Chapter 2

Interval Arithmetic

2.1 Introduction

Reliability of computational results is crucial in scientific computation and engineering,
There are several types of errors that are generated in mathematical computations when
using finite precision arithmetic on digital computers. These errors may be rounding
errors due to finite representation of numbers in arithmetic units of computing machines,
or errors due to uncertain values of parameters in mathematical models in physical and
engineering sciences, or errors due to uncertain initial data. Interval arithmetic provides
a tool for estimating and controlling these errors by providing upper and lower bounds
on the effect of all these errors on a computed quantity.

When we perform computations on a computer, we can not carry out “exact” arith-
metic because of the limited precision used in the computation. Applying interval arith-
metic, we can compute intervals containing results of infinite precision, that is, we can
find intervals containing the exact “real” arithmetic results.

Interval analysis was first introduced by Moore [35, 36] in 1966. The concept of
interval analysis is to compute with intervals of real numbers in place of real numbers.
While floating point arithmetic is affected by rounding errors, and can produce inaceurate
results, interval arithmetic has the advantage of giving rigorous bounds for the exact

solution. An application is when some parameters are not known exactly but are known
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to lie within a certain interval, algorithms may be implemented using interval arithmetic
with uncertain parameters as intervals to produce an interval that bounds all possible
results.

If the lower and upper bounds of the interval can be rounded down and rounded up
respectively, then finite precision calculations can be performed using intervals to give
an enclosure of the exact solution. Although it is not difficult to implement existing
algorithms using intervals in place of real numbers, the result may be of no use if the
interval obtained is too wide. If this is the case, other algorithms must be considered or

new ones developed in order to make the interval result as narrow as possible.

2.2 Real Interval Arithmetic

In this section we give an introduction to real interval arithmetic [3, 35]. In this thesis

the field of real number is denoted by R. A subset of R of the form
A=la,m|={z:0, <z <a, a,a0 €ER}

is called a closed real interval or an interval. The set of all closed real intervals is denoted
by I(R). Real numbers z € R may be considered special members [z, %] from I(R), and
they will generally be called point intervals.

Two intervals A = [ay,as] and B = [b1, by} are called equal, that is, A = B, ifa; = &
and aq = by.

The absolute value of an interval A is defined as
[A] = max{|z| : 2 € A}.
The arithmetic operations on elements from I(R) are defined below.

Definition 2.2.1 Let x € {4+, —, X, /} be a binary operation on the set of real numbers
R. If A, B € I(R), then

AxB={z=axb:ac A, be B}
defines o binary operation on I(R).
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It is assumed that 0 ¢ B in the case of division. The operations on intervals A = (a1, as)

and B = [by, bs] may be calculated explicitly as

A+B = [ay+b,ae+b),
A‘—B = [a.]_"—'bz,ag'—bl],
Ax B = [min{aby,a1by, ashy, azbe}, max{a; by, a;by, aghy, asbs},

A/B = [a,a9) X [1/by, 1/b1] if 0 & B.

For addition and multiplication the associative and commutative laws hold. However
A(B+C)# AB + AC,

except in special cases, therefore the distributive law does not hold. Instead there is the

sub-distributive law

A(B +C) C AB + AC.

2.3 Inclusion Property

One of the fundamental properties of interval computations is inclusion monotonicity

property, presented in the following theorem [3].
Theorem 2.3.1 Let Ay, B, € I(R), k=1,2, and let x € {+,—,%,/}. Then
A}c C Bk(k = 1,2) = Ay % Ay C B % By, (21)

More generally, if F(Xy,...,X,)is a rational expression in the interval variables X, ..., X,,
then
Y € Xpyovny Yo € X = F(Yi,. ., Ye) © F(X5,..., Xn)

for every set of intervals for which the interval arithmetic operations in /' are defined.
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2.4 Interval Extensions and Fundamental Property

of Interval Arithmetic

One of the basic problems of numerical computations is the calculation of the range of a
function on an interval X with a computer. In general, it is impossible to compute the
range or safe bounds of it with floating point arithmetic because of the finite representation
of numbers in the computations. This problem can be solved by using interval arithmetic
[41, 58].

Let f(z) be a function which may be written as an expression consists only of arith-
metic operations and elementary functions, let X be an interval containing z, then the
interval extension of f(z) to X can be obtained by replacing each occurrence of the vari-
able & by the interval X, the arithmetic operations of z by the corresponding interval
arithmetic operations. The interval extension of f(z) to X is denoted by F(X).

It follows from the inclusion monotonicity property (2.1) that
z € X = f(z) € F(X). (2.2)

Property (2.2) is very important to almost all interval arithmetic applications and results,
it provides a method to compute validated range bounds for functions. It is called the

fundamental property of interval arithmetic.

2.5 Complex Interval Arithmetic

Consideration and analysis of various problems in the complex plane which either involve
“Inexact” data, or require some information on upper error bound of the obtained result
or solution, dictate the need for a structure which is referred to as complex interval
arithmetic [52, 3]. Complex interval arithmetic is a natural extension of real interval
arithmetic to the complex plane. There are two reasonable choices for complex intervals:

circular regions{disks) and rectangles in the complex plane,
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2.5.1 Rectangular Complex Arithmetic

Definition 2.5.1 Let A, Ay € I(R). Then the set
A={e=a1+1a3: a1 € Aj,a2 € Ay}
of complex numbers is called ¢ complex interval.

Sets of complex numbers as Definition 2.5.1 constitute rectangles in the complex plane
with sides parallel to the coordinate axes. The set of such complex intervals is denoted
by R(C), where C is the set of complex numbers. A complex number a = a; + ia may

be considered to be a complex point interval
- A={[m,a]+1las, a2] € R(C).

Furthermore, every real interval A; € I(R) may be considered to be an element A =
A1 +1i[0,0] € R(C), which evidently implies I(R) C R(C).

Definition 2.5.2 Let A = A, + 1Ay and B = By + iB, be two members of R(C). Then
A and B are equal, written A = B, if

Al = .Bl and Ag b Bg.

Definition 2.5.3 Let « € {+,—,x,/} be a binary operation on elements from I(R).
Then if
A=A1+iAy, B=B| +iBy € B(C),

we define
A+ B = A;=£ B +i(Ay £ By),

AxB = AlBl - Ang +?;(A1.Bg + A2BL),

i

The case A/B requires special provisions since the division defined as above yields a

complex interval({rectangle) that is generally far too large in comparison with the exact
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range {z1/#|z € A,z € B}. Therefore, it is preferable sometimes to apply in practice

the definition of division introduced by Rokne and Lancaster [59] as follows

1
A/B=A. 5
where

% = inf{X € R(C): {1/b: be B} C X}.

In this way a smaller region is obtained, but the proposed set of formulas requires a

considerable computational effort.

2.5.2 Circular Complex Arithmetic

Definition 2.5.4 Let ¢ € C be a complez number and let r € R be such that r > 0. The

set

Z={zeC:|lz—c| <7}

15 celled a circular interval or disk.

The center ¢ and radius r of a disk Z will be denoted by mid(Z) = ¢ and rad(Z) = r.
The set of circular disks is denoted by K (C). A disk with center ¢ and radius r is often

written as Z = {c¢;r}. Complex numbers may be considered to be special elements from
K(C) of the form {c¢;0}. Clearly C C K{(C).

Definition 2.5.5 Two circular disks A = {c1;71} and B = {co 12} are called equal, that

18 A = B, if there is set theoretic equaelity between them. In this case ¢) = ¢y and vy = rq.

The operations on J{(C) are introduced as generalizations of operations on complex num-

bers in the following manner.

Definition 2.5.6 Let « € {+,—, X,/} be a binary operation on the complex numbers.
Then if A= {c1;r1} and B = {¢y; 79} we define

A+B = {c,+ca;r + 72}

A—-B {c1 — a3+ 12},
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Ax B = {cc;le|rs + |calry + mira),
]. 62 Tz
—_ . 0 B
Zy {0252—7‘%’6252—7'3}’ (0 ¢ B),

Ax 2, (0¢B),

i

e
T

s
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where € denoles the complex conjugate of c.

Definition 2.5.7 For o disk Z = {c;r} and an analytic function f(z) with =z € Z, the
range of f(z) in Z is denoted by f(Z) = {f(2) : z € Z}. If function F(Z) : K{C) — K(C)
8 a function of Z such that

(=) € F(Z) (2.3)

for z € Z, then we call F(Z) the interval extension of f(z) and (2.8) is called the funde-

mental property of interval arithmetic.

If f(z) can be written as an expression consists of elementary functions and arithmetic
operations, then F(Z) can be calculated by replacing each occurrence of z in f(z) by Z
and arithmetic operations by the correspending circular arithmetic operations [57].

The intersection disk of two disks A and B is defined to be the smallest disk that
includes the intersection ANB = {z:2z € A and z € B} of the disks A and B.

Circular complex arithmetic provides us with a means for the evaluation of upper and
lower bounds on the ranges of values of real rational functions over a disk in the complex

plane.

2.6 Interval Newton Method

Newton method to compute an approximation of a zero of a function f{x) can be extended
to interval arithmetic to compute an enclosure of the zero of f(z). The interval Newton
method [35, 19, 27) was derived by Moore in the following manner. For f(z), from the

Mean Value Theorem,

f(z) = f(z*) = (= — 2*)f(§), (24)
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where £ is some point between z and z*. If z* is a zero of f(z), then f(z*) = 0 and from
(24)

=T - /(=) :

F'(€)

Let X be an interval containing both = and z*. Since £ is between z and z*, it follows

that £ € X. Let F'(X) be the interval evaluation of f/(z) over the interval X, then from

(2.2), f'(€) € F'(X). Hence, z* € N(z,X) where

(2.5)

_ =)
(X))

Nz, X)==

We assume that 0 ¢ F'(X) so that N (z, X) is a finite interval. Since any zero of f(z) in
X is also in N(z,X), it is in the intersection X N N(z, X).
Based on the above fact, the following algorithm can be used to find the zero z* of

f(=).

Let Xy be an interval containing z*. Forn = 0,1,2,..., define
z, = mid(X,), (2.6)
(@)
N = -
(mn)Xn) wn fl(Xn)!
Xnri = Xp N N(zy, Xp). (2.7)

Zp can be any number that x,, € X,,. It is nsually convenient and efficient to choose z,, to
be the midpoint of X,. X, is an interval which contains z*. Because of the intersection
with X, the sequence

X0 2X:12X,2...

is bounded. It can be shown that the sequence converges quadratically to =* [3, 43]. The
method can only be applied if 0 ¢ F'(X,). This guarantees that f(z) has only a single

zero in Xj.
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