in Matlab Ver. 6.5. Float-
ing point arithmetic of double precision was used to evaluate the given polynomial and
to perform the calculations. The eigenvalues of the companion matrix were solved by the
eig function in Matlab based on the QR method. The computer environment used in the
numerical test of this thesis was a Dell INSPTRON 18200 with a Pentium4 1.8GHz CPU
and 1.0GBytes memory.
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Ezample 3.1. Suppose that

N(2) = (2-0.2)%(z~05)* (2 — 0.8)(z + 0.5 + 0.24) (2 + 0.5 — 0.24)
= 20— 2.42° + 17928 + 0.0127 — 0.60612° 4 0.188442% + 0.087101 2"
—0.0719272% + 0.0194392% — 0.002413% + 0.000116

The approximate zeros are: 2; = 0.2 — ¢, zpy=024¢, 23 =0.2 —2¢, 24 = 0.5 — ¢, 25 =
05+¢€ 26 =052, 2y =05+ 2, 23 = 08+¢&, m = —05—0.2 —¢, 29 =
—0.5 4+ 0.2 — g, £ = 0.001.

The results calculated by Fiedler’s method are shown in Table 3.1.

Table 3.1 Zeros of fi(z) calculated by Fiedler's method

Zeros Calculated results

0.2 0.20000251239661 4 0.00000435419709:
0.2 0.20000251239642 — 0.000004354197193
0.2 0.19999497526450 4 0.0000000000001 14
0.5 0.560016879383330 — 0.000000000000004
0.5 0.49999987594171 — 0.00016859950395i
0.5 0.49999987594172 + 0.00016858950395¢
0.5 0.49983144600920 + 0.00000000000000¢
0.8 0.79999999957270 4 0.00000000000000%

—-0.5+0.21  —0.49999959999209 + 0.200000000001564
—0.5 —0.25 —0.49999999999209 — 0.20000000000156%

The results calculated by Smith's method are shown in Table 3.2.

The results can be used as the initial value for the iterative computation, which con-
verges quickly to simple zeros. Malek and Vaillancourt [31] and Fortune [16} use this
method to obtain good approximations to simple zeros, but the results are not accurate

in the case of multiple zeros.
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Table 3.2 Zeros of f1(z) calculated by Smith’s method

Zeros Calenlated results
0.2 0.19999703285594 + 0.00000000000020z
0.2 0.20000148362804 — 0.000002591618874
0.2 0.20000148362841 + 0.000002591618674
0.5 0.49983057667040 4 0.00000000000000:
0.5 0.49999969596006 — 0.00016983127828:
0.5 0.49999969596005 + 0.00016983127829¢
0.5 0.50017004248709 + 0.00000000000000:
0.8 0.79999999996334 — 0.000000000000002

—0.54+0.2¢ —0.49999999998918 -+ 0.200000000002214
-0.5 - 0.2i —0.49999999998918 — 0.200000000002217

We calculated the zeros of fi(z) by our method, the approximate zeros are: z = 0.2 +
€, 220=05+¢, z3=084¢, zy=-05+02%+¢, z=—-05~-02t+¢, €¢=0.001, v=
0, p=1. The results are shown in Table 3.3.

Table 3.3 Zeros of fi(z) calculated by new method

Zeros Calculated results Multiplicities
0.2 0.19999999999988 — (.00000000000000¢ 2.99999999999888
0.5 0.49999999999996 -+ 0.000000000000002  4.00000000000131
0.8 (0.80000000000001 + 0.000000000000002  0.999999959999990

—0.5+0.2¢ —0.49999999999998 + 0.200000000000047 0.99999999099390
—0.56 —-0.2¢ —0.49999999999998 — 0.20000000000004 1.00000000000001

Ezample 3.2. Suppose that
f2(2) = (z2+05)3(z —2)"(z — 4.5)(z — 2 — 2.54)(z — 2 + 2.5%)
= 210~ 152° 4 96.252° — 34027 + 660,93752° — 510.56252° — 354.7656252*
+710.6252% + 70.6252% ~ 312.5z — 92.25

The approximate zeros are: 2y = —0.54¢, 23 == 2+4¢€, 23 = 4.5+€, 24 = 2+2.5i+¢, 25 =

2~ 2.5i+¢, e=0.001, vy =2, p=>5, The results are shown in Table 3.4.
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Table 3.4 Zeros of fy(2) calculated by new method

Zeros Calculated results Multiplicities
—-0.6 -0.49999999999998 + 0.000000000000007 2.99999999399656
2 1.99999999999521 — 0.000000000000267 4.00000000000624
4.5 4.50000000000199 + 0.00000000000009¢ 0.99999999999838

225  2,00000000000202 — 2.50000000000090: 1.00000000000033
2+ 2.5¢  2,00000000000192 4 2.500000000001067 0.99999999999849

Ezample 3.3. Suppose that

fa(z) = (z=12)(z—-12-38)(z 1.2+ 8)(z — 1.2 — 28}(z — 1.2 — 36)(= — 0.5)
X(z—1.6—8){z—15+1)(z—2.4)

= 2"+ agzB + a7z7 + aﬁzﬁ + a5z5 + a4zd + a323 -+ a2z2 + a1z 4+ ag
where § = 1072 and

ag = —9.704448404352002
a = 72.84557069827201
gy = —235.1566155406320
ag = 432.2522097191521
a4 = —501.851531 1445200
as = 383.7300067016500
ag = —194.1650025055000
a; = 62.95000053499999
ag = —11.90000005000000

Note that fs(z) has five clusters of zeros, each cluster includes 5, 1, 1, 1, and 1 zeros,
respectively. The approximate zeros are: z; = 1.5+i-+te, 23 = 1.6—i+e, 23 = 0.5+¢, 2y =
24+¢, z=12+¢ =000, y=1, p=15.

The results calculated by Fiedler's method are shown in Table 3.5,
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Table 3.5 Zeros of fa(z) caleulated by Fiedler’s method

Zeros(Center of cluster) Calculated results
15414 1.50000000000001 + 0.99999999999987:
1.5—1 1.49999999999999 — 0.999999995999914
0.5 0.5000000000000C + 0.00000000000000z
2.4 2.40000000000012 + 0.00000000000000:
1.20000001 1.20012113286826 — 0.00015690888448:

The results calculated by our method are shown in Table 3.6.

Table 3.6 Zeros of f3(2) calculated by new method

Zeros
Calculated results Multiplicities
(Center of cluster)

1.541 1.49999999999999 + 1.00000000000009¢ 1.00000000000030
1.5 -1 1.49999999999995 — 1.000000000000087 1.00000000000023
0.5 0.50000000000006 + 0.00000000000005: 0.99999999999965
2.4 2.39999999999944 — 0.00000000000000¢ 1.00000000000094
1.20000001 1.20000000999968 - (.00000000000004:  4.99999999999873

In Table 3.7, we also show the results with § = 107% and § = 1075,

Table 3.7 Center of the cluster of f3(z) calculated by two methods

) Fiedler's method New method

1074 1.20065747466531 + 0.00012796208631¢ 1.20010000178466 — 0.00000000000003%

10~ 1.20018232636525 — 0.00021919219477; 1.20000100000026 + 0.00000000000001%

From the results, we see that our method can calculate the center of the cluster and the
number of the zeros in the cluster more accurately compared with the results calculated
by Fiedler’s method.

In practical computation with the method presented in this chapter, we consider a

combined algorithm which is composed of two stages [9]. In the first stage, we use some
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existed methods to perform the initial calculation with the starting values required. After
some iterations, we can obtain some improved approximate zeros and from these we know
more about the zeros of the polynomial, that is, by checking the distance between the
approximate zercs, we can know more clearly about the distribution of the zeros such as
the existence of multiple zeros or cluster of zeros. Then in the second stage we take these
improved results as the initial values, and apply our new method to compute the zeros of

the polynomial to obtain better approximations.

3.5 Conclusion

The zeros of a polynomial can be calculated by constructing a companion matrix and then
perform the eigenvalue computation by the QR. method. Fiedler's method and Smith’s
method can be used recursively and the results converge rapidly to simple zeros. In cases
where the polynomial has multiple zeros, the multiplicities are needed to be known in
advance and the iterations reached a saturation point after several steps. In this chapter,
we presented a method to construct a new companion matrix which has only simple
eigenvalues. Using this method, we can calculate the distinct zeros of a polynomial and
then calculate their multiplicities to a high accuracy. The method is also efficient in
calculating the center of the cluster of zeros and the number of zeros in the cluster. The

applicability of the method has been demonstrated with numerical examples.
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