
An Information Integration System

for Structured Documents, Web, and

Databases

by

Atsuyuki Morishima

A Dissertation Presented to
the Faculty of University of Tsukuba

in Partial Ful�llment of the Requirements for
the Degree of Doctor of Engineering

July 1998

For my parents

i

Acknowledgments

I do not know how to express my deep gratitude to my supervisor Professor

Hiroyuki Kitagawa. I could not have begun my research, unless he accepted

me as one of his students when I was a stranger in this area. When I told

him that I would like to carry out research into document processing and

management, he suggested me that I should consider matters relevant to

structured documents and databases. Without his vision and guidance, I

would not have studied integration of heterogeneous information sources. All

the major topics in the dissertation have been started to study and explored

with his advice. He has given me constructive suggestions, precise criticism,

and kind encouragement at all times. Because he really enjoys the activities

of studying and education, I have been able to enjoy the research.

I am grateful to the members of \NR/SD group," Kazunori Kato, Shan

Lin, Tsuyoshi Nemoto, Kumiko Kaimasu, and Hironori Mizuguchi. I have

enjoyed the weekly discussion at the \NR/SD meeting" with them. The

ii

prototype system development could not progress so fast without their dis-

cussions, positive e�orts, and the feeling that we share the same goals and

dreams.

I have been studying at the database laboratory of the University of

Tsukuba. I am grateful to Professor Nobuo Ohbo, Professor Yuzuru Fuji-

wara, Professor Isao Suzuki, and Assistant Professor Kiminori Utsunomiya

for giving me constant encouragement. Also, I would like to thank Takayuki

Suzuki, Junichi Notoya, and Norihide Shinagawa. I have asked them a lot of

questions about any things through my laboratory life.

Finally, I am grateful to the members of my dissertation committee for

giving comments to improve this dissertation. Professor Hiroyuki Kitagawa,

Professor Yoshihiko Ebihara, Professor Kozo Itano, Professor Seiichi Nishi-

hara, and Professor Nobuo Ohbo served on my dissertation committee.

iii

Abstract

Rapid advance in computer network technology has changed the style of

computer utilization. Distributed computing resources over world-wide com-

puter networks are available from our local computers. They include pow-

erful computers and a variety of information sources. This change is raising

more advanced requirements. Integration of distributed information sources

is one of such requirements. In addition to conventional databases, structured

documents have been widely used, and have increasing signi�cance in such

advanced applications as digital libraries, electronic commerce, World Wide

Web, and hyper-media descriptions. Thus, integration of structured docu-

ments and conventional databases is one of the most important issues today.

However, structured documents are di�erent from conventional databases in

their self-descriptive nature and various structural constructors. And the

di�erence makes the integration much di�cult.

This dissertation proposes an information integration system for not only

iv

conventional databases but also information sources containing structured

documents. In particular, structured document repositories, Web, and rela-

tional databases are chosen as target information sources.

Data models for integration of structured documents and relational

databases are proposed. They are hybrid data models based on nested rela-

tional structures and an abstract data type for structured documents, and

allow symmetric transformation between relational structures and structured

documents. Utilization of such hybrid and symmetric data models is the

most distinguishing point of the information integration system studied in

this dissertation.

A query processing and optimization scheme for the integration system

which utilizes the hybrid and symmetric data models is studied. The integra-

tion system is supposed to consist of software modules which communicate

with each other and distributed information sources. The scheme plans to

e�ciently utilize query processing capability of the information sources, such

as SQL processing capability of relational databases. Also, it realizes e�cient

manipulation of those structured documents whose size is potentially very

large.

A visual user interface for the integration of structured document repos-

itories, Web, and relational databases is proposed. In contrast to user inter-

v

faces of traditional databases, the user interface provides an interactive and

visual operation framework for metadata and data, in order to cope with

the largeness and complexity which arise in integration of heterogeneous and

distributed information sources.

In addition to the above theoretical and academic issues, basic design

of a prototype system is explained. The fact that the prototype system is

implementable shows the practicability of this approach.

vi

Contents

1 Introduction 1

2 Background 11

2.1 Overview : 11

2.2 Structured Documents : 11

2.3 Integration of Structured Documents, Web, and Databases : : 15

3 Related Works 19

3.1 Overview : 19

vii

3.2 Integration of Heterogeneous Information Sources : : : : : : : 20

3.3 Query Processing and Optimization : : : : : : : : : : : : : : : 28

3.4 Visual User Interfaces : 29

4 An Information Integration System 31

4.1 Overview : 31

4.2 Architecture : 32

5 Data Models 35

5.1 Overview : 35

5.2 Basic Concepts : 36

5.2.1 NR/SD Data Structures : : : : : : : : : : : : : : : : : 36

5.2.2 SD Type : 38

viii

5.2.3 Converters : 42

5.3 NR/SD : 46

5.3.1 Converters : 47

5.3.2 NR/SD Algebra : 57

5.3.3 Basic Properties of Converters : : : : : : : : : : : : : : 59

5.4 NR/SD+ : 62

5.4.1 SD Type : 64

5.4.2 Converters : 65

5.4.3 Master Constructors : : : : : : : : : : : : : : : : : : : 69

5.4.4 NR/SD+ Algebra : 70

5.4.5 Expressive Power of NR/SD+ Algebra : : : : : : : : : 76

5.5 WebNR/SD : 77

ix

5.5.1 Hlink Type : 78

5.5.2 WebNR/SD Algebra : : : : : : : : : : : : : : : : : : : 79

5.6 Query Speci�cation Example : : : : : : : : : : : : : : : : : : : 84

6 Query Processing and Optimization 91

6.1 Overview : 91

6.2 Abstraction of SD values : 92

6.2.1 Abstract SD values : 92

6.2.2 Abstraction and Materialization Operators : : : : : : : 94

6.3 Outline of Query Processing : : : : : : : : : : : : : : : : : : : 97

6.4 Query Processing Example : 102

7 Visual User Interface 108

x

7.1 Overview : 108

7.2 Features of the Visual User Interface : : : : : : : : : : : : : : 109

7.3 Components of the Visual User Interface : : : : : : : : : : : : 112

7.4 Interactive Information Exploration : : : : : : : : : : : : : : : 114

7.4.1 Creation of Data Box for Faculty Information : : : : : 114

7.4.2 Creation of Data Box for Papers : : : : : : : : : : : : : 116

7.4.3 Creation of Data Box for Publication List Web Pages : 116

7.5 Visual Data Manipulation Language: HQBE : : : : : : : : : : 122

7.6 Translation of HQBE Descriptions into WebNR/SD Algebra

Expressions : 126

7.6.1 HQBE Description in a Text Format and Its Semantics 127

7.6.2 WebNR/SD Algebra Expressions Obtained by the

Translation : 132

xi

7.6.3 Translation Procedure : : : : : : : : : : : : : : : : : : 137

8 Prototype System Development 140

8.1 Overview : 140

8.2 Design Principles : 141

8.3 Prototype System Architecture : : : : : : : : : : : : : : : : : 142

8.4 Interface among the Mediator and Wrappers : : : : : : : : : : 145

8.5 Data Communication among Modules : : : : : : : : : : : : : : 151

8.6 Screen Shots of the Prototype System : : : : : : : : : : : : : : 153

9 Conclusions 158

xii

List of Figures

2.1 Sample XML document : 14

2.2 Hyper-text view over a document repository, the Web, and a

relational database : 16

2.3 Structure of a publication item : : : : : : : : : : : : : : : : : 17

2.4 Sample publication items contained in PL pages : : : : : : : : 18

4.1 Integration environment : 34

5.1 Relation hT; r0i : 38

5.2 Sample SD value : 43

xiii

5.3 Concept of converters : 45

5.4 Examples of Rep-unpack and Rep-pack : : : : : : : : : : : : : 49

5.5 Examples of Seq-unpack and Seq-pack : : : : : : : : : : : : : 50

5.6 Example of Or-remove : 54

5.7 Example of Or-append : 56

5.8 Nested relational algebra operators : : : : : : : : : : : : : : : 60

5.9 Examples of Unpack and Pack : : : : : : : : : : : : : : : : : : 67

5.10 Master and derivatives : 68

5.11 Examples of master constructors SC and RC : : : : : : : : : 71

5.12 Example of master constructor OC : : : : : : : : : : : : : : : 72

5.13 Example of composite operators : : : : : : : : : : : : : : : : : 75

5.14 De�nitions of composite operators : : : : : : : : : : : : : : : : 76

xiv

5.15 Examples of Export and Import : : : : : : : : : : : : : : : : : 81

5.16 Example hyper-text link structure (Un are URLs and Ln are

character strings in linking elements) : : : : : : : : : : : : : : 82

5.17 Example of Navigate : 84

5.18 Path regular expression syntax : : : : : : : : : : : : : : : : : : 85

5.19 Example of URL generator : 85

5.20 Relation WWW : 87

5.21 Element de�nitions for publication items : : : : : : : : : : : : 88

5.22 Sample SD value which corresponds to a paper : : : : : : : : : 88

5.23 DTD for the index page : 90

5.24 DTD for new PL pages : 90

6.1 Example of transformation between SD values and ASD values 93

xv

6.2 Query processing framework : : : : : : : : : : : : : : : : : : : 99

6.3 Sample rewriting rules : 103

7.1 Windows in the visual user interface : : : : : : : : : : : : : : 112

7.2 Data box (D1) and metadata box for faculty information : : : 115

7.3 Data box (D2) and metadata box for papers : : : : : : : : : : 117

7.4 Browsing publication list Web pages for years (D3) : : : : : : 118

7.5 Querying metadata and data to relate D3 with all the publi-

cation Web pages : 121

7.6 HQBE description for data operation (1) : : : : : : : : : : : : 124

7.7 HQBE description for data operation (2) : : : : : : : : : : : : 125

7.8 Target expression for D1 : 127

7.9 Target expression for D2 : 128

xvi

7.10 Target expression for D3 : 129

7.11 Syntax and semantics of loose structure speci�cations : : : : : 130

7.12 Output expression corresponding to D4 : : : : : : : : : : : : : 131

8.1 Prototype system architecture : : : : : : : : : : : : : : : : : : 146

8.2 Interfaces among modules : 148

8.3 NRSD Processor interface (in part) : : : : : : : : : : : : : : : 150

8.4 SD Materializer interface (in part) : : : : : : : : : : : : : : : : 150

8.5 Navigable interface (in part) : : : : : : : : : : : : : : : : : : : 150

8.6 RelationMetaData interface (in part) : : : : : : : : : : : : : : 154

8.7 Executable expression speci�cation for the Opentext wrapper : 154

8.8 Data box and metadata box for a relation in the Oracle 8

database : 155

xvii

8.9 Data box for a document collection in the Opentext database 156

8.10 Data box for a Web page : 157

xviii

Chapter 1

Introduction

Rapid advance in computer network technology has changed the style of

computer utilization. Distributed computing resources over world-wide com-

puter networks are available from our local computers. They include powerful

computers and a variety of information sources. This change is raising more

advanced requirements. Integration of distributed information sources is one

of such requirements. This requirement has motivated many researchers to

develop multidatabases, which are intended to integrate distributed, already

existing, and autonomous databases. In this context, the data objects stored

in databases are assumed to obey explicit and rigid structures speci�ed at

the schema level. However, there exist many types of data objects other than

those managed by such conventional databases. Among such data objects,

1

structured documents have been widely used, and have increasing signi�cance

in such advanced applications as digital libraries, electronic commerce, World

Wide Web, and hyper-media descriptions. Structured documents are di�er-

ent from data objects managed by conventional databases in the following

points. (1) They are self-descriptive. Structural information of them is de-

scribed in the documents themselves, while that of conventional databases

is managed at the schema level. (2) They have more structural constructors

than databases have. For example, they allow variant structures and optional

structures to appear.

This dissertation describes development of an information integration sys-

tem for not only conventional databases but also information sources contain-

ing structured documents. In particular, structured document repositories,

Web, and relational databases are chosen as target information sources. The

reasons are as follows: (1) Relational databases are representatives of con-

ventional databases. They play the main roles in many practical information

systems. (2) Structured document repositories mean information sources

which manage collections of structured documents, in this context. For ex-

ample, text retrieval systems and �le systems are representatives of them.

Such document repositories are widely used in practical document manage-

ment systems. (3) Web has been giving huge impact on society and more

and more people use it. There is a great demand for integration of Web and

databases. From the technical point of view, the main components of Web

2

are also structured documents. Web pages are usually written in HTML and

XML.

As basic architecture, the integration system follows the mediator-based

approach, which is one of the promising approaches for integration of infor-

mation sources [PGMW95]. In general, a system following this approach �rst

transforms information sources into a pivot data model to uniformly repre-

sent data objects, and integration process is performed in terms of the pivot

data model.

This dissertation discusses the development of the integration system

mainly from the following three aspects.

1. Pivot data models

2. Query processing and optimization issues

3. User interface problems

For the integration system of this dissertation, three pivot data models

have been developed. Common features of them are as follows: (1) They are

hybrid data models which introduce an abstract data type for structured doc-

uments (named SD type) into nested relational structures. (2)They achieve

3

symmetric integration of structured documents and relational databases

through operators named converters. The converters dynamically transform

nested relational structures into structured documents and vice versa. Uti-

lization of such hybrid and symmetric data models make the system unique

compared with the other information integration systems. However, even

though it is proved that the data models logically realize the integration of

heterogeneous information sources, several problems remain for practical ap-

plications. This dissertation is also focused on other two important problems.

The �rst problem is how queries based on such data models can be processed

and optimized in the actual system. As for this problem, a query process-

ing and optimization scheme for the mediator-based system architecture is

discussed. The second problem is how to make such systems easy to use

for end users. As for this problem, a visual user interface for integration of

heterogeneous information sources is designed. In the following paragraphs,

the above points are explained in more details.

Utilization of Hybrid Data Models

The integration system �rst transforms information sources into a pivot data

model, and then manipulates them at the uniform representation level. For

this purpose, three versions of the pivot data model | NR/SD, NR/SD+,

and WebNR/SD | were developed. NR/SD and NR/SD+ were designed

4

for integration of structured document repositories and relational databases.

WebNR/SD was designed to incorporate the Web as an information source

into the integration framework, in addition to the two types of information

sources. Because NR/SD has all the basic features of these models, and the

others can be considered as extended versions of NR/SD, all the three models

are referred to as NR/SD integration models.

NR/SD integration models are hybrid data models which combine nested

relational structures and abstract data type concept. More precisely, they in-

troduce an abstract data type for structured documents (named SD type) into

nested relational structures. In addition, they achieve symmetric integration

through operators named converters. The converters dynamically transform

nested relational structures into structured documents and vice versa. Thus,

NR/SD integration models allow us to represent data objects in the form of

both atomic values of SD type and nested relational structures.

The main reason of introducing such hybrid and symmetric data models

is that they allow us to properly use di�erent features of structured docu-

ments and databases. For example, nested relational structures are appropri-

ate from the viewpoint of data restructuring based on the nested relational

algebra operators, such as join and nest, while SD type is appropriate in

manipulating a collection of structurally heterogeneous data objects. Conse-

quently, in addition to data retrieval from structured document repositories,

5

Web, and relational databases, NR/SD integration models enables restruc-

turing of heterogeneous data objects. For example, various user views on top

of structured documents can be developed in analogy to views in relational

databases [CGT75]. Of course, query results can be in the form of relations,

structured documents (including Web pages in the case of WebNR/SD), or

their combinations.

Query Processing and Optimization Scheme

Query processing and optimization issues are important problems for prac-

tical applications. This dissertation pays attention to the following points.

(1) E�cient utilization of the local query processing capability of document

repositories and relational databases.

Needless to say, the system should use the capability of the document

repository for text manipulation and that of the relational database for re-

lation manipulation. However, it is important to note that, in the NR/SD

integration models, we can convert nested relational structures into struc-

tured documents and vice versa. Therefore, for example, data represented

in nested relational structures may originally resides in the document repos-

itory. In this case, when some nested algebra operators are applied to the

6

nested relational structures, it is desirable to make use of the local �lter-

ing capability of the document repository to support the operation. The

query processing and optimization scheme presented in the dissertation in-

corporates query rewriting rules to cope with such issues in addition to

conventional query optimization rules.

(2) Reduction of the working space and intermediate query processing cost

in structured document manipulation.

In the integration system, data objects in information sources are trans-

ferred into the software module called mediator, and data manipulation in-

volving di�erent information sources is performed there. Since structured

documents could contain a large amount of data, naive transfer of docu-

ments would require the mediator to have large work space. It would also

bring about very large intermediate query processing cost and data transfer

cost. The concept of abstract SD value is introduced in order to alleviate

the problem. In the NR/SD integration models, it is often the case that

operations of structured documents require only higher-level text elements

and document structures, and that detailed parts are necessary only when

the �nal query results are constructed. In such cases, utilization of abstract

values allows us to defer transfer of detailed document data until the �nal

query processing phase. Then, we can reduce the work space and the in-

termediate query processing cost of the mediator, and sometimes attain the

7

reduction of the total data transfer cost.

User Interface Problems

In case of traditional database utilization, usually, we �rst browse meta-

data such as the schema information of a database, and then submit query

statements. This simple procedure causes problems in the context of hetero-

geneous information integration, because of the following reasons: (1) It is

di�cult to identify target data objects from a sea of data objects in informa-

tion sources. There are three reasons. First, the information sources include

structured documents and Web. Their data structures are more complicated

compared to those of relational databases. Second, in general, there is no

way to bundle data objects of the same type like the extension in ODBs.

Moreover, target data objects may be collected from di�erent information

sources. Without identifying target data objects, it is impossible to manipu-

late data objects. (2) Even if target objects of operation have been identi�ed,

the complexity of target data structure makes data operation more di�cult

for end users.

The visual user interface is designed to overcome the problems. The

user interface models integration activity as combinations of target discovery

and data operation, and provides them with visual and interactive supporting

8

tools. Target discovery is de�ned as the process of discovering and extracting

target data objects from a number of information sources. In this process,

only data objects relevant to user requests are identi�ed. Data operation

is de�ned as the process of manipulating the identi�ed target data objects

to construct �nal answer for user requests. Because the two processes are

essentially di�erent in their purposes, di�erent supporting tools should be

provided for them.

Outline

The remainder of this dissertation is organized as follows. In Chapter 2,

background of the research is described. Characteristics of structured doc-

uments written in XML is explained. And the problems which are caused

in the integration of structured documents, Web, and databases are clari�ed

through an example scenario. Chapter 3 surveys related works. In Chapter

4, architecture of the information integration system is described. In Chap-

ter 5, pivot data models NR/SD, NR/SD+, and WebNR/SD are described.

First, data structure and operators of NR/SD, and basic properties of the

operators are explained. Then, di�erences of NR/SD+ and WebNR/SD from

NR/SD are described. In Chapter 6, query processing and optimization is-

sues in the information integration system are described. Although it is

discussed in the context of WebNR/SD, the same discussion applies to the

9

case of NR/SD and NR/SD+. In Chapter 7, the visual user interface of the

information integration system is explained. In Chapter 8, basic design of a

prototype information integration system is described. Chapter 9 concludes

this dissertation.

10

Chapter 2

Background

2.1 Overview

This chapter �rst explains structured documents. Then, the problems which

are caused in the integration of structured documents, Web, and relational

databases are clari�ed through an example scenario.

2.2 Structured Documents

In general, documents such as papers, letters, and books have their internal

structures. For example, a paper consists of its title, author information,

11

a sequence of sections, and references. In order to interexchange not only

text itself but also such structural information among di�erent information

systems, SGML (Standard Generalized Markup Language) was developed in

1986 [ISO86]. SGML documents have two main parts. The �rst part is called

DTD (Document Type De�nition) and describes the permitted logical struc-

ture of the document. The second part is tagged text part which conforms

to the DTD. SGML has become widely recognized since U. S. Department of

Defense adopted it as the standard for military documentation. Also, SGML

was adopted as the basis of hypermedia description language Hytime [ISO92].

However, the most famous application of SGML would be HTML (Hyper

Text Markup Language), a page description Language of World Wide Web

[W3C97]. HTML documents are SGML documents whose inner document

structures are prescribed by a prede�ned DTD. In 1997, XML (Extensible

Markup Language) has been developed as a next generation language for

Web page description [W3C98]. XML is a simpli�ed version of SGML, and

allows Web pages to have user-de�ned document types.

Figure 2.1 shows a sample XML document. The text surrounded by

\<!DOCTYPE[" and \]>" in the document is the DTD. It is followed by the

tagged text part. A tagged text is divided into elements surrounded by a

start tag <g> and an end tag </g>, where g is a generic identi�er represent-

ing the element type. Elements can be nested within other elements. The

DTD prescribes how the elements can be hierarchically constructed by sub-

12

elements.

In Figure 2.1, each line starting with \!ELEMENT" in the DTD is an el-

ement type de�nition. An element \memo" is a sequence of \prolog" and

\body" (sequence structure). An element \list" consists of zero or more

\item" elements (repetition structure). An element \to" can contains ei-

ther \faxno" or \email" (or structure). An element \from" has sequence

structure and can contain at most one \homepage" element (optional struc-

ture). An element \list" can contain other \list" elements under its \item"

elements (recursive structure). The element types such as \name," \faxno,"

\email," and \para" are de�ned as having no internal structures. An element

\homepage" is a special type element which represents a hypertext link. An

attribute de�nition (starting with \!ATTLIST") in the DTD says that each

\homepage" element is a hypertext link and speci�es that it requires 'href'

attribute as in the case of anchor elements of HTML.

Because structural irregularity is caused by \or" structures, \optional"

structures," and so on, structured documents are often said to be semi-

structured data [Abi97] [Bun97].

13

<?XML version='1.0' encoding='UTF-8' RMD='ALL'?>

<!DOCTYPE memo[
<!ELEMENT memo (prolog, body)>

<!ELEMENT prolog (from, to)>

<!ELEMENT from (name, homepage?)>

<!ELEMENT to (faxno|email)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT faxno (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT body (para|list)*>

<!ELEMENT para (#PCDATA)>

<!ELEMENT list (item*)>

<!ELEMENT item (para|list)>

<!ELEMENT homepage ANY>

<!ATTLIST homepage

xml-link #FIXED 'SIMPLE'

href #REQUIRED >
]>

<memo>

<prolog>

<from>

<name>Lee</name>

<homepage href="http://...xml">homepage</homepage>

</from>

<to><faxno>0298-12-3456</faxno></to>

<prolog>

<body>

<para> ... </para> ...

<list><item>...</item><item><list>...</list></item></list>

</body>

</memo>

Figure 2.1: Sample XML document

14

2.3 Integration of Structured Documents,

Web, and Databases

This section �rst shows an example scenario where structured document

repositories, Web, and relational databases are integrated, and then, clari�es

the problems caused in the integration. We assume that structured document

repositories store SGML documents, and that Web pages are written in XML

and have user-de�ned inner document structures. We have three information

sources. First, we have a relational database which manages information on a

CS (computer science) department of some university (say, T university). It

contains a relation \Faculty" (Figure 2.2(a)). Second, we have a document

repository, which contains a number of papers in the form of structured

documents (Figure 2.2(b)). And �nally, there are Web pages accessible from

\CS department home page." They include PL pages, which list publications

written by the CS department faculties (Figure 2.2(c)). PL pages for di�erent

years have di�erent inner page structures. For example, the PL page for 1996

categorizes publication items by projects, while that for 1998 annotates each

publication item with some key words. However, every publication item in

all PL pages is assumed to have the same substructure shown in Figure 2.3

(It uses tree representation instead of directly showing corresponding parts

of the DTD). Figure 2.4 shows examples of publication items. Note that each

publication item has a hypertext link to the homepage of the journal or the

15

Thomas

Lee

Kyoto

Tsukuba

Name Addr

1996

1997

1998
Lee,
"Integration of Web"
Proc. ABC, 1998
Keywords:

Thomas.
"Semistructured Data"
X Journal, 1998
Keywords:

CS Dept.
Home
page

Lee

Thomas

Lee,
"Integration of Web"
Proc. ABC, 1998
Abstract: ...

Lee .
"Querying the Web"
Proc. HAL, 1997
Abstract: ...

Thomas, Kyoto, ...
Lee, Tsukuba, ...
...

...

(e) Index Page

Lee ,
"Integration of Web"

Abstract:

1 Introduction

Document Repository Relational Database

Hypertext View

Web
(a)

(c) PL pages

(b)

(d) new PL pages

ID Tel E-mail

Figure 2.2: Hyper-text view over a document repository, the Web, and a
relational database

conference (proceedings), where the publication were published.

The requirement here is to get a hyper-text view in Web over those in-

formation sources. It consists of new Web pages (new PL pages), each of

which lists publications like original PL pages (Figure 2.2(d)). But they are

di�erent from original ones in the following three points. (1) Only publica-

tions with its title containing word \Web" are listed in new PL pages. (2)

Each of new pages lists publications of each faculty member (not of each

16

p-item: seq

authors: rep

author

title pub-info: or hp: hlink

proc-info: seq j-info: seq

proc-title j-title.

Figure 2.3: Structure of a publication item

year). (3) The new pages list not only publication information in original

PL pages (including hypertext links to journals and conferences), but also

publications' abstracts originally contained in papers in the document repos-

itory. In addition to the new PL pages, the view also has an index Web

page. It contains hyper-text links to the new PL pages, and shows the fac-

ulty members' information originally stored in the relation \faculty" (Figure

2.2(e)).

This example scenario requires the following problems to be solved.

P1 To develop an integrated schema over the document repository, the Web,

and the relational database.

P2 To amalgamate data objects originally contained in the document repos-

itory, the Web, and the relational database.

17

<p-item><authors><author>T. Johnson</author>

<author>G. Mark</author></authors><title>

On structured documents</title><pub-info><proc-

info><proc-title>CODAS</proc-title><date><month>

Nov.</month><year>1996</year></date></proc-info>

</pub-info><hp href="http://.." >CODAS'96</hp></p-item>

..

<p-item><authors><author>H. Smith</author>

</authors><title>Access control in a multidatabase

</title><pub-info><j-info><j-title>A-Journal

</j-title><vol>1</vol><no>7</no><date><month>June

</month><year>1994</year></date></j-info></pub-

info><hp href="http://..">A-Journal</hp></p-item>

..

Figure 2.4: Sample publication items contained in PL pages

P3 To cope with heterogeneous structures in the original PL pages.

P4 To restructure data objects and construct newWeb pages and new hyper-

text link structures.

18

Chapter 3

Related Works

3.1 Overview

This chapter surveys related works. As mentioned in Section 1, the main

issues of the dissertation are integration data models, the query processing

and optimization scheme, and the visual user interface. First, works related

to integration of heterogeneous information sources are described. Although

studies on this issue can be classi�ed according to a number of aspects, the

uniqueness of the integration system is due to the data modeling framework

it adopts. It is explained in details there. Second, works related to query

processing and optimization schemes for integration of structured documents

and databases are described. Finally, works related to visual user interfaces

19

are described.

3.2 Integration of Heterogeneous Informa-

tion Sources

The most unique point of the integration system lies in the pivot data models

it uses. Thus, the related works are classi�ed from a data modeling point of

view here.

There are a number of approaches to integration of heterogeneous

information resources, in particular including structured documents and

databases. One approach is to extract common structures and properties

of data stored in the heterogeneous information repositories and to provide

a data model which can uniformly accommodate them. An advantage of

this approach is that users can manipulate di�erent kinds of data in a sin-

gle uniform modeling and operational framework. Recently, CPL [BDH+95],

UnQL [BDHS96], and OEM [PGMW95] [Abi97] have been developed as data

models which follow this approach. CPL provides a rich set of data types in-

cluding lists and variants to prepare for the heterogeneity of data. (Although

not for purpose of information integration, variants are also introduced into

other data models [HY84] [KD95]. Data models allowing nested lists are

found in [CSG94], [GZ89], and [GZC89].) In contrast of this, UnQL and

20

OEM use only simple nested data structures into which original data are

abstracted and translated. Each of those models utilizes the comprehension

[Tri91] syntax and/or SQL as the basis of their query speci�cation scheme

[AQM+97] [BDHS96] [BLS+94] [QRS+95]. Since the above models use rather

abstract pivot data representations, they could be applicable to various in-

formation sources. However, the translation overhead by wrappers is not

negligible. Moreover, relevant technologies of the models, such as query pro-

cessing techniques, index structure, and e�cient implementation scheme have

not yet been matured.

Another promising approach to the integration is the hybrid approach. In

this approach, existing data modeling frameworks �t for di�erent information

repositories are combined, or additional facilities are incorporated into a well-

known existing data modeling framework. This approach intends to provide

a natural combination of familiar frameworks rather than introducing a novel

but unfamiliar data model. While they are not general purpose data models

compared to those of the former approach, it allows us to make use of the

well-known established technologies including storage management, index

structure, and query processing. In addition, the translation overhead is

generally smaller than the former approach. The integration through the

NR/SD integration models fall in this category.

There are several studies along the line of the hybrid approach relat-

21

ing to structured documents and databases [ACM93] [ACM95] [BCK+94]

[CACS94] [CST92] [SDKR+95] [VAB96] [YA94]. Abiteboul and others

[ACM93] [ACM95] proposed the notion of structuring schema which spec-

i�es how data contained in text should be incorporated into databases. At-

las [SDKR+95] represents document data in nested relations and provides

querying facilities. Christophides and others extended the object-oriented

data model of O2 to represent SGML DTDs [CACS94]. COINS [CST92],

Volz and others [VAB96], and Yan and others [YA94] all proposed schemes

to jointly use the DBMS and the IR system to manage structured docu-

ments. T/RDBMS [BCK+94] is similar to our approach in that it combines

the relational data model and the abstract data type representing structured

documents. In T/RDBMS, information inside structured documents can be

viewed as a prede�ned collection of relations and queried in the extended

SQL.

Features of the NR/SD integration models in the light of those studies

are as follows.

� The NR/SD integration models provide a framework for symmetrically

and dynamically amalgamating structured documents and databases.

The converters transform structured documents into relational struc-

tures and vice versa. Therefore, users can restructure existing docu-

ments based on nested relational algebra and create new documents

22

from relational structures.

� The converters enable incremental conversion between structured docu-

ments and nested relational structures. For example, given a collection

of documents with di�erent structures, we can extract common sub-

structures and represent them in nested relational structures, ignoring

detailed structures.

In particular, those studies provides no means of transforming relational

structures (or composite objects in the case of OODBs) into structured doc-

uments. This asymmetric bridge between the structured document world

and the relational database world prohibits us from utilizing the full power

of the relational data model for manipulating structured documents. For

example, we cannot apply the relational algebra to restructure structured

documents. The NR/SD integration models allow us to �rst transform struc-

tured documents into nested relational structures with the converters, then

to manipulate them with the nested relational algebra operators, and �nally

to transform the result data into structured documents again.

In short, NR/SD integration models are hybrid and symmetric data mod-

els. \Hybrid" means they combine nested relational structures and the ab-

stract data type for structured documents, and \Symmetric" means they

allow dynamic transformation between relational structures and structured

23

documents. Utilization of such hybrid and symmetric data models as pivot

data models is the most distinguishing point of the proposed information

integration system. With the above features, the NR/SD integration models

allow us to retrieve and/or restructure data stored in relational databases and

structured document repositories (and Web pages in the case of WebNR/SD).

Of course, the �nal result can be in the form of relations or structured doc-

uments (or Web pages).

WebNR/SD is the most extended version of the NR/SD integration mod-

els, and incorporates Web into the dynamic and symmetric integration world

of NR/SD integration models. It can be used for integrated querying and

restructuring of information residing in the Web, relational databases, and

structured document repositories. Since management of the Web information

and integration of heterogeneous information sources are hot topics, there are

a number of related works.

Infomaster [GKD97] provides integrated access to multiple distributed

heterogeneous information sources. STRUDEL [FFK+97] is a Web-site man-

agement system which constructs Web pages from underlying information

sources. They are similar to WebNR/SD in that they can create Web pages

based on di�erent information sources including Web pages, and that they

use wrappers to translate information sources into common data representa-

tions. Infomaster uses extensions of predicates, and STRUDEL uses OEM

24

as pivot data representations. Since they use abstract pivot data represen-

tations such as logical predicates and OEM, the same discussion as that for

the �rst approach can be applied to them. WebNR/SD is more dedicated

to integration of the Web, relational databases, and structured document

repositories, and the translation overhead is far smaller.

There are a number of academic works and commercial implementations

in which Web pages are used as the interface to databases [Kra97] [NS96].

There, new Web pages are constructed on the
y to show query results. Tech-

niques such as the CGI and dedicated Web servers are also included in this

category. These approaches are very weak in providing common data models

for data integration. Thus, it is often the case that, except for querying re-

lational databases and specifying HTML-based query results, users have to

write application programs from scratch.

Functions of WebNR/SD include querying of the Web. Recently, a num-

ber of languages to query the Web have emerged, although they are not in-

tended for amalgamating the Web and databases. Their queries can be based

on hyper-text link structures and/or pages' contents. However, their capa-

bilities of exploiting pages' inner structures are generally much restricted.

W3QL [KS95] and WebSQL [MMM96] are SQL-like query languages, and

RAW [FWM97] is an extension of the relational algebra. They are dedicated

to querying and provide no way to restructure Web pages. WebLog [LSS96] is

25

a logic-based language which enable us to query and restructure Web pages,

exploiting various extensible built-in predicates. However, WebLog deals

with Web pages at rather abstract level. A page in WebLog is de�ned as a

set of rel-infons, each of which is a group of related information appearing in

the page. Mapping between WebLog pages and actual Web pages is outside

the scope of WebLog and has to be done by users. Instead, WebNR/SD di-

rectly manipulates internal page structures when querying and restructuring

Web pages, and query expressions decide complete internal page structures.

Computational characteristics of Web queries are studied in [AV97] and

[MM97].

The NR/SD integration models utilize as the basis the nested relational

structures. Relaxing the �rst normal form assumption of Codd's relational

data model [Cod70] was suggested by Makinouchi [Mak77] in 1977. Later,

operators including NEST and UNNEST were studied by some researchers.

Work by Jaeschke and Schek [JS82] is one of them. Up to now, a lot of studies

on nested relational models and nested relational algebras have been done by

many researchers [AB84] [AB86] [AFS89] [Col89] [Col90] [FT83] [FSTG85]

[GF88] [GG88] [Guc87] [KK89]. Formalism to de�ne the NR/SD integration

models is based on the model in [TF86]. The reason the nested relational

structures are utilized as the basis is that (1) they have primitive constructs

to represent logical structures embedded in structured documents, and (2)

26

they suit well to the widely-used relational database structures as natural

extensions of relations. For example, J�arvelin and Niemi [JN95] use nested

relational structures as a basic modeling framework of structured documents,

although they are not supposed to work for integration of structured docu-

ments and databases.

Integration based on object-oriented models is also another promising

approach [PBE95] [RAH+96] [RS97]. Although object-oriented models are

powerful and practically useful frameworks, they are too rich to be used as

a formal basis for discussion on the above mentioned symmetric, dynamic,

and incremental data transformation. When we focus on structural aspects

of object-oriented models such as complex objects, many concepts in the

NR/SD integration models could be applied to object-oriented models.

Also, from broader point of view, there is an approach which realizes

instance-based integration of structured documents and databases. For ex-

ample, Yoshikawa and others' approach [YIU96] is to provide a general

mechanism to make reference links from components of SGML documents

to database objects.

27

3.3 Query Processing and Optimization

Although a lot of works have been done on query processing in distributed

database and multidatabase environments [DKS92] [EP90] [HBP94], there

is little work dedicated to query processing involving structured documents

and databases. Abiteboul and others [ACM93] proposed a grammar-based

approach to incorporate text data into the object-oriented database. They

presented an optimization technique to push down selections and projections

so that they could be executed in the text parser. Volz and others [VAB96]

outlined query processing in environments where structured documents are

cooperatively managed by the OODBMS and the IR system. They mainly

discussed dynamic derivation of relevance values of text data which is not

actually stored in the IR system. Yan and others [YA94] discussed query

processing issues which occur when the external function capability of the

OODBMS is used for incorporating the functionality of the IR system.

The query processing issues discussed in the previous works are di�er-

ent from ours in the following points. (1) The query processing issues are

discussed in asymmetric systems such that a database system acts in the

front end of the system. (2) They provide no means of delayed transfer of

structured documents.

28

Although utilization of indexes and query processing cost estimation are

not discussed in this dissertation, these issues in the context of integration

of heterogeneous information sources raise challenging new problems. There

are a number of works relevant to these issues. Index scheme for retrieval of

structured documents are studied in [CM94] and [SDAMZ94]. Optimization

schemes for queries including ADT functions, and cost analysis are studied

in [HN96], [HS93] and [YKY+91].

3.4 Visual User Interfaces

The important features of the visual user interface of the integration system

are that it models integration activity as combinations of the di�erent two

processes, target discovery and data operation, and that it provides them

with di�erent visual and interactive supporting tools. Although the two

processes (and their supporting tools) are amalgamated in the user interface,

they are essentially di�erent in their purposes. Therefore, the two supporting

tools di�ers in their focuses. This section describes related works relevant to

each of the two supporting tools.

As the tool for target discovery, the user interface provides interactive

information exploration facility which combines browsing and querying of

both metadata and data. PESTO [CHMW96] is a graphical user inter-

29

face which provides seamless combinations of browsing and querying of

data instance. VQL[MK93] is a visual query language which can query

against not only data instance but also metadata. OPOSSUM [HIL95] is

a schema management system which o�ers schema visualization and explo-

ration. DataGuides [GW97] serves as dynamic schemas, generated from the

semistructured databases. Browsing database structure (metadata) is one of

applications of DataGuides. All the above works can be considered to provide

only particular combinations of browsing and querying of both metadata and

data.

As the tool for data operation, the user interface provides a visual data

manipulation language named HQBE for restructuring of data objects whose

structures are heterogeneous and complicated. HQBE is based on QBE

[Zlo77]. Discussion about the expressive power of QBE is given in [�OW89].

STBE [�OM�O89] and VISUAL [BSOO96] are visual query languages which

can construct new nesting structures as the query result structures. These

languages require all the target data objects for a query to have exactly the

same data structure. In contrast, HQBE allows target data objects to have

di�erent data structures as long as they have some common structures es-

sential for the data manipulations. Moreover, it is also a unique point that

the data manipulation result of HQBE can have various data representations

such as structured documents, Web, and relations, to suit purposes.

30

Chapter 4

An Information Integration

System

4.1 Overview

This chapter shows basic architecture of the proposed information integration

system. In this chapter, WebNR/SD is used to illustrate the role of the

NR/SD integration models. The same discussion can be applied to the other

models, NR/SD and NR/SD+, except that these models do not deal with

Web.

31

4.2 Architecture

One of the promising approaches to integrate heterogeneous information

sources is to use software modules or agents called mediators and wrap-

pers [PGMW95] [PGMW96] [Wie92]. The information integration system

in the dissertation follows this approach to attain integration of structured

document repositories, the Web, and relational databases (Figure 4.1).

The mediator acts as a coordinator, and �rst it dispatches wrappers to

information sources1. Wrappers for relational databases and document repos-

itories communicate with local information sources directly, while the wrap-

per for the Web communicates with a number of Web servers to get Web

pages. Wrappers provide the mediator with schema information on local

information sources. In particular, wrappers for the Web and structured

document repositories construct relational views over them. The mediator

provides the visual user interface module with an integrated schema on those

information sources. After the mediator gets the user's request from the user

interface module, it analyzes the request, decomposes it into local processing

requests, and sends them to wrappers. Each wrapper issues local commands

to the local information source. Local commands may be simple requests to

get particular data items such as Web page fetches, or complicated queries

1In this context, we do not assume that wrappers always reside at local information
sources as in TSIMMIS [PGMW95].

32

which utilize querying capability of local information sources, such as SQL

commands. The wrapper receives the intermediate result, translates it into

WebNR/SD data representation, and sends it back to the mediator. Finally,

the mediator collects data from the wrappers and produces the �nal result,

which is returned to the user interface module.

33

Wrapper Wrapper

Mediator

Visual User
Interface

Wrapper

Web RDBDocument
Repository

(3)Request based on
 Integrated Schema

WebNR/SD

(1) WebNR/SD
 Representation
 of Schema Info.
 on Sources

(4) Local Requests
 to Info. Sources

(2) Integrated
 Schema

(5)Partial
 Results

(6)Final Result

Figure 4.1: Integration environment

34

Chapter 5

Data Models

5.1 Overview

The integration system �rst transforms information sources into a pivot data

model, and then manipulates them at the uniform representation level. For

this purpose, three versions of pivot data models | NR/SD, NR/SD+, and

WebNR/SD | were developed. NR/SD and NR/SD+ were designed for

integration of structured document repositories and relational databases.

WebNR/SD was designed to incorporate the Web as an information source

into the integration framework in addition to the two types of information

sources. In this chapter, �rst, the common basic features of the NR/SD inte-

gration models are described. Then, each model is more precisely explained.

35

5.2 Basic Concepts

The NR/SD integration models are hybrid data models which combine nested

relational structures and abstract data type concept. More precisely, they

introduce an abstract data type for structured documents (named SD type)

into nested relational structures. The NR/SD integration models treat raw

structured documents as atomic values of SD type. They provide the nested

relational algebra operators, and a number of functions associated with SD

type to retrieve text elements contained in structured documents. In addi-

tion, they achieve symmetric integration through operators named convert-

ers. The converters dynamically transform nested relational structures into

structured documents and vice versa.

In this section, �rst, the data structures of the NR/SD integration models

are de�ned. Then, the concept of converters are explained.

5.2.1 NR/SD Data Structures

The nested relational structures of the NR/SD integration models are de-

�ned here following the formalism of Fischer and Thomas [FT83] [TF86]. A

relation scheme S is a set of rules of the form Ai = (Ai
1; : : : ; A

i
n). An example

36

of relation scheme T is as follows.

T = fA = (B;C;D); D = (E;F)g

T has two rules. A;B; : : : ; F are called attributes. We call attributes which

appear on the left side of some rules, namely A andD, higher-order attributes,

and the others, namely B, C, E, and F , zero-order attributes. Let ES denote

the set of attributes in S, namely ET = fA;B;C;D;E; Fg. Each attribute

can appear at most once on the right side of some rule and also on the left

side of another rule. S must have just one external attribute, denoted by RS,

which appears only on the left side of some rule, namely RT = A.

Instances are de�ned for each attribute. If Ai is a zero-order attribute, an

instance of Ai is a value from the set dom(Ai), called the domain of Ai. As

de�ned in Subsection 5.2.2, dom(Ai) can be the structured document type as

well as ordinary primitive data types such as Integer and String. Values of

the structured document type are called SD values, and values in the other

domains are called ordinary values. If Ai is a higher-order attribute and

Ai = (Ai
1; A

i
2; : : : ; A

i
n), then an instance of Ai is a set of tuples such that

each component of a tuple is an instance of Ai
j. Instances of higher-order

attributes are called composite values.

37

A
D

B C
E F

<table><dep> 1 : : :
abc

Department: : : 2 : : :
3 : : :

def : : :
4 : : :

Figure 5.1: Relation hT; r0i

The relation hS; ri is a pair of the relation scheme S and an instance

r of RS. Figure 5.1 shows relation hT; r0i in tabular form. Here, dom(B)

is String, dom(E) is Integer, and dom(C) and dom(F) are the structured

document type de�ned in Subsection 5.2.2. Often we refer to the relation

simply by its instance r when there is no ambiguity.

5.2.2 SD Type

SD type is an abstract data type to handle structured documents. A value

of the structured document type (or SD type) is a pair of a DTD (Document

Type De�nition) and text in which tags are embedded according to the DTD.

We call a value of SD type an SD value.

Figure 5.2 shows the example SD value corresponding to the XML docu-

ment in Figure 2.1. The DTD is in the upper box. Inside the lower box is the

38

tagged text. Repetition, sequence, optional, hypertext link structures, and

#PCDATA in Figure 2.1 is represented as rep, seq, opt, hlink, and text

in Figure 5.2, respectively. If the de�nition of an element type is omitted

as one of \para," the element type is considered to have such a de�nition as

\para=text." It is important that all SD values belong to the same domain

even if they have di�erent DTDs.

Although all the NR/SD integration models deal with SD type, permit-

ted element structures in the DTD vary among those models. The element

structures in NR/SD are restricted to seq, rep, or, and recursive struc-

tures. NR/SD+ allows all the element structures which appear in SGML

documents. WebNR/SD augments the element structures in NR/SD+ by a

special element structure named hlink structure to represent hypertext links

between Web pages.

From now on, linear representation of DTDs is used for notational conve-

nience. For example, DTD f a=seq(b,c), b=rep(d), d=seq(e,f), c:=or(g,h)

g is represented as \a: seq(b: rep(d: seq(e,f)), c: or(g,h))."

Note that linear representation of DTDs has several restrictions in ex-

pressiveness. For example, it allows no recursive structure. However, the

following discussions can be applied to SD values having general DTDs.

39

Functions Associated with SD Type

SD type has a number of associated functions. They are based on the region

algebra [Bur91] [CCB95] [CM95], and are used to retrieve elements contained

in SD values. In addition to ordinary text retrieval, they facilitate element

retrieval which depends on document structures and information embedded

in tags.

A region is a contiguous part of text. In this context, we only consider

regions which correspond to elements. The region algebra is a set-at-a-time

algebra. An expression e of the region algebra is generated by the following

rule:

e! Rije [eje \ eje� e
je � eje � eje < eje > ej�[w](e)j(e)

where Ri is a generic identi�er (e.g. \para"), \A," or \I." If Ri is a generic

identi�er, the region algebra expression \Ri" returns the set of elements

whose generic identi�ers are Ri. If Ri is \A," it returns the set of all elements

which appear in the tagged text. If Ri is \I," it returns a singleton set which

contains one element corresponding to the whole tagged text. Union ([),

intersection (\), di�erence (�) are ordinary set operators. The including

(�), included (�), follows (>), and precedes (<) operators are de�ned as

40

follows:

R � S = fr 2 R : 9s 2 S; r � sg

R � S = fr 2 R : 9s 2 S; r � sg

R > S = fr 2 R : 9s 2 S; r > sg

R < S = fr 2 R : 9s 2 S; r < sg

where r � s holds when element r strictly includes element s, r > s holds

when r follows s (i.e. the begin position of r is after the end position of s),

and r � s and r < s are de�ned in a similar way. The selection (�) operator

selects elements which include occurrences of the word \w."

For example, for the tagged text \<c> <a> w1 w2 w3

 w4 w1 w1 w5 </c>", the region algebra expression

\a" returns the set of elements f\<a> w1 w2 w3 w4

w1 "g, \b" returns f\ w1 w2 ," \ w3 ," \ w4 w1

," \ w1 w5 "g, \A" returns f \ w1 w2 ," \ w3 ,"

\ w4 w1 ," \ w1 w5 , " \<a> w1 w2 w3

w4 w1 ," \<c> <a> w1 w2 w3 w4 w1

41

 w1 w5 </c>"g, \I" returns f\<c> <a> w1 w2 w3

 w4 w1 w1 w5 </c>"g, and \�[\w1"](b) � a"

returns f\ w1 w2 ," \ w4 w1 " g.

Text retrieval functions associated with SD type are de�ned as they return

only outer-most elements in the results of region algebra expressions. For

example, although the results of \�[\w1"](A)" is f \ w1 w2 ," \

w4 w1 ," \ w1 w5 , " \<a> w1 w2 w3 w4

w1 ," \<c> <a> w1 w2 w3 w4 w1

 w1 w5 </c>"g, the corresponding text retrieval function returns

f\<c> <a> w1 w2 w3 w4 w1 w1 w5

</c>"g since the element contains all the other elements in the result of the

expression.

5.2.3 Converters

The NR/SD integration models have operators named converters. Converters

realize dynamic, bidirectional, and partial transformation between SD values

and nested relational structures. First, \dynamic transformation" means

that the transformation is performed dynamically, when converters are ap-

plied. The NR/SD integration models do not statically map text elements in

structured documents to nested relational structures. Second, \bidirectional

42

memo = seq(prolog, body)
prolog = seq(from, to)
from = seq(name, opt(homepage))
to = or(faxno, email)
body = rep(or(para,list))
list = rep(item)
item = or(para, list)
homepage = hlink
<memo>

<prolog>

<from>

<name>Lee</name>

<homepage href="http://...xml">homepage</homepage>

</from>

<to><faxno>0298-12-3456</faxno></to>

<prolog>

<body>

<para> ... </para> ...

<list><item>...</item><item><list>...</list></item></list>

</body>

</memo>

Figure 5.2: Sample SD value

43

transformation" means that the transformation is performed not only from

SD values to nested relational structures, but from nested relational struc-

tures to SD values. Finally, \partial transformation" means that the target

of transformation can be some part of data structure. For example, in Figure

5.3, converters transform the data structure only under attribute C. There-

fore, some parts of data can be represented as nested relational structures,

and the other parts as SD values. This allows us to control to what degree

data structure appears in the nested relational schema. Namely, the only

nested relational structures are visible in the schema of nested relations, and

document structures are embedded inside SD values, and invisible from the

schema of nested relations.

The combination of converters and the other operators allows us the data

manipulations which use advantages of both nested relational structures and

structured documents as follows.

1. By transforming SD values into nested relational structures, the nested

relational algebra operators can be used to manipulate structured doc-

uments. Manipulations of a set of documents and data restructuring

are possible.

2. By transforming nested relational structures into SD values, text re-

trieval functions can be used to retrieve information from nested rela-

44

A

B C D

abc

def

1

2

<title>On the ...
<author>H. K..

<title>Integrated ..
<author>A. M..

A

B
C

D
Title Author

abc

def

1

2

...

... ...
...

...

...
...
...

Data Structure

A

B C D

A

B C D

Title Author

} {}SD

Visible
in Schema

Embedded
and Invisible

Transformation by Converters

Figure 5.3: Concept of converters

45

tional structures.

3. The NR/SD integration models allow uniform operations of structurally

heterogeneous objects. As mentioned before, the data structure only

of nested relations is visible in the nested relational schema, and that

of SD values is invisible. Therefore, structurally heterogeneous objects

could have the same nested relational schema, with the common struc-

ture appearing in the schema, and the other structure embedded in SD

values.

5.3 NR/SD

NR/SD [MK97a] [MK97b] is the initial version of the NR/SD integration

models. The design principle of converters in NR/SD is to give mapping rules

between data constructs in nested relational structures and element struc-

tures in structured documents. As mentioned before, the elements structures

in NR/SD are restricted to seq, rep, or, and recursive structures.

46

5.3.1 Converters

Converters of NR/SD are Rep-unpack, Seq-unpack, Rep-pack, Seq-pack, Or-

append, and Or-remove. The converters transform SD values into nested rela-

tional structures and vice versa. XX-unpacks extract the top-level structures

embedded in SD values and represent them in the nested relational struc-

tures. XX-packs attain the conversions in the opposite direction. Or-append

and Or-remove are mainly used to make some preparations for XX-unpacks

and XX-packs.

Rep-unpack

Rep-unpack (RU) takes a relation containing SD values, and extracts the

repetition (rep) structures at their roots. For example, relation r1 (Figure

5.4) is transformed into relation r2 (Figure 5.4) by the following Rep-unpack:

r2 := RUB:(C;D);E(r1):

De�nition 1. Let hS; ri be a relation. Assume that S has the rule RS =

(A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, and 8t 2 r9g; d; c(t[Ai] =

47

hg : rep(d); ci). Then, RU Ai:(O;B);G(hS; ri) = hS 0; r0i, where B, O and G are

new attributes,

S 0 = (S � fRS = (A1; : : : ; Am)g)
[fRS = (A1; : : : ; Am; G); Ai = (O;B)g;

r0 = ftj9u 2 r;9g; d; c; n(u[Ai] = hg : rep(d); ci
^n = #sub-el(c) ^ t = u except t[G] = g and
t[Ai] = f(1; hd; sub-el(c; 1)i); : : : ;

(n; hd; sub-el(c; n)i)g)g;

#sub-el(c) is the number of the direct sub-elements of c, and sub-el(c, i) is

the i-th direct sub-element of c. 2

Seq-unpack

Seq-unpack (SU) takes a relation containing SD values and extracts the se-

quence (seq) structures at their roots. For example, relation r3 (Figure 5.5)

is transformed into relation r4 (Figure 5.5) by the following Seq-unpack:

r4 := SUB=(C;D);E(r3):

De�nition 2. Let hS; ri be relation. Assume that S has the rule

RS = (A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, and

9k8t 2 r9g; d1; : : : ; dk; c(t[Ai] = hg : seq(d1; : : : ; dk); ci). Then,

48

r1:
A B

1

h a:rep(b:or(c:seq(d,e),f)) ,
\<a><c><d>T1</d><e>T2</e></c>

<f>T3</f>

<c><d>T4</d><e>T5</e></c>"i

2
h g:rep(h:seq(i,j,k)) ,
\<g><h><i>T6</i><j>T7</j><k>T8</k></h>

<h><i>T9</i><j>T10</j><k>T11</k></h></g>"i

r2:
B

A
C D

E

1
h b:or(c:seq(d,e),f) ,

\<c><d>T1</d><e>T2</e></c>"i
2 h b:or(c:seq(d,e),f) , \<f>T3</f>"i

1
3

h b:or(c:seq(d,e),f) ,
\<c><d>T4</d><e>T5</e></c>"i

a

1
h h:seq(i,j,k) ,

\<h><i>T6</i><j>T7</j><k>T8</k></h>"i
2

2
h h:seq(i,j,k) ,
\<h><i>T9</i><j>T10</j><k>T11</k></h>"i

g

Figure 5.4: Examples of Rep-unpack and Rep-pack

SUAi=(B1;:::;Bk);G(hS; ri) = hS 0; r0i, where B1; : : : ; Bk and G are new at-

tributes,

S 0 = (S � fRS = (A1; : : : ; Am)g)
[fRS = (A1; : : : ; Ai�1; B1; : : : ; Bk; Ai+1; : : : ; Am; G)g;

and

49

r3:
A B

1
h a:seq(b:rep(c),d:seq(e,f)),

\<a><c>T1</c><c>T2</c>
<d><e>T3</e><f>T4</f></d>"i

2
h g:seq(h:or(i,j),k:rep(l)),

\<g><h><j>T5</j></h>
<k><l>T6</l><l>T7</l></k></g>"i

r4:
A C D E

1
h b:rep(c) ,
\<c>T1</c>

<c>T2</c>"i

h d:seq(e,f) ,
\<d><e>T3</e>

<f>T4</f></d>"i

a

2
h h:or(i, j) ,
\<h><j>T5</j></h>"i

h k:rep(l) ,
\<k><l>T6</l>

<l>T7</l></k>"i

g

Figure 5.5: Examples of Seq-unpack and Seq-pack

r0 = ftj9u 2 r;9g; d1; : : : ; dk; c(
u[Ai] = hg : seq(d1; : : : ; dk); ci ^ t[G] = g
^t[A1; : : : ; Ai�1; Ai+1; : : : ; Am]

= u[A1; : : : ; Ai�1; Ai+1; : : : ; Am]
^1 � 8l � k(t[Bl] = hdl; sub-el(c; l)i))g: 2

Rep-pack

Rep-pack (RP) takes a relation containing SD values, and embeds sub-

relation structures into SD values as repetition (rep) structures. For ex-

50

ample, relation r2 (Figure 5.4) is transformed into relation r1 (Figure 5.4) by

the following Rep-pack:

r1 := RPB(r2):

De�nition 3. Let hS; ri be a relation. Assume that S has the rules

RS = (A1; : : : ; Am; G) and Ai = (O;B), dom(B) = SD, � is a total or-

der relation over dom(O), and 8t 2 r9d8v 2 t[Ai]9c(v[B] = hd; ci). Then,

RPAi
(hS; ri) = hS 0; r0i , where

S 0 = (S � fRS = (A1; : : : ; Am; G); Ai = (O;B)g)
[fRS = (A1; : : : ; Am)g;

r0 = ftj9u 2 r;9g; d; i1; : : : ; in; c1; : : : ; cn(
u[G] = g ^ u[Ai] = f(i1; hd; c1i); : : : ; (in; hd; cni)g
^i1 � : : : � in ^ t = u except
t[Ai] = hg : rep(d); add tag(concat(c1; : : : ; cn); g)i)g;

concat(c1; : : : ; cn) is the concatenation of the tagged texts c1; : : : ; cn, and

add tag([tagged text], g) is the tagged text \<g>[tagged text]</g>." For ex-

ample, add tag(\T1", a) is \<a>T1." 2

In the above de�nition, the generic identi�er g is given by the correspond-

ing value of attribute G. We can explicitly specify the generic identi�er g as

a parameter instead of specifying attribute G. In this case, the expression

would be RPB;g(r2), where g is a given generic identi�er. We omit the formal

51

de�nition of this version of Rep pack.

Seq-pack

Seq-pack (SP) takes a relation containing SD values, and embeds attribute

sub-sequences into SD values as sequence (seq) structures. For example,

relation r4 (Figure 5.5) is transformed into relation r3 (Figure 5.5) by the

following Seq-pack:

r3 := SPB=(C;D)(r4):

De�nition 4. Let hS; ri be a relation. Assume that S has the rule RS =

(A1; : : : ; Am; G), and dom(Ai) = SD; : : : ; dom(Aj) = SD for some 1 � i �

j � m. Then, SPB=(Ai;:::;Aj)(hS; ri) = hS 0; r0i, where B is a new attribute,

S 0 = (S � fRS = (A1; : : : ; Am; G)g)
[fRS = (A1; : : : ; Ai�1; B;Aj+1; : : : ; Am)g;

and

52

r0 = ftj9u 2 r;9g; di; : : : ; dj; ci; : : : ; cj(
u[G] = g ^ u[Ai] = hdi; cii^; : : : ;^u[Aj] = hdj; cji
^t[A1; : : : ; Ai�1; Ai+1; : : : ; Am] =

u[A1; : : : ; Ai�1; Ai+1; : : : ; Am]
^t[B] =
hg : seq(di; : : : ; dj); add tag(concat(ci; : : : ; cj); g)i)g: 2

As in Rep-pack, the generic identi�er g can be explicitly speci�ed as a

parameter to Seq-pack.

Or-remove

Or-remove (OR) takes a relation containing SD values, and removes the top

\or" (or) structures at their roots. This operator can be used to prepare for

further applications of Rep-unpack and Seq-unpack operators, which require

the root structure of target SD values to be repetition (rep) or sequence

(seq). For example, the following Or-remove transforms relation r5 (Figure

5.6) into relation r6 (Figure 5.6), to which we can apply Seq-unpack:

r6 := ORB;C(r5):

De�nition 5. Let hS; ri be a relation. Assume that S has the rule

RS = (A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, and 8t 2

53

r5:
A B

1
h a:or(b:seq(c:rep(d),e), f:seq(g,h)), \<a>
<c><d>T1</d><d>T2</d></c><e>T2</e>"i

2
h i:or(f:seq(g,h), j:seq(k,l:or(m,n))) ,

\<i><j><k>T3</k><l><m>T4</m></l></j></i>"i

3
h o:or(p:seq(q,r), f:seq(g,h)),

\<o><p><q>T5</q><r>T6</r></p></o>"i

r6:
A B C

1
h b:seq(c:rep(d),e) ,
\<c><d>T1</d><d>T2</d></c><e>T2</e>"i

a

2
h j:seq(k,l:or(m,n)) ,

\<j><k>T3</k><l><m>T4</m></l></j>"i
i

3 h p:seq(q,r) , \<p><q>T5</q><r>T6</r></p>"i o

Figure 5.6: Example of Or-remove

r9g; d1; : : : ; dk; c(t[Ai] = hg : or(d1; : : : ; dk); ci). Then, OR Ai;G (hS; ri) =

hS0; r0i , where G is a new attribute,

S 0 = (S � fRS = (A1; : : : ; Am)g)
[fRS = (A1; : : : ; Am; G)g;

and

r0 = ftj9u 2 r;9g; g1; : : : ; gk; d1; : : : ; dk; c(
u[Ai] = hg : or(g1 : d1; : : : ; gk : dk); ci
^c = \<g><gi>: : :</gi></g>" ^ t = u except
t[G] = g and t[Ai] = hgi : di; sub-el(c; 1)i)g: 2

54

Or-append

Or-append (OA) takes a relation containing SD values, and add the \or"

(or) structures at their roots. This operator can be used to prepare for

Rep-pack operator, which requires the target SD value set to have the same

element type at their roots. For example, we cannot directly apply Rep-pack

to relation r7 (Figure 5.7). However, the following Or-append yields relation

r8 (Figure 5.7), to which we can apply Rep-pack:

r8 := OAD(r7):

De�nition 6. Let hS; ri be a relation. Assume that S has the rules RS =

(A1; : : : ; Am; G) and Ai = (B1; : : : ; Bn), and dom(Bj) = SD for some 1 �

j � n. Then, OABj (hS; ri) = hS 0; r0i, where

S 0 = (S � fRS = (A1; : : : ; Am; G)g)
[fRS = (A1; : : : ; Am)g

and

55

r7:
B

A
C D

E

1 h c:seq(d,e), \<c><d>T1</d><e>T2</e></c>"i
2 h f:or(g,h), \<f><g>T3</g></f>"i1
3 h c:seq(d,e), \<c><d>T4</d><e>T5</e></c>"i

b

1 h j:rep(k), \<j><k>T6</k><k>T7</k></j>"i
2

2 h l:seq(m,n), \<l><m>T8</m><n>T9</n></l>"i
i

r8:
B

A
C D

1
h b:or(c:seq(d,e), f:or(g,h)),

\<c><d>T1</d><e>T2</e></c>"i

2
h b:or(c:seq(d,e), f:or(g,h)),

\<f><g>T3</g></f>"i1

3
h b:or(c:seq(d,e), f:or(g,h)),

\<c><d>T4</d><e>T5</e></c>"i

1
h i:or(j:rep(k), l:seq(m,n)),

\<i><j><k>T6</k><k>T7</k></j></i>"i
2

2
h i:or(j:rep(k), l:seq(m,n)),

\<i><l><m>T8</m><n>T9</n></l></i>"i

Figure 5.7: Example of Or-append

r0 = ftj9u 2 r;9g; d; d1; : : : ; dk(u[G] = g
^d = g : or(d1; : : : ; dk)
^fd1; : : : ; dkg = fd0j9w 2 u[Ai];9c(w[Bj] = hd0; ci)g
^t = u except t[Ai] =
fvj9w 2 u[Ai];9d

0; c(w[Bj] = hd0; ci
^v = w except v[Bj] = hd; add tag(c; g)i)g)g: 2

As in Rep-pack, the generic identi�er g can be explicitly speci�ed as a

parameter to Or-append.

56

5.3.2 NR/SD Algebra

NR/SD algebra consists of the converters, nested relational algebra opera-

tors, Rename operator [Mai83], Apply operator, and Domain translator, as

primitive operators.

Nested Relational Algebra Operators

NR/SD algebra contains operators in Figure 5.8. Selection takes selection

condition p for selecting tuples. In NR/SD, applicability of some converters

depends on the DTD structures of SD values. For this reason, Selection here

is extended to be able to select tuples based on equality of DTDs of SD values

in tuples. For example, Selection �DTD(B)=a:or(b;c)(r1) selects tuples whose

DTDs of attribute B (dom(B) = SD) values are a : or(b; c).

Apply operator

NR/SD provides the Apply operator (denoted by �) to extract elements from

SD values contained in relations. Region algebra expressions are used to

give the extraction speci�cation. Suppose that r is a relation which has

57

an SD type attribute attr1, expr is a region algebra expression, and attr2

is a new attribute name. Then, �attr1;expr;attr2(r) adds the new attribute

attr2 to the original relation r. The attribute attr2 stores the SD values

which are returned as the result of applying the region algebra expression

expr to the SD value in the attribute attr1. For example, if expr is given as

\�[\w1"](b) � a," and the attr1 value of a target tuple is h c:seq(a:rep(b),b),

\<c> <a> w1 w2 w3 w4 w1 w1 w5

</c>" i, then the new attr2 value is f hb, \ w1 w2 "i, h b, \ w4

w1 "ig.

Domain Translators

In the manipulation of data in structured documents and relational

databases, it is sometimes necessary to translate ordinary values such as

integers and strings into primitive SD values (namely, SD values which have

only one start tag and end tag.) and vice versa. For example, we need to

translate a string \abc" into an SD value hg; \<g>abc</g>"i and an integer 1

into hg; \<g>1</g>"i. Domain translator
Attr;type(r) changes the domain of

attribute Attr into type. When type is SD type, a generic identi�er must be

also speci�ed. For example,
A;SD(para)(r) changes the domain of attribute

A into SD type and value \v" in the attribute A into SD value h para, \

<para>v</para> "i.

58

Composite Operators

In addition to the above primitive operators, composite operators are de-

�ned as their combinations. Join operator 1p is among them. Here, ex-

tended selection operator is de�ned as composite operators. It selects tuples

whose SD values satisfy the given selection condition. The selection condi-

tion is speci�ed by a region algebra expression expr. The extended selection

��(attr;expr)(r) is de�ned as a composite operator �:A(�A6=�(�attr;expr;A(r))),

where :A denotes all attributes in r other than A. The pseudo predicate

�(attr; expr) holds if expr returns a non-empty set of SD values for the SD

value in attribute attr.

For example, let r be a unary relation with attribute A and contains the

set of SD values f h a:rep(b:or(c, d)), \<a> <c> w1 </c> " i,

h a:rep(b:or(c, d)), \<a> <d> w2 </d> " ig. Then, ��(A;b�c)(r)

returns the singleton set of an SD value f h a:rep(b:or(c, d)), \<a> <c>

w1 </c> " ig.

5.3.3 Basic Properties of Converters

The main concern about the converters is whether the original structures

changed by a converter can be recovered again by other converters. The

59

Selection �p(r)
Projection �Ai1;:::;Aim

(r)
Cartesian product r1 � r2
Nest �A=(B1;:::;Bm)(r)
Unnest �A(r)
Union r1 [r2
Di�erence r1 � r2

Figure 5.8: Nested relational algebra operators

following propositions show basic properties of converters. The proofs are

omitted because they can be derived from the de�nitions of the converters

without di�culty.

Propositions 1 and 2 assure that XX-packs are reversible with XX-

unpacks. Proposition 3 assures that Or-append is reversible with Or-remove.

Proposition 1. Let hS; ri be a relation. Assume that S has the rules

RS = (A1; : : : ; Am; G) and Ai = (O;B), dom(B) = SD, and 8t 2 r9d8v 2

t[Ai]9c(v[B] = hd; ci). Then,

RUAi:(O;B);G(RPAi(hS; ri)) = hS; ri: 2

Proposition 2. Let hS; ri be a relation. Assume that S has the rule RS =

(A1; : : : ; Am; G), dom(Ai) = SD; : : : ; dom(Aj) = SD for some 1 � i � j �

60

m, and B is a new attribute. Then,

SUB=(Ai;:::;Aj);G(SPB=(Ai;:::;Aj)(hS; ri)) = hS; ri: 2

Proposition 3. Let hS; ri be a relation. Assume that S has the rules

RS = (A1; : : : ; Am; G) and Ai = (B1; : : : ; Bn), and dom(Bj) = SD for some

1 � j � n. Then,

�A1;:::;Am;G(�Ai=(B1;:::;Bn)(ORBj ;G(�Ai
(�Ai

(
OABj (hS; ri)))))) = hS; ri: 2

Propositions 4 and 5 assure that XX-unpacks are reversible with XX-

packs. However, Proposition 6 says Or-remove is not always reversible with

Or-append.

Proposition 4. Let hS; ri be a relation. Assume that S has the rule RS =

(A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, 8t 2 r9g; d; c(t[Ai] = hg :

rep(d); ci), and B, O, G are new attributes. Then,

RPAi(RUAi:(O;B);G(hS; ri)) = hS; ri: 2

61

Proposition 5. Let hS; ri be a relation. Assume that S has the rule

RS = (A1; A2; : : : ; Am), dom(Ai) = SD for some 1 � i � m, 9k8t 2

r9g; d1; : : : ; dk; c(t[Ai] = hg : seq(d1; : : : ; dk); ci), and B1; : : : ; Bk; G are new

attributes. Then,

SPAi=(B1;:::;Bk)(SUAi=(B1;:::;Bk);G(hS; ri)) = hS; ri: 2

Proposition 6. Let hS; ri be a relation. Assume that S has the rule RS =

(A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, and G is a new attribute.

Then,

�A(OAAi(�A=(A1;:::;Am)(ORAi;G(hS; ri)))) = hS; ri

does not always hold. 2

5.4 NR/SD+

Although NR/SD realizes dynamic transformation between structured doc-

uments and nested relational structures, it is weak in practical applications

for the following reasons.

62

(1) The design principle of converters in NR/SD is to give mapping rules be-

tween data constructors (such as set of tuples) in nested relational structures

and element structures (such as rep structure) in structured documents.

However, there are many possible mappings between element structures and

data constructors in nested relational structures. For example, there is no

reason why transformation between a seq element structure and a set of

tuples is prohibited. The design principle of converters is not suitable if we

want to make such transformations directly expressible. The reason is that

we will be overwhelmed by too many kinds of converters, since practical

structured documents such as SGML have a lot of element structures.

(2) When converters of NR/SD transform structured documents into nested

relational structures and vice versa, the values in nested relational structures

must correspond to the text elements at the second level of text element

hierarchy in structured documents. Therefore, if we want to embed nested

relational values into a deeper level of structured documents, or, if we want

to extract text elements at a deeper level of structured documents, we need

to apply converters and other operators to relations in a complicated way

according to DTDs.

In order to solve the problems, NR/SD+ [MK98] was developed.

NR/SD+ di�ers from NR/SD in the design of converters. It introduces dif-

ferent design principle of converters. The converters of NR/SD+ provide the

63

means of DTD-independent (instance-based) transformation of documents

and nested relational structures, according to user-speci�ed mapping rules.

When transformation of structured documents into nested relational struc-

tures is performed, the user uses instance-based text element speci�cation as

parameters of converters, to decide what elements are contained in the result

nested relational structures. In the opposite transformation, the user spec-

i�es template documents, named masters, into which the values in nested

relational structures are embedded. Utilization of the instance-based text el-

ement speci�cation and the masters contributes to overcoming the problems.

5.4.1 SD Type

Because converters of NR/SD+ perform DTD-independent transformation,

NR/SD+ allows SD type to have all the element types which appears in

SGML documents, without introducing many converters. For example, op-

tional structures and exception structures such as inclusion and exclusion are

permitted.

64

5.4.2 Converters

NR/SD+ has only two primitive converters: Unpack and Pack. The con-

verters transform SD values into nested relational structures and vice versa.

Unpack constructs sub-relation structures which store text elements origi-

nally contained in SD values. Unpack takes text element speci�cation, which

is based on the region algebra, as its parameter in order to specify which

elements of the SD values are to be contained in the result sub-relations.

Conversely, Pack constructs SD values from sub-relation structures contain-

ing text elements.

Unpack

Unpack (U) constructs sub-relation structures which store text elements orig-

inally contained in SD values. Figure 5.9 gives an example of Unpack, where

r10 := UB!C(O;D[�[0T10](c�(b[f))]) as x(r9):

This example constructs sub-relation structures for attribute C (with sub-

attributes O and D) in the result relation r10. Attribute D includes SD values

representing text elements which are extracted from SD values of attribute B

65

in r9, according to the text element speci�cation �[0T10](c � (b [f)). Thus,

SD values in attribute D represent such c-type text elements that they are

contained in text elements of type b or f and they contain the word \T1."

SD values in attribute B of relation r10 contain SD references, denoted

by \&x.n;." SD references refer to SD values stored in the sub-relation

structures. The header of SD reference (i.e. \x" in this example) is speci�ed

as a parameter of Unpack. In r10, we call SD values in attribute B master

SD values (or masters), and those in attribute D derivative SD values (or

derivatives) (Figure 5.10).

De�nition 7. Let hS; ri be a relation. Assume that S has the rule

RS = (A1; : : : ; Am), dom(Ai) = SD for some 1 � i � m, Then,

UAi!B(O;C[e]) as x(r) = hS0; r0i, where B, O and C are new attributes, x is

a string,

S 0 = (S � fRS = (A1; : : : ; Am)g)
[fRS = (A1; : : : ; Am; B); B = (O;C)g;

r0 = ftj9u 2 r;9d; c; n(u[Ai] = hd; ci
^n = #rl(c; e) ^ t = u except

t[Ai] = hd; c
rl(c;e)
SDref list(x;#rl(c;e))i

and t[B] = f(1; SD(hd; ci; rl(c; e); 1)); : : : ;
(n; SD(hd; ci; rl(c; e); n))g)g;

66

r9:
A B

h b:rep(c), \<c>T1 T2</c><c>T3 T4</c>
1

<c>T1 T5</c>" i
h a:seq(d:seq(c,c),b:rep(c)), \<a><d><c>T1</c>

2
<c>T2</c></d><c>T6</c><c>T1</c>" i

h e:seq(b:rep(c), f:seq(c,g)), \<e><c>T1</c><c>T4
3

T6</c><f><c>T7 T1</c><g>T3</g></f></e>" i

r10:
C

A B
O D

h b:rep(c),\&x.1; 1 h c, \<c>T1 T2</c>" i
1

\<c>T3 T4</c>&x.2;" i 2 h c, \<c>T1 T5</c>" i
h a:seq(d:seq(c,c),b:rep(c)),
\<a><d><c>T1</c><c>T2</c>
</d><c>T6</c>&x.1;

2

" i

1 h c, \<c>T1</c>" i

h e:seq(b:rep(c), f:seq(c,g)),
\<e>&x.1;<c>T4 T6</c>

1 h c, \<c>T1</c>" i

<f>&x.2;<g>T3</g></f>
3

</e>" i
2 h c, \<c>T7 T1</c>" i

Figure 5.9: Examples of Unpack and Pack

rl(c; e) is the region list which consists of the result regions of application

of region algebra expression e to tagged text c, #rl(c; e) is the length of

rl(c; e), SDref list(x; n) is a list of n SD references each having the header

x, [x:1; x:2; : : : ; x:n], c
[x1;:::;xp]
[y1;:::;yp]

is the result of replacement of xi in text c with

yi, and SD(v; l; i) is a SD value corresponding to the element which is the i

th element of region list l for SD value v. 2

67

master
derivative

SD reference

B
C

O D
A

derivative

derivative

Figure 5.10: Master and derivatives

Pack

Pack (P) constructs SD values from sub-relation structures containing text

elements. Figure 5.9 gives an example of Pack, too, where

r9 := PC(O;D) as x!B(r10):

This Pack restores original SD values in attribute B from sub-relations

in attribute C of r10 and masters in attribute B. The masters are used as

templates, and SD references are replaced with text elements in derivatives.

68

De�nition 8. Let hS; ri be a relation. Assume that S has the rules

RS = (A1; : : : ; Am) and dom(Ai) = SD, Aj = (O;B), dom(O) = Integer,

and dom(B) = SD. Then, PAj(O;B) as x!Ai(r) = hS0; r0i, where x is a string,

and

S 0 = (S � fRS = (A1; : : : ; Am); Aj = (O;B)g)
[fRS = (A1; : : : ; Aj�1; Aj+1; : : : ; Am)g;

r0 = ftj9u 2 r;9d; c; d1; c1; : : : ; dn; cn(u[Ai] = hd; ci
^u[Aj] = f(1; hd1; c1i); : : : ; (n; hdn; cni)g

^t = u except t[Ai] = hd; c
SDref list(x;n)
[c1;:::;cn]

i)g: 2

5.4.3 Master Constructors

Pack operator requires masters in constructing SD values from sub-relation

structures. Although masters could be created by Unpack, as shown above,

sometimes we need other masters in order to get SD values which have other

inner document structures. Also, if we want to construct SD values from

sub-relations which are not directly created by Unpack, it is necessary to

explicitly provide masters. Master constructors can be used to create mas-

ters which have DTDs and SD references consistent with existing deriva-

tives. Here, Sequence master constructor (SC), Repetition master construc-

tor (RC), and Or master constructor (OC) are explained. SC, RC, and OC

provide seq-structured masters, rep-structured masters, and or-structured

69

masters, respectively.

Figure 5.11 gives examples of SC and RC, where

r12 := SCC(O;D) as x;B;G(r11), and

r14 := RCC(O;D) as x;B;G(r13):

Figure 5.12 give example of OC, where

r16 := OCC(O;D) as x;B;G(r15):

In the above examples, attribute G serves to designate generic identi�ers

of the top text elements of new masters in attribute B.

5.4.4 NR/SD+ Algebra

NR/SD+ algebra includes converters, master constructors, ordinary nested

relational algebra operators, Domain translator, Numbering operator, and

70

r11:
C

A
O D

G

1 h a, \<a>T1" i
1 2 h b, \T2"i f

3 h c, \<c>T3</c>"i

r12:
C

A
O D

B

1 h a, \<a>T1" i
1 2 h b, \T2"i

3 h c, \<c>T3</c>"i

h f:seq(a,b,c),
\<f>&x.1;&x.2;&x.3;</f>"i

r13:
C

A
O D

G

1 h a, \<a>T1" i
1 2 h a, \<a>T2"i f

3 h a, \<a>T3"i

r14:
C

A
O D

B

1 h a, \<a>T1" i
1 2 h a, \<a>T2"i

3 h a, \<a>T3"i

h f:rep(a),
\<f>&x.1;&x.2;&x.3;</f>"i

Figure 5.11: Examples of master constructors SC and RC

71

r15:
C

A
O D

G

1 h a, \<a>T1" i
2 h b, \T2"i

1
3 h c, \<c>T3</c>"i

f

r16:
C

A
O D

B

1 h a, \<a>T1" i
2 h b, \T2"i

1
3 h c, \<c>T3</c>"i

h f:or(a,b,c), \<f>&x.1</f>"i

Figure 5.12: Example of master constructor OC

Tag extractor, as primitive operators. Note that Apply operator is not in-

cluded as primitive operators. It can be de�ned as a composite operator

combining Unpack and other operators.

Numbering Operator

Numbering Operator oC(O;D);�(r) adds a new attribute O to relations in at-

tribute C. Values of attribute O are natural numbers according a total order

relation � over values of attribute D. If � is omitted, the numbers are

assigned in any order.

72

Tag extractor

Tag extractor �A!G(r) extends relation r by adding a new attribute G, which

contains the top (outer-most) tags of SD values in attribute A.

Composite Operators

Here, some composite operators in NR/SD+ are de�ned. Apply operator

�A;expr;B(C)(r) is de�ned as

�B=(C)(�:(O;B0)(�D(UB0!D(O;C[expr]) as x(�Attr(r);B0(r 1B=B0 �B!B0(r))))));

where �:(O;B0)(r) denotes projection which removes attributes O and B0 of

r, and Attr(r) stands for the attributes of relation r.

The followings are variations of converters de�ned as composite opera-

tors. They have di�erent parameter speci�cation syntax. They are named

composite converters.

� UAi!(B1[e1] as x1;:::;Bn[en] as xn)(r) is an extended version of Unpack. It

represents a sequence of primitive Unpacks. Figure 5.13 shows an ex-

73

ample, where r18 := UB!(C [month] as x;D[year] as y)(r17). Masters are in

attribute B in the result relation r18, and derivatives are in new at-

tributes C and D.

� P(Ai;:::;Aj)!B:SC;G(r) involves master constructor SC and Pack. It

creates new SD values in attribute B using SD values in attributes

Ai; : : : ; Aj as derivatives. P(C;D)!B:SC;G(r19) to the relation r19 in Fig-

ure 5.13 yields relation r17 in Figure 5.13.

� PAi(D;�)!B:RC;G(r) involves master constructor RC and Pack. It cre-

ates new SD values in attribute B using SD values in attribute D as

derivatives. If we do not care about the order of derivatives in new SD

values, ordering speci�cation � can be omitted. Figure 5.13 shows an

example, where r21 := PC(D)!B:RC;G(r20).

Formal de�nitions of composite operators including the above composite

converters are in Figure 5.14.

Moreover, for all operators which require attribute names as their pa-

rameters, we can explicitly give constant values instead of attribute names.

They are de�ned as composite operators. For example, P(Ai;:::;Aj)!B:SC;0gi0(r)

speci�es generic identi�er 0gi0 directly instead of attribute name G. This is

de�ned as P(Ai;:::;Aj)!B:SC;G(r � gi(G)) where gi(G) denotes a unary relation

with attribute G, containing only one value 0gi0.

74

r17:
A B

1
h date:seq(month, year),

\<date><month>June</month>
<year>1970</year></date>"i

r18:
A B C D

1
h date:seq(month, year),
\<date>&x.1;&y.1;</date>"i

h month, \<month>
June</month>"i

h year, \<year>
1970</year>"i

r19:
A C D G

1
h month,

\<month>June</month>"i
h year,

\<year>1970</year>"i
date

r20:
C

A
D

G

h member, \<member>T1</member>" i
1 h member, \<member>T2</member>"i members

h member, \<member>T3</member>"i

r21:
A B

1

h members:rep(member),
\<members><member>T1</member>

<member>T2</member>

<member>T3</member></members>"i

Figure 5.13: Example of composite operators

75

ASC(O;D)!(A1;A2;:::An)(r)
= �:O(�D!A1

(�O=1(�C(r))) 1 �D!A2
(�O=2(�C(r)))

1 : : : 1 �D!An(�O=n(�C(r))))
TS(A1;A2;:::An)!C(O;D)(r)

= �C=(O;D)(�A1!D(�:(A2;:::;An)(r))� 1(O)[
: : : [�An!D(�:(A1;:::;An�1)(r))� n(O))

where i(O) denotes a unary relation with attribute O, containing
only one value i:
UAi!(B1[e1] as x1;:::;Bn[en] as xn)(r)

= �:(O1;:::;On)(�En(UAi!En(On;Bn[en]) as xn(
: : : ; �E1

(UAi!E1(O1;B1[e1]) as x1(r)) : : :)))
where �:(O1;:::;On)(r) denotes projection which removes attributes
O1; : : : ; On of r.
P(Ai;:::;Aj)!B:SC;G(r)

= PC(O;D) as x!B(SCC(O;D) as x;B;G(TS(Ai;:::;Aj)!;C(O;D)(r)))
PAi(D;�)!B:RC;G(r)

= PAi(O;D) as x!B(RCAi(O;D) as x;B;G(oAi(O;D);�(r)))

Figure 5.14: De�nitions of composite operators

5.4.5 Expressive Power of NR/SD+ Algebra

The expressive power of NR/SD+ algebra contains that of NR/SD. The

followings are NR/SD+ expressions equivalent to converters of NR/SD.

RUB:(O;D);G(r) = �E!B(�:B(�B!G(UB!E(O;D[A�dI]) as x
(r))))

SUB=(B1;:::;Bn);G(r) = �:B(�B!G(ASE(O;D)!(B1;:::;Bn)(

76

UB!E(O;D[A�dI]) as x
(r))))

RPB:(O;D);G(r) = �E!B(PB(O;D) as x!E(RCB(O;D) as x;E;G(r)))

SPB=(B1;:::;Bn);G(r) = PE(O;D) as x!B(SCE(O;D) as x;B;G(

TS(B1;:::;Bn)!E(O;D)(r)))

ORB;G(r) = �D!B(�:(B;O)(�B!G(�E(

UB!E(O;D[A�dI]) as x
(r)))))

OAD;G(r) = �C=(O;D)(�E!D(PF (O1;H) as x!E(

TS(D)!F (O1;H)(�C(OCC(O;D) as x;E;G(r))))))

5.5 WebNR/SD

WebNR/SD [MK97c] is an extension of NR/SD+. Although the Web con-

tains a collection of structured documents as conventional structured doc-

ument repositories, NR/SD+ is insu�cient to deal with the Web. This

is because the Web di�ers from conventional document repositories in the

following points: (1) Web pages usually have hyper-text links to relevant

pages. (2) The number of Web pages is virtually innumerable and they are

autonomously changing. Therefore, it is impractical to manage all the Web

pages in the world with a static database scheme.

77

To cope with this �rst point, WebNR/SD introduces a new type named

the Hlink type. To address the second point, it provides Navigate and Import

operators. They enable us to fetch Web pages from the outside Web world

on demand. Navigate gets hyper-text links to the Web pages which meet

user-speci�ed conditions. Import is to obtain the contents of the Web pages

as SD type values.

In addition to Navigate and Import, WebNR/SD features Export oper-

ator. It exports SD type values as Web pages to the outside Web world.

Thus, in addition to querying di�erent information sources, we can construct

hyper-text views over the underlying information sources.

In the following discussion, Web pages are assumed to be written in XML,

and that Web pages have user-de�ned inner document structures. This en-

ables us to use tag information more e�ectively taking care of user-speci�ed

data semantics.

5.5.1 Hlink Type

First, WebNR/SD introduces a new element structure hlink into SD type

in addition to the element structures permitted in NR/SD+. Elements

with hlink structure are called linking elements and represent hyper-text

78

links to Web pages just as anchor elements in HTML documents 1. An

element with hlink structure is assumed to have no sub-elements, like

elements with text structure. The hlink structure is associated with

the attribute \href," whose value designates a URL. For example, \T Univ" is an element with hlink

structure. A value of Hlink type (an Hlink value) is de�ned as an SD value

which consists of only one element with hlink structure. Since Hlink values

are also SD values, operators applicable to SD values can also be applied to

Hlink values.

5.5.2 WebNR/SD Algebra

WebNR/SD algebra consists of NR/SD+ algebra operators and four addi-

tional operators: Export, Import, Navigate, and URL generator.

Export and Import

Export and Import incorporate the Web into our framework. Export (E)

exports SD values stored in a relation to the Web world as Web pages. Import

(I) imports Web pages residing in the Web world into a relation as SD values.

1Actually, linking elements are de�ned as elements having \xml-link" attribute in XML.
Here, we assume that hlink structure is used to represent linking elements for simplicity.

79

Figure 5.15 gives an example of Export and Import, where

r23 := EB;U;L;G(r22), and

r22 := IB;U;L;G(r23):

EB;U;L;G(r22) creates Web pages whose URLs are given in attribute U .

The Web pages' contents correspond to SD values stored in attribute B

of r22. Attribute B in the result relation r23 has Hlink values referring to

those pages and containing character strings originally stored in attribute

L. IB;U;L;G(r23) works in the opposite direction. Attribute B in the result

relation r22 obtains SD values corresponding to Web pages which are referred

to by Hlink values stored in attribute B of r23.

Navigate operator

Navigate (N) navigates the Web according to a path regular expression spec-

i�ed as a parameter of this operator. In path regular expressions, hyper-text

links are represented by! (a link whose destination and source pages reside

in the same Web server) and) (a link whose destination and source pages

80

r22:
A B U L G

1
h b:seq(c:rep(d),e) ,
\<c><d>T1 T2</d>

</c><e>T3</e>" i
http://.../index.xml Page A a

r23:
A B

1
h a:hlink,
\

Page A" i

Figure 5.15: Examples of Export and Import

reside in di�erent Web servers), while Web pages are represented by charac-

ter strings (labels) and a period. For example, B ! :) C ! D is a path

regular expression that represents the set of paths that start a Web page B

in a Web server X, followed by a page in the same server X and a page C in

a di�erent server Y(6= X), and end with a page D in the server Y.

If there is hyper-text link structure shown in Figure 5.16 in the Web, Fig-

ure 5.17 gives the result of Navigate under the above path regular expression,

where

r25 := NB!:)C!D;E(r24):

Labels in path regular expressions are used to associate Web pages with

81

L1
L2

L3

L4

L5
L6

L7

U1

U2

U3

U4

U5

U6

U7

U8

Figure 5.16: Example hyper-text link structure (Un are URLs and Ln are
character strings in linking elements)

relational attributes. Figure 5.17 shows two important points: (1) Attribute

E of the result relation r25 contains the set of paths speci�ed by the path

regular expression, where each page on the paths is represented by an Hlink

value referring to the Web page instead of the contents of the page itself.

(2) Links to those pages corresponding to the period do not appear in sub-

relations of attribute E.

Path regular expressions can represent alternation and repetition struc-

tures. For example, A(! :)� ! B j A) B represents the set of paths

which start with a page A, followed by one or more local links leading

to B, or from a page A to B via a global link. '�=n1::n2=' can be used

as syntactic sugar. For example, A(! :) � =2::3= ! B is equivalent to

A! :! :! B j A! :! :! :! B.

82

We can also specify selection conditions on Web pages in path regular

expressions. The selection condition is given by a region algebra expression

and placed just after a label or a period. The selection condition holds if the

region algebra expression returns a non-empty set of text elements for the

Web page bound to the preceding label or period. For example, assume that

the contents of the Web pages at URLs \U4" and \U5" in Figure 5.16 are h

e:seq(a:hlink,b:or(c, d),a:hlink), \<e> L5 <c> w1

</c> L6 </e>" i, and h f:seq(b:or(c, d), a:hlink),

\<f> <d> w2 </d> L7 </f>" i, respectively.

Then, NB!:)C[b�c]!D;E(r24) returns the relation which is same as r25 except

that its attribute E contains only the �rst two subtuples of r25.

Figure 5.18 shows the BNF speci�cation of path regular expressions 2.

URL generator

URL generator (URL) generates new unique URLs. It can be used before

Export operation in creating new Web pages. An example of URL is shown

2It is assumed that every path speci�ed by a path regular expression gives non-empty
binding to all the labels. A! B j A! C is an example which violates the restriction.

83

r24:
A B

1
h a:hlink,

\" i
r25:

E
A B

C D
h a:hlink,
\L3" i

h a:hlink,
\L5" i

h a:hlink,
\L3" i

h a:hlink,
\L6" i

1
h a:hlink,
\" i

h a:hlink,
\L4" i

h a:hlink,
\L7" i

Figure 5.17: Example of Navigate

in Figure 5.19, where

r27 := URLU(r26):

URLU (r26) extends relation r26 by adding a new attribute U , which con-

tains generated URLs.

5.6 Query Speci�cation Example

In this section, WebNR/SD is applied to the example scenario described in

Chapter 2. First, I brie
y outline how to deal with the problems P1 through

P4 mentioned in Section 2.3 in WebNR/SD.

84

path_reg_expr ::= label p_expr { '|' label p_expr }

p_expr ::= link page ['[' condition ']']

| p_expr { p_expr }

| p_expr { '|' p_expr }

| p_expr '*' ['/' num '..' num '/']

| '(' p_expr ')'

link ::= '->' | '=>'

page ::= label | '.'

Figure 5.18: Path regular expression syntax

r26:
A B
1 b1
2 b2

r27:
A B U
1 b1 http://: : : /new/1.xml
2 b2 http://: : : /new/2.xml

Figure 5.19: Example of URL generator

P1 In WebNR/SD, the Web is modeled as a collection of Hlink values. The

Hlink values work as anchor points to fetch necessary Web pages with

Navigate and Import operators. In the example scenario, we use \CS

department home page" as a starting point to fetch Web pages. The

Web wrapper provides a unary relation \WWW" which only contains

an Hlink value referring to the \CS department home page" (Figure

5.20). Relation \Faculty" in the relational database is represented as

it is. The set of structured documents stored in the document reposi-

tory is represented as a unary relation \DR" with an SD type attribute

85

\Doc." The relations \WWW," \Faculty," and \DR" form the inte-

grated schema.

P2 Structured documents in document repositories are represented as SD

values. Also, Once Web pages are imported, they are represented as

SD values, too. Thus, amalgamation of data in the document reposi-

tory, Web pages, and the relational database is achieved by converters,

Domain translator, and nested relational algebra operators.

P3 In spite of structural di�erence among the original PL pages, Unpack

allows us to extract publication items from the PL pages with a text

element speci�cation. The operation would be UA!B(O;C[p-item]) as x(r)

if attribute A stores the original PL pages.

P4 Construction of new Web pages can be attained by a combination of con-

verters, nested relational algebra operators, and master constructors.

First, we construct (sub-)relational structures which store text elements

originally contained in PL pages by using Unpack operator. Next, we

restructure them using operators such as join and nest. Finally, we

transform the relational structures into SD values using master con-

structors and Pack. Export exports them to the outside Web world

and also obtains Hlink values referring to those pages. The Hlink val-

ues are used as sub-elements of the index page. Thus, new hyper-text

link structures are created in a similar way.

86

Page
h a:hlink, \"i

Figure 5.20: Relation WWW

Figure 5.21 shows the element type de�nitions for publication items shown

in Figure 2.4, contained in original PL pages. We assume that every PL page

has a text element \page-title" which contains the word \publication-list."

Figure 5.22 shows an example SD value which correspond to a paper in the

document repository. Figures 5.23 and 5.24 show DTDs for the index page

and new PL pages, respectively. Then, the data manipulation request in

Section 2.3 can be speci�ed as follows. In the following WebNR/SD alge-

bra expressions, we omit the domain translators for notational simplicity.

Also, we may omit text element speci�cations, headers of SD references,

and generic identi�ers, in parameters, when there is no possibility of con-

fusion. For example, UB!(Authors[authors] as Authors;T itle[title] as T itle)(r) is simply

represented as UB!(Authors;T itle)(r). Also, P(Author;Pubs)!P-List:SC;0p-list0(r) is

represented as P(Author;Pubs)!P -List:SC(r).

(1) First, we import all the PL pages residing in the same Web server as that

of the CS department home page.

r28 := �C(I
�
D;U;L;G(NPage(!:)�!D[�[0publication-list0](page-title)];C(WWW)))

87

p-item = seq(authors, title, pub-info, hp)
pub-info = or(proc-info, j-info)
proc-info = seq(proc-title, opt(venue), date)
j-info = seq(j-title, vol, no, date)
authors = rep(author)
date = seq(month, year)

Figure 5.21: Element de�nitions for publication items

paper = seq(title, authors, pub-info, abstract, body, ref)
authors = rep(author)
author = seq(a-name, a�liation)
pub-info = or(proc-info, j-info)
proc-info= seq(proc-title, opt(venue), date)
j-info = seq(j-title, vol, no, date)
date = seq(month, year)
body = rep(section)
ref = rep(ref-item)
...
<paper>
<title>Integration of the Web and Heterogeneous
Information Repositories</title><authors>
<author><a-name>T. Johnson</a-name>
<affiliation>A-Univ</affiliation></author>
<author><a-name>G. Mark</a-name><affiliation>
B-Univ</affiliation></author></authors>
<pub-info><proc-info><proc-title>X Conf.
</proc-title><date><month>June</month><year>1997
</year></date></proc-info></pub-info>
<abstract> ...

Figure 5.22: Sample SD value which corresponds to a paper

88

(2) Then, relevant text elements are extracted by unpacking the imported

Web pages.

r29 := �As(UAuthors!As(O2;Author)(
UP -Item!(Authors;T itle;Pub-Info;Hp)(�P (UD!P (O1;P -Item)(r28)))))

(3) Relevant text elements contained in papers in the document repository

are also extracted by Unpack operator. Then, papers whose titles contain

the word \Web" and whose authors involve people belonging to T university

are selected.

r30 := �Title300Web00^Affiliation=00T�Univ00(UAuthor!(A-Name;Affiliation)(
�As(UAuthors!As(O3;Author)(

UDoc!(Authors;T itle;Pub-Info;Abstract)(DR)))))

(4) The relation r29 is joined with relations r30 and \Faculty," and unneces-

sary attributes are dropped.

r31 := �Name;Addr;Tel;E-Mail;Author;Title;Pub-Info;Hp;Abstract(
�A-Name=Author(r30 1 r29) 1Author=Name Faculty)

(5) New SD values are constructed following the DTD shown in Figure 5.24.

r32 := PP (New-P -Item)!Pubs:RC(�P=(New-P -Item)(
P(T itle;Pub-Info;Hp;Abstract)!New-P-Item:SC(r31)))

r33 := P(Author;Pubs)!P -List:SC(r32)

89

table = rep(member)
member = seq(name, addr, tel, e-mail, a)
a = hlink

Figure 5.23: DTD for the index page

p-list = seq(author, pubs)
pubs = rep(new-p-item)
new-p-item = seq(title, pub-info, hp, abstract)
pub-info = or(proc-info, j-info)
proc-info = seq(proc-title, opt(venue), date)
j-info = seq(j-title, vol, no, date)
date = seq(month, year)
hp = hlink

Figure 5.24: DTD for new PL pages

(6) The SD values are exported as new PL pages, and Hlink values are set

to link to those Web pages.

r34 := EP -List;U1;0publications0;0a0(URLU1(r33))

(7) Finally, the index page is constructed following the DTD shown in Figure

5.23. It is also exported as a new Web page.

r35 := PMembers(Member)!Table:RC(�Members=(Member)(
P(Name;Addr;Tel;E-Mail;P-List)!Member:SC(r34)))

r36 := ETable;U2;0index-page0;0a0(URLU2(r35))

90

Chapter 6

Query Processing and

Optimization

6.1 Overview

This chapter presents a query processing and optimization scheme in the

information integration system. Although it is discussed in the context of

WebNR/SD, the same discussion applies to the case of NR/SD and NR/SD+.

In the query processing and optimizations scheme, the integration system can

use abstract SD values instead of real SD values to reduce the work space

and the intermediate query processing cost of the mediator. Moreover, the

query processing and optimization scheme incorporates query optimization

rules especially designed for the hybrid and symmetric data models, as well

91

as conventional optimization rules. In this chapter, �rst, abstract SD val-

ues is explained, and then the query processing and optimization scheme is

presented.

6.2 Abstraction of SD values

In this section, �rst, the concept of the abstract SD values is explained.

Then, two operators for utilization of ASD values are introduced in addition

to WebNR/SD algebra operators.

6.2.1 Abstract SD values

Since structured documents could contain a large amount of data, naive

transfer of documents from the document repository would require the me-

diator to have large work space. The notion of abstract SD values (ASD

values) is introduced to alleviate the problem. Operations of structured doc-

uments in WebNR/SD often require only higher-level elements and document

structures, and detailed parts are necessary only to obtain the �nal query re-

sults. Thus, we can transfer ASD values containing only partial information

required by the mediator to derive intermediate results. The use of ASD val-

ues can also reduce the intermediate query processing cost of the mediator.

92

r37:
A B

1
h a:seq(b:rep(c), d:seq(e,e)),

\<a><c>T1</c><c>T2</c>
<d><e>T3</e><e>T4</e></d>''i

r38:
A B

1
h a:seq(b:rep(c), d:UNKNOWN,

\<a><c>T1</c><c>T2</c>
<d> [id1, 11, 16] </d>"i

Figure 6.1: Example of transformation between SD values and ASD values

Relation r38 in Figure 6.1 contains an ASD value corresponding to the

SD value in r37.

In the DTD part of the ASD value, special structure \UNKNOWN" is

introduced. The DTD means that the internal structure of element type \d"

is unknown. Each \d" element in the tagged text part does not contain actual

text data. Instead, each \d" element in the ASD value contains a triplet

named marker, which speci�es the location of actual text data stored in the

document repository. The marker consists of the identi�er of a document in

the document repository, the begin position of the designated element in the

document, and its end position.

Note that application of Unpack operator UB!C(O;D[c�b]) as x to relation

r38 is also possible even if the SD value in r37 is replaced by the ASD value.

93

This is because the operation requires no contents of \d" type elements.

ASD values can be generated at di�erent abstraction levels. The most ab-

stract ASD value has only one UNKNOWN structure (e.g. h a:UNKNOWN

, \<a> [id1, 2, 17] " i). However, the result of the above unpack oper-

ation cannot be derived with this ASD value. In this case, the ASD value

does not contain enough information about internal structures to perform

the unpack operation, since the contents corresponding to the marker may

contain elements of type \b" or \c."

6.2.2 Abstraction and Materialization Operators

Abstraction operator

Operator SDAattr;abs(r) (SD Abstraction) transforms SD values in attribute

attr into ASD values. We call this process abstraction. Abstraction speci�ca-

tion abs determines the abstraction level. The abstraction speci�cation abs

has the form of (g1; : : : ; gn; gn+1; : : : ; gm). It speci�es that elements of types

g1; : : : ; gm must be contained in the result ASD values, and that in partic-

ular, elements of types g1; : : : ; gn must not contain any subelement having

UNKNOWN element structures. Element types which will appear in region

algebra expressions as part of text element speci�cations of Unpack operators

94

should be included in g1; : : : ; gm. In particular, element types whose contents

are indispensable for evaluating region algebra expressions (e.g. element type

e in �[w](e) operator), should be included in g1; : : : ; gn.

In application of SDA operator, the abstraction speci�cation in its pa-

rameter determines the DTDs of result ASD values. The procedure is as

follows.

Determination of the DTD of an ASD value

Given an abstract speci�cation (g1; : : : ; gn; gn+1; : : : ; gm), the DTD of an ASD

value is derived as follows.

Let A, B, and C be sets of generic identi�ers de�ned as

A = fg1; : : : ; gng;
B = fgn+1; : : : ; gmg; and
C = fg0j9g 2 A [B(may contain(g0; g))g;

where may contain(g0; g) holds if DTD of the original SD value de�nes that

g0 type elements may contain g type elements as descendants. For example,

assume that relation r with attribute D contains an SD value with the DTD

\a:rep(b:seq(c:seq(d:text,e:text),f:or(g: rep(h:text),i:seq(j:text,k:text)

95

)))." In the case of SDAD;(f ;c)(r), A, B, and C are de�ned as A = ffg,

B = fcg, and C = fa; bg, respectively.

Then, the DTD of a result ASD value is determined to contain the ele-

ment type de�nitions which satis�es the following conditions: (1) They are

included in the DTD of the original SD value. (2) Element types they de�ne

are included in

C [A [SE(A);

where SE(A) are a set of all element type de�nitions necessary to de-

�ne element types in A. In the case of the above example, SE(A) =

fg; h; i; j; kg. The other element types will have UNKNOWN structures.

Therefore, the DTD of the result ASD values is \a:rep(b:seq(c:UNKNOWN,

f:or(g:rep(h:text), i:seq(j:text, k:text))))."

Materialization operator

Operator SDMattr(r) (SD Materialization) transforms ASD values in at-

tribute attr into SD values. We call this process materialization. For exam-

ple, application of SDM operator to r38 results in r37.

96

6.3 Outline of Query Processing

This section shows the outline of the query processing and optimization

scheme. It is assumed that the relational database can execute relational

algebra expressions, and that the document repository has text retrieval ca-

pability based on the region algebra and can directly execute ��(attr;expr)(r).

The mediator is assumed to maintain the schema information of the relational

database and the relational views of the document repository and Web. In

the following discussion, for simplicity, It is also assumed that given queries

just once refer to one relation in the document repository, another relation

in Web, and yet another relation in the relational database. However, the

discussion can be extend to more general cases without di�culty.

Figure 6.2 shows the basic query processing framework. The mediator

receives a query expressed in WebNR/SD algebra and transforms it into the

form E(F;G;H)3.

The subexpression F has the form SDAattr;abs(��(attr;expr)(R)), where R is

a unary relation with attribute attr which models the set of structured docu-

ments stored in the document repository. Wrapper 1 submits ��(attr;expr)(R)

to the document repository, receives the result from the document reposi-

3Actually, E(F;G;H) includes SD abstraction and materialization operators in addi-
tion to WebNR/SD algebra operators.

97

tory, and translates it into a unary relation consisting of a set of SD values.

Then, wrapper 1 executes the SDA operator to transform the SD values into

abstract SD values according to the abstraction speci�cation abs. After that,

the wrapper 1 transfers the result relation Ans1 to the mediator.

The subexpressionG has the form SDAattr1;abs(I
�
atrr1;attr2;attr3;attr4

(Npre;attr

(W)))1, where W is a unary relation with an attribute which contains a set

of Hlink values referring to Web pages. Unlike the other two types of infor-

mation sources, Web itself has no capability of query processing. Therefore,

it is wrapper 2 that executes the operators in the expression. After that, it

transfers the result relation Ans2 to the mediator.

The subexpression H consists of only relational algebra operators applied

to a relation stored in the relational database. Wrapper 3 is responsible

for processing H. The wrapper submits H to the relational database, and

transfers the result Ans3 to the mediator.

The mediator executes E(Ans1; Ans2; Ans3) to obtain the �nal result

Ans. In the process, it may fetch some SD values from the wrapper 1 and

wrapper 2 when it executes SDM operators contained in E. Also, it tells the

wrapper 2 to execute main parts of Navigate, Import, and Export operators

1
I
� is an extended version of Import operator which can import SD values into internal

attributes inside relations. It is de�ned as a composite operator.

98

Mediator

Wrapper 3

Relational
 Database

Document
 Repository

HElement retrieval

Ans<- E(Ans1,Ans2,Ans3)
 : WebNR/SD
 algebra
 expression

Ans3 <- H: Relational
 algebra
 expression

Wrapper 1

Ans1 <- F : SDA((R))

σρ (R)

σρ

Ans1 Ans2

Ans2 <- G : SDA(I* (N(W)))

Wrapper 2

Ans3

Web

Figure 6.2: Query processing framework

contained in E.

The mediator derives E(F;G;H) in the following two steps.

[Step 1] The mediator decomposes the given query expression into

E 0(F 0; G0; H), where E 0, F 0 and G0 are bases for E, F , and G, respectively.

As mentioned before, the subexpression H contains only relational algebra

operators applied to a relation in the relational database. F 0 has the form

��(attr;expr)(R), where R is a unary relation which models the document repos-

99

itory. The subexpression G0 has the form I�atrr1;attr2;attr3;attr4(Npre;attr(W)),

where W is a unary relation with an attribute which contains a set of

Hlink values referring to Web pages. E0 consists of WebNR/SD opera-

tors applied to data obtained from the three information sources. For

example, suppose that we have a binary relation R1(A1; A2) in the rela-

tional database, that we view the document repository as a unary rela-

tion R2(B), and that we view the Web as a unary relation R3(C). Then,

the expression �A2=c(R1) 1A1=B1
UB!(B1[b1];B2[b2])(��(B;expr)(R2)) 1A1=C1

UC0!(C1[c1];C2[c2])(�D(I
�
C0;U;L;G(NC!C0;D(R3))))is decomposed into E 0, F 0, G0,

and H as follows.

E 0 : Ans := Ans1 1A1=B1
SUB=(B1[b1];B2[b2]);G(Ans2)

1A1=C1
UC0!(C1[c1];C2[c2])(�D(Ans3))

F 0 : Ans1 := ��(B;expr)(R2)
G0 : Ans2 := I�C0;U;L;G(NC!C0;D(R3))
H : Ans3 := �A2=c(R1):

The example here is very simple. Actually, in the decomposition of the

query expression into E0(F 0; G0; H), the mediator tries to push locally exe-

cutable operators down into F 0, G0, and H, and to make E 0 include as few

operators as possible. This process is carried out based on a number of rewrit-

ing rules. In addition to well-known algebraic optimization techniques such as

selection push-down, they include rules to utilize local �ltering capability of

the document repository to support nested relational algebra operators, and

conversely, those to use the algebraic capability of the relational database

100

to support region-algebra-based data manipulation. Some of the rules are

discussed in Section 6.4.

[Step 2] The mediator transforms E0, F 0, and G0 into E, F , and G, respec-

tively. First, F and G are derived as SDAattr1;abs1(F
0) and SDAattr2;abs2(G

0),

respectively. The abstraction speci�cations abs1 and abs2 are determined

based on E 0. Consider the case of the expressions F 0 shown in Step 1. E 0

implies that application of Unpack operator to the result of F 0 requires only

elements of type b1 and b2. In particular, E 0 requires no actual contents of

SD values in attribute B2 (elements of type b2) until the join operation is

�nished. Because the values in B2 are parts of SD values contained in R2,

the abs1 is determined to be \(b1; b2)" and F becomes

Ans1 := SDAB;(b1;b2)(��(B;expr)(R2)):

The same discussion is applied to G0. In this case, G becomes

Ans2 := SDAC0;(c1;c2)(I
�
C0;U;L;G(NC!C0;D(R3))):

E is obtained by inserting SDM operators into E 0 at places where mate-

rialized SD values are needed. In the above example, SDM is only required

101

to obtain the �nal Ans. Thus, E is constructed as follows.

Ans := SDMB2
(SDMC2

(
Ans1 1A1=B1

SUB=(B1[b1];B2[b2]);G(Ans2)
1A1=C1

UC0!(C1[c1];C2[c2])(�D(Ans3))))

In the above explanation, we have shown the use of ASD values in the

simplest way. Actually, it is necessary to tune the abstraction level based

on the available work space in the mediator, the local query processing cost,

and the data transfer cost.

6.4 Query Processing Example

This section shows query processing steps for the WebNR/SD algebra ex-

pressions given in Section 5.6.

[Step 1] As mentioned before, the mediator has a number of rewriting rules.

Figure 6.3 shows some rules speci�c to the WebNR/SD algebra and used in

this example. Rules RL1 and RL2 push selection down based on the commu-

tativity of Selection and composite converter P(A1;:::;An)!A:SC;gi(r). RL3 and

RL4 are rules to screen SD values in advance to discard those which cannot

satisfy the outer-most selection condition. These rules are mainly used to

102

(RL1) ��(A;expr)(P(A1;:::;An)!A:SC;gi(r))
; P(A1;:::;An)!A:SC;gi(��(Ai1;expr)_:::_�(Aim;expr)(r))

where expr includes no gi, I, < and >. fAi1; : : : ; Aimg are a subset
of fA1; : : : Ang such that the predicate �(Aij ; expr) may hold.

(RL2) ��(A;�[w](gi))(P(A1;:::;An)!A:SC;gi(r))
; P(A1;:::;An)!A:SC;gi(��(A1;�[w](I))_:::_�(An;�[w](I))(r))

(RL3) ��(Ai;expr)(UA!(A1[e1] as x1;:::An[en] as xn)(r))
; ��(Ai;expr)(UA!(A1[e1] as x1;:::An[en] as xn)(��(A;expr)(r)))

(RL4) ��(A1;expr)(�A(UA!(O;A1[e] as x);G(r)))
; ��(A1;expr)(�A(UA!(O;A1[e] as x)(��(A;expr)(r))))

(RL5) �
�(A;�[w](I))(
A;SD(gi)(r));
A;SD(gi)(�A3w(r))

where attribute A of relation r is of String type.

(RL6) �A=w(
A;String(r)); �A=w(
A;String(��(A;�[w](I))(r)))
where attribute A of relation r is of SD type.

Figure 6.3: Sample rewriting rules

make the document repository sift structured documents before data trans-

fer to the mediator. RL5 pushes Selection down through Domain translator.

Note that, by this rule, the selection condition becomes a word containment

predicate \3" on String type values. RL6 facilitates further application of

other rewriting rules related to ��(attr;expr).

The result of Step 1 is shown below. Note that the selection on attributes

\Title" and \A�liation" in the original expression to yield r30 is pushed down

into F as �
�(Doc;�[00Web00](I)\�[00T -Univ00](I))(DR)

2 in order to discard documents

2�(Doc; �[00Web00](I) \ �[00T -Univ00](I)) is equivalent to �(Doc; �[00Web00](I)) ^
�(Doc; �[00T -Univ00](I)).

103

not including the words \Web" and \T-Univ," which reduces data transfer

from the document repository to the mediator. In addition, H shows that the

relational database in advance performs project out unnecessary attributes

to reduce data transfer.

F 0:

Ans1 := �
�(Doc;�[00Web00](I)\�[00T -Univ00](I))(DR)

G0:

Ans2 := I�D;U;L;G(NPage(!:)�!D[�[0publication-list0](page-title)];C(WWW)))

H:

Ans3 := �Name;Addr;Tel;E-Mail(Faculty)

E 0 consists of the following expressions:

z1 := �Title300Web00^Affiliation=00T�Univ00(

UAuthor!(A-Name;Affiliation)(�As(UAuthors!As(O3;Author)(

104

UDoc!(Authors;T itle;Pub-Info;Abstract)(Ans1)))))

z2 := �As(UAuthors!As(O2;Author)(

UP-Item!(Authors;T itle;Pub-Info;Hp)(

�P (UD!P (O1;P -Item)(�C(Ans2))))))

z3 := �Name;Addr;Tel;E-Mail;Author;Title;Pub-Info;Hp;Abstract(

�A-Name=Author(Ans1 1 Ans2) 1Author=Name Ans3)

z4 := PP (New-P -Item)!Pubs:RC(�P=(New-P -Item)(

P(Title;Pub-Info;Hp;Abstract)!New-P -Item:SC(z3)))

z5 := P(Author;Pubs)!P -List:SC(z4)

z6 ! EP-List;U1;0publications0;0a0(URLU1(z5))

z7 := PMembers(Member)!Table:RC(

�Members=(Member)(

P(Name;Addr;Tel;E-Mail;P-List)!Member:SC(z6)))

Ans := ETable;U2;0index-page0;0a0(URLU2(z7))

[Step 2] E0 implies that the text elements of element type \title," \authors,"

\author," \a-name," \a�liation," \pub-info," and \abstract" in the papers

stored in the document repository are necessary. It also implies that the text

elements of element type \title," \authors," \author," \pub-info," and \hp"

in the publication list Web pages are necessary. Moreover, the contents of

105

\title," \a-name," \a�liation," and \pub-info" type elements in the papers,

and that of \title," \author," and \pub-info" type elements in the Web pages

are indispensable because they are used as join or selection attributes. No

other text elements are required for the query processing.

Thus, abstraction speci�cations in F and G are determined to be (Title,

Author, Pub-Info; Authors, Abstract) and (Title, Author, Pub-Info; Au-

thors, Hp), respectively. The result expressions are shown below.

F :

Ans1 := SDADoc;(T itle;A-Name;Affiliation;Pub-Info;Authors;Author;Abstract)(
�
�(Doc;�[00Web00](I)\�[00T-Univ00](I))(DR))

G:

Ans2 := SDADoc;(T itle;Author;Pub-Info;Authors;Hp)(
I�D;U;L;G(NPage(!:)�!D[�[0publication-list0](page-title)];C(

WWW)))

Finally, SDM operators are inserted into E0 to obtain the �nal query

result, and we get the following E.

E:

z1 := �Title300Web00^Affiliation=00T�Univ00(

106

UAuthor!(A-Name;Affiliation)(�As(UAuthors!As(O3;Author)(

UDoc!(Authors;T itle;Pub-Info;Abstract)(Ans1)))))

z2 := �As(UAuthors!As(O2;Author)(

UP-Item!(Authors;T itle;Pub-Info;Hp)(

�P (UD!P (O1;P -Item)(�C(Ans2))))))

z3 := �Name;Addr;Tel;E-Mail;Author;Title;Pub-Info;Hp;Abstract(

�A-Name=Author(Ans1 1 Ans2) 1Author=Name Ans3)

z4 := PP (New-P -Item)!Pubs:RC(�P=(New-P -Item)(

P(Title;Pub-Info;Hp;Abstract)!New-P -Item:SC(z3)))

z5 := P(Author;Pubs)!P -List:SC(z4)

z6 ! EP-List;U1;0publications0;0a0(SDMP -List(URLU1(z5)))

z7 := PMembers(Member)!Table:RC(

�Members=(Member)(

P(Name;Addr;Tel;E-Mail;P-List)!Member:SC(z6)))

Ans := ETable;U2;0index-page0;0a0(SDMTable(URLU2(z7)))

107

Chapter 7

Visual User Interface

7.1 Overview

This chapter explains a visual user interface for the information integration

system for structured documents, Web, and databases. In case of traditional

database utilization, usually, we �rst browse metadata such as the schema in-

formation of a database, and then submit query statements. But this simple

procedure causes problems in the context of heterogeneous information inte-

gration. The user interface here provides visual and interactive supporting

tools in order to overcome the problems.

108

7.2 Features of the Visual User Interface

In case of traditional database utilization, usually, we �rst browse meta-

data such as the schema information of a database, and then submit query

statements. This simple procedure causes problems in the context of hetero-

geneous information integration, because of the following reasons:

1. It is di�cult to identify target data objects from a sea of data objects in

information sources. The reasons are as follows: First, the information

sources include structured documents and Web. Their data structures

are more complicated compared to those of relational databases. Sec-

ond, in general, there is no way to bundle data objects of the same

type like the extension in ODBs. Moreover, target data objects may

be collected from di�erent information sources. Without identifying

target data objects, it is impossible to manipulate data objects.

2. Even if target objects of operation have been identi�ed, the complex-

ity of target data structure makes query construction more di�cult for

end users. For example, the example scenario shown in Section 2.3 re-

quires the hypertext view to be obtained by restructuring of structured

documents, Web, and relational databases.

109

The visual user interface is designed to overcome the problems. The

user interface models integration activity as combinations of target discovery

and data operation, and provides them with visual and interactive supporting

tools. Target discovery is de�ned as the process of discovering and extracting

target data objects from a number of information sources. In this process,

only data objects relevant to user requests are identi�ed. Data operation is

de�ned as the process of manipulating the identi�ed target data objects to

construct the �nal answer for user requests.

Target discovery and data operations in the example scenario in Section

2.3 are as follows.

Target Discovery A set of papers, a set of original publication list Web

pages, and a set of data objects containing information about faculties,

are necessary to construct the result hypertext view. Therefore, in

the target discovery, they must be identi�ed and extracted from a sea

of data objects in the information sources having heterogeneous and

complicated data structures.

Data Operation The result hypertext view is obtained by joining and re-

structuring of the sets of data objects. Construction of new publication

lists for authors and the index page is performed there.

110

Because the two processes are essentially di�erent in their purposes, the

visual user interface provides di�erent supporting tools for them. Target

discovery is supported by interactive information exploration facility which

combines browsing and querying of both metadata and data. The reason for

introducing metadata query is that browsing alone is insu�cient to identify

target data objects in accordance with large and complicated metadata in

a variety of information sources. The reason for introducing browsing and

querying instances into target discovery is that structured documents written

in SGML and XML may have di�erent instance-level data structures even

if their metadata (DTDs) are the same, since SGML and XML allow their

documents to have variant, optional, and exception structures.

Data operation is supported by a visual data manipulation language

named HQBE (Query By Example for Heterogeneous information sources).

HQBE is a QBE [Zlo77] style language, and realizes declarative speci�cation

of a subset of WebNR/SD algebra expressions. Its features are as follows. (1)

HQBE can manipulate various and complicated data structures appearing in

structured documents and Web pages as nesting structures and hypertext

link structures. (2) HQBE allows target data objects to have heterogeneous

data structures. That is, all the data objects do not need to have the same

structures as long as they have some common structures essential for manip-

ulation. (3) The manipulation result may have various data representations

such as structured documents, Web pages, and relations, to suit purposes.

111

MainWindow DataBox

File XX Option
DISCOVERY

* Relation / Doc
* URL
* Search

Name:

Back Forward Metadata

Discovery

Discovery

* Relation / Doc
* URL
* Search

ID

Addr

Tel

E-Mail

931234

Tsukuba

12-3456

kato@dblab

Name Kato

Figure 7.1: Windows in the visual user interface

7.3 Components of the Visual User Inter-

face

Main components of the user interface are a main window, which gives a

means of the target discovery, and data boxes, each of which shows a set of

data objects identi�ed and extracted in the target discovery process (Figure

7.1).

The main window provides the following means of target discovery.

112

� The user selects from the menu the name of an information source and

the name of a relation or a document collection. Then, a data box

is created to show the set of tuples or documents in the relation or

document collection (Relation/Doc).

� The user speci�es an URL. Then, a data box containing the Web page

is created (URL).

� The user speci�es query conditions on metadata and data. Then, a

data box is created whose data objects satisfy the conditions (Search).

The triangle and inverted triangle buttons of a data box are used to

browse the set of data objects in the data box. The \Discovery" menu of a

data box provides the same means of target discovery as the main window

does. However, their functions di�er from those of the main window in that

they replace the data objects previously stored in a data box with new ones,

instead of creating a new data box. \Back" and \Forward" buttons can be

used to walk back and forth through the sets of data objects the data box

has shown before.

The \Search" function of data boxes is extended in that it allows the data

objects currently stored in a data box to be used for target discovery. The

detailed explanation is given in the next section.

113

7.4 Interactive Information Exploration

As a means of the target discovery, the user interface provides interactive

information exploration facility which combines browsing and querying of

both metadata and data. The example in Section 2.3 requires three data

boxes which correspond to a set of papers, a set of original publication list

Web pages, and a set of data objects containing faculty information.

In the visual user interface, target discovery is the process of creating

data boxes which correspond to target data objects. This section illustrates

the facility by showing the process of creating data boxes which correspond

to the above three sets of data objects. Browsing of both metadata and data

is illustrated by creation of data boxes for faculty information and papers.

Querying of metadata and data is illustrated by creation of the data box for

publication list Web pages.

7.4.1 Creation of Data Box for Faculty Information

When a user selects the \Relation/Doc" menu item in the main window,

information sources and their contents (such as the relation names) are dis-

played. He selects a relation which he expects to be the faculty relation.

114

File XOption

Name:

Back Forward

ID

Addr

Tel

E-Mail

931234

Tsukuba

12-3456

kato@dblab

RDB1: Faculty

Name Kato

Query Cond. Box XMetadata

Tuple

ID

Addr

Tel

Name

E-Mail

(a)

(b) MetadataBox

Discovery

Figure 7.2: Data box (D1) and metadata box for faculty information

Then, a data box corresponding to the relation is created (Figure 7.2 (a)).

The \Metadata" button in the data box is used to create a metadata box

(Figure 7.2 (b)) which displays the metadata (schema information) of the re-

lation. The two windows give the user the means of browsing of both meta-

data and data. If he found the relation wrong one, he would select again

the \Relation/Doc" menu item in the main window, and continue to browse

data and metadata until he �nd the right one. In the following discussion,

the data box created here is referred to as D1.

115

7.4.2 Creation of Data Box for Papers

Creation of the data box for papers is achieved in the same way as in the case

of the faculty information. The di�erences are that each data object in the

data box is not a tuple but a document, and that the data structure in the

metadata box contains DTD of the document (Figure 7.3). In the following

discussion, the data box is referred to as D2.

7.4.3 Creation of Data Box for Publication List Web
Pages

The user clicks the \URL" menu item in the main window, and speci�es

the URL of the CS department home page. Then, a data box containing

the Web page is created. In the following discussion, it is referred to as D3.

He can traverse hypertext links in the Web in the same way as he uses an

Web browser, in order to �nd publication list Web pages. Figure 7.4 shows

a publication list Web page found in the process. The metadata box shows

the document structure of this page.

In actual applications, the user is often encountered by structural vari-

ation or anomalies of data structure. In this example, if he traverses and

examines the original publication list Web pages, he will �nd the following

116

File Option

Name:

Back Forward

Discovery

OT: DR1

Metadata

Doc(SD)

 Integration of Web
Lee. Univ. Tsukuba. Proc. ABC

Abstract:With the broad acceptance
of the World Wide Web, there is
a great demand for integration.

1. Introduction
 Today, a huge number of information
sources ...

X Query Cond. Box XMetadata

ref

title

section

abstractcontent

authors author

pub-info

SD

*

*

affiliation

Tuple

a-name

Doc

paper

Figure 7.3: Data box (D2) and metadata box for papers

117

File XOption

Name:

Back Forward

Discovery

http://dblab.tsukuba.ac.jp/....

Metadata

Page(SD)

Pub-list 1998
Kato. Integration of Web.
Proc. ABC, pp. 100-109.
keywords: ...

Yamada. Semistructured Data.
X journal, pp. 30-49.
keywords:

Query Cond. Box XMetadata

pub-list

page-title

keywords

pub

authors author

title

SD

*

*

Tuple

Page

pl-page

p-item

hp

pub-Info

Figure 7.4: Browsing publication list Web pages for years (D3)

118

two facts (see Section 2.3):

1. PL pages for di�erent years have di�erent inner page structures. For ex-

ample, the PL page for 1996 categorizes publication items by projects,

while that for 1998 annotates each publication item with some key

words.

2. However, every page has a \page-title" element containing the word

\pub-list." In addition, even though the pages have minor di�erences

in their structures, they can be considered to have the similar structure

in that each page contains a collection of publication items with \p-

item" tags.

In spite of existence of such variations in publication list Web pages, the

user can fetch all the pages by using the common properties of them.

First, the user selects \Search" item in \Discovery" menu of the data

box D3. Then, a window for search condition appears (Figure 7.5(a)). He

speci�es query conditions to get all the publication Web pages. In Figure

7.5(a), he speci�es that he wants such Web pages that they reside in the

same Web server as that of the CS department home page, that they are

accessible from the home page, and that they satisfy the condition speci�ed

in the metadata box.

119

Then, he edits the data structure of the original publication list Web

page already shown in the metadata box, in order to construct the condition

(Figure 7.5 (b)). The condition says that the page should contain the word

\pub-list" in the \page-title" element, and have a collection of publication

items. As shown in the �gure, the condition about the metadata is speci�ed

by erasing irrelevant data structures in the metadata box.

Finally, he clicks \Search" button of the window (a) (in Figure 7.5). Then,

all the quali�ed Web pages are stored in the data box D3. As shown in this

example, target discovery can be achieved by querying both metadata and

data. Note that the data objects whose structures are almost the same but

di�erent in part can be identi�ed and extracted.

This section has shown how to construct data boxes with interactive

information exploration combining browsing and querying of both metadata

and data. However, they are only examples of data box construction. In

fact, browsing and querying can be combined and intertwined in any ways

to construct data boxes.

120

File XOption

Name:

Back Forward

http://dblab.tsukuba.ac.jp/....

Metadata

Page(SD)

Pub-list 1998
Kato. Integration of Web.
Proc. ABC, pp. 100-109.
keywords: ...

Yamada. Semistructured Data.
X journal, pp. 30-49.
keywords:

* Relation / Doc
* URL
* Search

Discovery

X

URL[http:CS.Tsukuba.ac.jp/..]
(->) * -> D [Select(LikeThisPage)]

Search

Condition:

(a)

(b)

Web Relations

Documents

Query Cond. Box XMetadata

pub-list

page-title

keywords

pub

authors author

title

SD

*

*

Tuple

Page

pl-page

p-item

hp

pub-Info

*

"pub-list"

Figure 7.5: Querying metadata and data to relate D3 with all the publication
Web pages

121

7.5 Visual Data Manipulation Language:

HQBE

The user interface provides a visual data manipulation language named

HQBE (Query By Example for Heterogeneous information sources) as a

means of data operation. Figures 7.6 and 7.7 comprise the HQBE description

which speci�es the data operation for the example scenario in Section 2.3.

Assume that the data boxes D1, D2, and D3 already exist because the target

discovery has been done. The query is constructed in the following way.

First, the user makes entries in the metadata boxes of D1, D2, and D3

(Figure 7.6(a)(b)(c)). Words starting with \&" (such as \&Tsukuba" in

Figure 7.6) are example elements, which were introduced by QBE [Zlo77].

Conditions such as \ = 'T-Univ' " can be speci�ed in the description. More-

over, condition boxes can be used to express conditions di�cult to express

in metadata boxes ((d) in Figure 7.6).

Next, the user opens the fourth data box D4 (Figure 7.7). He tells the

user interface that the data box should be a empty data box, which has no

corresponding set of data objects. Therefore, the metadata box of D4 shows

a blank space at �rst. He draws the data structure of the required result there

and enters example elements (Figure 7.7(e)). In Figure 7.7, the description

122

of required new publication lists and that of the required index pages are (g)

and (f), respectively. Hypertext links among them are represented as dotted

arrows.

Finally, he clicks the \Query" button in the metadata box of D4. The

answer appears in D4. In this example, a hypertext link to the index page

is stored in D4 so that he can browse all the result Web pages including the

index page and new publication lists.

HQBE descriptions are translated into WebNR/SD algebra expressions

to compute data manipulation results. In addition to simple manipulations

such as selection and projection against a set of data objects in a data box,

HQBE is able to express complex restructuring manipulations such as the

above example. Also, HQBE can manipulate uniformly the data objects

which partially di�er in their structures, but have some common structures

essential for the manipulation. In the example, structural di�erence of the

publication list Web pages can be managed without di�culty. Moreover,

manipulation results can be in the form of structured documents, Web, and

relations, to suit purposes. In the example, the result is obtained in the form

of Web pages. Namely, the point is that HQBE allows users to express, in

a declarative way, data manipulations that take advantage of WebNR/SD

features.

123

Query Cond. Box XMetadata

Tuple

ID

Addr

Tel

Name

E-Mail

&Tsukuba

&Yamada

&Number

&MailAddr

X Query Cond. Box XMetadata

ref

title

section

abstractcontent

authors author

pub-info

SD

*

*

affiliation

Tuple

a-name

Doc

paper

Query Cond. Box XMetadata

pub-list

page-title

keywords

pub

authors author

title

SD

*

*

Tuple

Page

pl-page

p-item

hp

pub-Info

*

(a)

(b)

(c)

&Title

&Info

&Yamada

= "T-Univ"

&Abstract

&Yamada

&Title

&Info

&HomePage

Cond. Box(d)

contains(&Title, "Web")

Figure 7.6: HQBE description for data operation (1)

124

File XOption

Name:

Back Forward Metadata

Discovery

Query Cond. Box XMetadata

Member

table

phone

addr

name

title

SD

*

e-mail

Tuple

Document

a

*

"index-page"

a

pub-info

pub

pubs

author

P-list
SD SD

"publications"

&Yamada

&Tsukuba

&Number

&MailAddr

&Yamada

*

&Title

&Info

(e)

(f) (g)

hp
&HomePage

abstract
&Abstract

Figure 7.7: HQBE description for data operation (2)

125

Because data manipulation results are stored in data boxes again, they

can be used for further target discovery by the interactive information ex-

ploration faculty, and/or for further data manipulation by HQBE.

7.6 Translation of HQBE Descriptions into

WebNR/SD Algebra Expressions

This section explains translation of HQBE descriptions intoWebNR/SD alge-

bra expressions. The HQBE description in Section 7.5 is used as an example.

In this section, the metadata boxes associated with sets of target data ob-

jects (the metadata boxes of D1, D2, and D3 in the example) are referred

to as target metadata boxes. The metadata box which represents the data

structure of the manipulation result (one of D4) is called the output metadata

box.

In the following discussion, we do not deal with the pictorial HQBE de-

scription in Section 7.5 directly. We express the HQBE description in a text

format. In this case, description in each target metadata box is expressed by

a target expression, and description in the output metadata box is expressed

by an output expression. In general, an HQBE description can be expressed

by a number of target expressions, an output expression, and conditions

speci�ed in condition boxes.

126

NULL:R(
ID:Integer,
Name:String[&Yamada],
Addr:String[&Tsukuba],
Tel:String[&Number],
E-Mail:String[&MailAddr]

)

Figure 7.8: Target expression for D1

7.6.1 HQBE Description in a Text Format and Its
Semantics

Figures 7.8, 7.9, and 7.10 show target expressions which represent the target

metadata boxes in Figure 7.6.

Target expressions contain two kinds of information: (1) Data structures

of target data objects, and (2) Example elements and conditions speci�ed

in target metadata boxes. An important point is that document (SD value)

structures are described more loosely in target expressions than they are in

DTDs. The descriptions of SD value structures is referred as loose structure

speci�cations. Target documents of HQBE manipulation can have di�erent

document structures and DTDs as long as they conform to the same loose

structure speci�cations. Figure 7.11 shows the syntax and semantics of target

127

NULL:R(
Doc:SD(

f
�d title:1[&Title];
�d authors:2f�d author

�

f
�d a-name:1[&Y amada];
�d affiliation:2[= \T-Univ"]

g;
�d pub-info:3[&Info];
�d content:4f�d abstract:1[&Abstract]g

g
)

)

Figure 7.9: Target expression for D2

128

NULL:R(
Page:SD(

f
� p-item�

f
�d authors:1f�d author

�[&Y amada]g;
�d title:2[&Title];
�d pub-info:3[&Info],
�d hp:4[&HomePage]

g
g

)
)

Figure 7.10: Target expression for D3

expressions (including loose structure speci�cations).

According to the semantics explained in Figure 7.11, The loose struc-

ture speci�cation contained in the target expression for D3 is interpreted as

follows:

\An SD value in attribute Page contains a number of 'p-item' elements. Each

'p-item' element has an 'authors' element, a 'title' element, a 'pub-info' ele-

ment, and a 'hp' element as the �rst, second, third, and fourth child elements.

The 'authors' element has 'author' elements. The 'author,' 'title,' 'pub-info,'

and 'hp' elements are associated with example elements '&Yamada,' '&Title,'

129

TE::= 'NULL:R(' Attr ':' SubSt { ',' Attr ':' SubSt } ')'

//The outermost relational structure

SubSt::= 'R' '(' Attr ':' SubSt { ',' Attr ':' SubSt } ')'

//Sub relational structure

| 'SD''(' LooseSt ')'

//LooseStructure for SD values

| OtherType ['[' Example | Condition ']']

//An example element or a condition

can follow the other types.

LooseSt::= '{' ContainmentSpec { ',' ContainmentSpec } '}'

// contains the elements specified by ContainmentSpecs

ContainmentSpec::= SpecElem LooseSt

// contains an element specified by SpecElem,

// whose inner structure is specified by LooseSt.

| SpecElem '[' Example | Condition ']'

// contains an element specified by SpecElem,

// which is associated with an example element

// or a condition.

SpecElem::= '�' gi //includes a gi-typed element.

| '�d' gi '.' Int //includes a gi-typed element

//as the i-th child element.

| '�' gi '*' //includes gi-typed elements.

| '�d' gi '*' //includes gi-typed elements

//as children.

Figure 7.11: Syntax and semantics of loose structure speci�cations

130

R_1(Document:SD(
a:hlink[``indexpage''](

table:rep_1(
member:seq(

name[&Yamada],
addr[&Tsukuba],
tel[&Number],
e-mail[&MailAddr],
a:hlink[``publications''](

p-list:seq(
author[&Yamada],
pubs:rep_1(

new-p-item:seq(
title[&Title],
pub-info[&Info],
hp[&HomePage],
abstract[&Abstract]

)
)

)
)

)
)

)
))

Figure 7.12: Output expression corresponding to D4

'&Info,' and '&HomePage,' respectively."

Figure 7.12 shows the output expression for HQBE description in Section

7.5. An output expression speci�es data structure of the manipulation result.

It di�ers from target expressions in the following two points: (1) Document

(SD value) structures are speci�ed by their DTDs, not by loose structure

speci�cations. The reason is that construction of the �nal result requires

131

rigid description of data structures of the result. (2) Nesting structures such

as subrelation structures (represented as 'R') and repetition structures of

elements in SD values ('rep') require natural numbers to be associated with

them. The numbers are associated with them in such a way that the child

nesting structures which has the same parent are enumerated by natural

numbers. The numbers specify the order of Nest operations. Namely, in the

process of data manipulation, Nest operators are applied in the speci�ed order

for construction of nesting structures which appear in the output expression.

The reason why the numbers are necessary is that di�erence in the order

of Nest operations can result in di�erent manipulation results, since Nest

operator has no commutativity.

The condition speci�ed in the condition box of the example HQBE de-

scription is as follows:

Contains(&Title; \Web"):

7.6.2 WebNR/SD Algebra Expressions Obtained by
the Translation

This subsection explains the WebNR/SD algebra expressions obtained by the

translation of HQBE descriptions. In the WebNR/SD algebra expressions, a

132

set of data objects in each data box is regarded as a relation of WebNR/SD.

In the example in Section 7.5, relations D1, D2, and D3 are used to represent

data objects in D1, D2, and D3, respectively. The expressions include the

following three main parts:

Extraction Part This part extracts relevant data from nested relations and

SD values. Namely, it transforms each relation associated with its tar-

get expression into a
at relation. Attribute values of the result relation

correspond to those attribute values and text elements which are asso-

ciated with example elements and conditions in the target expression.

The extraction part consists of expressions each of which extracts data

from a target relation. In this example, it consists of three expressions

for D1, D2, and D3. Here, we call the expressions EP1, EP2, and EP3.

Selection and Join Part First, the part selects tuples from each relation

according to the conditions that the corresponding target expression

and condition box specify. Then, it constructs a new relation by joining

the results of the selection operations together.

Restructuring Part This part constructs the required data structures by

restructuring the result of the Selection and Join part according to an

output expression.

133

Not all the above parts are necessary for HQBE descriptions. For exam-

ple, an HQBE description which selects tuples satisfying some conditions, is

translated into a simple expression which applies only a selection operator to

a relation. In this case, the expression is considered to have only the selection

and join part containing only a selection operator.

The followings are WebNR/SD algebra expressions for the HQBE de-

scription in Section 7.5.

Extraction Part

EP1:

r37 := �&Y amada1;&Tsukuba1;&Number1;&MailAddr1(
�Addr!&Y amada1(�Name!&Tsukuba1(�Tel!&Number1(

�E-Mail!&MailAddr1(D1)))))

r37:
&Yamada1 &Tsukuba1 &Number1 &MailAddr1

134

EP2:

r38 := �&Y amada3;&Title2;&Info2;&Abstract1;Affiliation(
U

D!(&Y amada3[(a-name\1)�dI])(

U
D!(Affiliation[(affiliation\2)�dI])(

U
B!(&Abstract1[(abstract\1)�dI])(

�C(UA!C(O1;D[author�dI])(

U
Doc!(&Title2[(title\1)�dI])(

U
Doc!(A[(authors\2)�dI])(

U
Doc!(&Info2[(pub-info\3)�dI])(

U
Doc!(B[(content\4)�dI])(D2))))))))))

r38:
&Yamada3 &Title2 &Info2 &Abstract1 A�liation

EP3:

r39 := �&Y amada2;&Title1;&Info1;&HomePage1(
�D(UC!D(O2;&Y amada2[author�dI])(

U
A!(C[(authors\1)�dI])(

U
A!(&Title1[(title\2)�dI])(

U
A!(&Info1[(pub-info\3)�dI])(

U
A!(&HomePage1[(hp\4)�dI])(

�B(UPage!B(O1;A[p-item�I])(D3)))))))))

r39:
&Yamada2 &Title1 &Info1 &HomePage1

135

Selection and Join Part

r40 := r37 1&Y amada1=&Y amada2
&Y amada2!String(r39)
1&Y amada2=&Y amada3^&Title1=&T itle2^&Info1=&Info2

�&Title23\Web"(�Affiliation=\T-Univ"(r38))

r40:
&Yamada1 &Tsukuba1 &Number1

&MailAddr1 &Yamada2 &Title1 &Info1 &HomePage1

&Yamada3 &Title2 &Info2 &Abstract1 A�liation

Restructuring Part

(1) Unnecessary attributes are dropped.

r41 := �&Y amada1;&Tsukuba1;&Number1;

&MailAddr1;&Y amada2;&T itle1;&Info1;&HomePage1;&Abstract1(r40)

(2) New publication list pages for authors are constructed according to the

output expression.

r42 := PB(A)!C:RC;0pubs0(�B=(A)(
P(&T itle1;&Info1;&HomePage1;&Abstract1)!A:SC;0new-p-item0(r41)))

r43 := P(&Y amada2;C)!D:SC;0p-list0(
&Y amada2!SD(author)(r42))

136

(3) The new pages are exported as new Web pages.

r44 := ED;U1;0publications0;0a0(URLU1(r43))

(4) The index page is constructed and exported.

r45 := PF (E)!H:RC;0table0(�F=(E)(
P(&Y amada1;&Tsukuba1;&Number1;&MailAddr1;D)

!E:SC;0member0(
&MailAddr1!SD(e-mail)(

&Number1!SD(tel)(
&Tsukuba1!SD(addr)(

&Y amada1!SD(name)(r44)))))))
r46 := �H!Document(EH;U2;0index-page0;0a0(URLU2(r45)))

r46:
Document

7.6.3 Translation Procedure

This subsection explains how to translate an HQBE description into

WebNR/SD algebra expressions.

137

Construction of Extraction Part

For every target relation Di(1 � i � n), expression EPi is constructed in the

following way.

1. First, according to the target expression for Di (called TEi), EP
0
i is

constructed. It applies Unnest operations to Di in order to
atten

it. In addition, EP 0i involves Rename operators (�). They rename

every attribute name which is not of SD type and is associated with

an example variable &example into &examplei, where i is a number to

distinguish it among the attributes associated with the same example

variable.

2. Then, EPi is constructed by adding Unnest and Unpack operators to

EP 0i , according to all the loose structure speci�cations LSj(1 � j � mi)

in TEi. In this construction, region algebra expressions for parameters

of Unpack operators should be determined according to the loose struc-

ture speci�cations. For example, \�d title:2" in the loose structure

speci�cation of TE3 generates region algebra expression \(title\ 2) �d

I."

138

Construction of Selection and Join Part

1. For every result of EPi, expression SJPi is constructed. They select

tuples according to selection conditions which are speci�ed in target

expressions and condition boxes.

2. Selection and join part expression SJP is constructed by joining all the

SJPi(1 � i � n). The Join condition is conjunction of the predicates

each of which holds if a value of attribute &examplei is equal to that

of attribute &examplej(i 6= j).

Construction of Restructuring Part

1. LetRP 0 be an expression which applies projection operator to the result

of SJP . It projects out attributes irrelevant to the �nal result.

2. Operators such as Nest, Pack, and Export are necessary to construct

the result structures speci�ed in the output expression. Restructuring

part expression RP is obtained by adding such operators to RP 0, ac-

cording to the output expression. If Nest operators create new nesting

structures whose parents are the same, they are applied in the order

speci�ed in the output expression.

139

Chapter 8

Prototype System

Development

8.1 Overview

This chapter describes basic design of a prototype information integration

system. First, design principles of the prototype system are explained. Sec-

ond, its architecture is described. Then, interfaces among the mediator and

wrappers are explained. Next, data communication among the modules of

the system is explained. Finally, some screen shots of the actual system are

shown.

140

8.2 Design Principles

The prototype system is designed according to the following three principles.

Utilization of Existing Tools The integration system uses hybrid data

models which combine nested relational structures and abstract data

type concept. Both of them are existing and well-known data modeling

constructs, and there are many programs and systems available for

their manipulation. Therefore, we can utilize such existing software

products. In fact, the prototype system uses ORDBMS Illustra [Inf] as

a back-end engine to implement the mediator.

Realization of Extensibility It is desirable that the integration system

can accept new types of information sources and wrappers in an easy

way. Therefore, the prototype system is designed so that it would

require little additional hard coding in incorporating new wrappers

into the system. To put it concretely, the mediator and wrappers in

the prototype system are designed to have the same interface, and to

exchange information about metadata of information sources and query

processing power in a dynamic fashion.

Data Transfer On Demand In general, integration of information sources

involves a large amount of data objects to be processed. Therefore,

141

software modules such as the visual user interface, the mediator, and

wrappers require a lot of working space in integration processes. In

this prototype system, data objects are transferred among modules in

a lazy fashion in order to reduce the working space and intermediate

query processing costs. The transfer control is performed at the tuple

level and value level.

8.3 Prototype System Architecture

Figure 8.1 shows the architecture of the prototype system. Opentext index

server [Ope], Web, Oracle8 [Ora], and mSQL [Hug] are connected as informa-

tion sources. The main modules of the system are Opentext wrapper, JDBC

wrapper, Web wrapper, the mediator, and the visual user interface module.

The Opentext wrapper provides a relational view on top of the docu-

ment collections stored in the Opentext database. A document collection

is regarded as a relation. The Opentext wrapper translates WebNR/SD al-

gebra expressions into PAT expressions [ST92], which Opentext can accept

for document retrieval. PAT expressions are based on region algebra. Thus,

WebNR/SD's Selection operator with the � predicate can be processed by

Opentext. In addition, the Opentext wrapper can transform SD values into

ASD values and vice versa. Namely, it can execute SDA and SDM opera-

142

tors contained in WebNR/SD algebra expressions. Also, when the mediator

applies SDM operator to a relation stored in the mediator, it delegates trans-

formation between ASD values and SD values to the Opentext wrapper if the

values are managed by the wrapper.

The JDBC wrapper communicates with a relational database through a

JDBC driver. It translates WebNR/SD algebra expressions including only

relational algebra operators into SQL queries. It has translation rules to

translate relational algebra expressions into SQL92 intermediate level queries.

The Web wrapper is di�erent from the other wrappers in that it provides

no means of query translation because the Web has no query processing

capability. It provides a relational view on top of Web pages. For each Web

page, there exists a corresponding relation which contains only an Hlink

value including the page's URL. The Web wrapper plays the main roles in

processing Navigate, Import, and Export operators. When the mediator

processes those operators, it delegates value-level operations required for the

Web-relevant operators to the Web wrapper. In addition, like Opentext

wrapper, it can transform SD values into ASD values and vice versa.

The mediator employs Illustra database management system as a back-

end engine to support WebNR/SD-based operations. Target data objects

which the mediator processes and intermediate results are once stored in the

143

Illustra database. Integrated operations by the mediator are classi�ed into

three categories according to their executors.

� Operations executed by Illustra:

Because WebNR/SD is a hybrid data model which includes relational

data model in it, some operations of WebNR/SD can be processed by

Illustra alone. For example, Selection, Projection, and Join operators

are executed directly by Illustra.

� Operations cooperatively executed by the mediator and Illustra:

The mediator module and Illustra cooperate to execute some operators.

They include Nest, Unnest, Pack, and Unpack operators.

� Operations by the mediator, Illustra, and wrappers:

Wrappers play the main roles in executing such operators as SDM, Im-

port, Export, and Navigate operators. In this case, all the three types

of modules work. The mediator serves as a coordinator in executing

the operators.

The visual user interface module is implemented based on AWT (Ab-

stract Window Toolkit), and gives users visual and interactive supporting

tools for integrated operations. First, it tells the mediator to give necessary

information for users to specify operations. It translates user's directions

144

into WebNR/SD algebra expressions or other method invocations (such as

relation renaming method), and submits them to the mediator.

All codes are written in Java except the mediator-Illustra bridge module

which is written in C. This is because Illustra has no API for Java at present.

Communication among the modules is attained by HORB (Hirano's Object

Request Broker), which was developed at ETL [Hir97].

8.4 Interface among the Mediator and

Wrappers

Modules of the prototype systems are implemented as java objects. There-

fore, the modules have java interfaces (Figure 8.2). As mentioned before,

for extensibility, the mediator and wrappers in the prototype system are

designed to have the same interface. The common interface is \NRSD Pro-

cessor." The other interfaces are optional. The \SD Materializer" interface

is used when the mediator delegates transformation between ASD values and

SD values to wrappers. The \Navigable" interface is used when the medi-

ator delegates value-level operations required for Web-relevant operators to

wrappers. Wrappers which create ASD values and Hlink values are sup-

posed to implement \SD Materializer" and \Navigable," respectively. When

a wrapper creates ASD values or HLink values, it embeds the wrapper's id

145

Web Wrapper JDBC Wrapper

Mediator

Visual User
Interface

Opentext
Wrapper

Web

Oracle8

Opentext

JDBC Wrapper

mSQL

Illustra

HORB

JDBC Driver

Mediator-Illustra
Bridge

JDBC Driver

Figure 8.1: Prototype system architecture

146

into those values. Therefore, the mediator need not know in advance what

optional interfaces are implemented by wrappers.

Detailed explanation of the interfaces are given below.

NRSD Processor A module with this interface has capability to process

NR/SD algebra expressions. Figure 8.3 shows a part of this interface.

Method getMetaData returns metadata of all relations which the mod-

ule can operate. Method executableExpr returns information about

query processing capability of the module, named executable expression

speci�cation. For example, The executable expression speci�cation of

the mediator tells the module can process any kind of WebNR/SD

algebra expressions. That of a JDBC wrapper tells it processes the

expressions including only the operators of relational algebra. Method

executeExpr takes a WebNR/SD algebra expression which is consis-

tent with the executable expression speci�cation. As a return value, it

returns a relation handle object for the result relation.

SD Materializer A module with this interface implements the methods

which support transformation of ASD values into SD values. Figure

8.4 shows a part of this interface. The markerToSD method takes an

object which conveys information of a marker (markers are explained in

Section 6.2). As a return value, it returns an SD value which contains

147

OpenText
Wrapper

JDBCWrapper

WebWrapper

Visual User
Interface

Web Oracle8
/ mSQL

OpenText

NRSDProcessor
SDMaterializer

Navigable
SDMaterializer

NRSDProcessor

NRSDProcessor

NRSDProcessor

Mediator

Figure 8.2: Interfaces among modules

148

the materialized text element body.

Navigable A module with this interface provides a means to process op-

erations relevant to hypertext links. Figure 8.5 shows a part of this

interface. Methods navigate, importSD, and export are value-at-a-

time versions of Navigate, Import, and Export operators in WebNR/SD

algebra. Method export returns objects having interface Anchor. The

Anchor is an interface that is implemented by Hlink value objects.

It provides methods relevant to hypertext link navigation. Method

importASD is used to execute SDA(Import(r)). The method is intro-

duced in order to avoid ine�cient execution of the expression. Without

this method, execution of SDA(Import(r)) means that after Import

operator fetches the contents of Web pages, SDA operator has to dis-

card some part of the contents. The importASD is implemented not to

fetch unnecessary parts of the contents in advance.

Method ExecutableExpr of the NR/SD Processor interface is very im-

portant. Although all the wrappers have the common interface \NRSD Pro-

cessor," wrappers are di�erent in their query processing capability. The

ExecutableExpr returns description of query processing power of the mod-

ule at the algebra operator level. Therefore, it allows the mediator to know

the di�erence of query processing capability.

149

public interface NRSDProcessor{

InfoSourceMetaData getMetaData();

// returns metadata of the relations the module can operate

..

String executableExpr();

// returns executable expression specifications

RelationHandle executeExpr(NestedList NRSDExpr);

// returns RelationHandle objects referring to

// the result relation

..

}

Figure 8.3: NRSD Processor interface (in part)

public interface SDMaterializer {

SD markerToSD(Marker marker);

}

Figure 8.4: SD Materializer interface (in part)

public interface Navigable{

RelationHandle navigate(Anchor start, NestedList pathRegExpr);

Anchor export(SD sd, Object Locator, String GI, String text)

SD importSD(Anchor anchor);

SD importASD(Anchor anchor, NestedList as1, NestedList as2);

// composite operator equivalent to SDA(Import(R)).

...

}

Figure 8.5: Navigable interface (in part)

150

8.5 Data Communication among Modules

Logically, in the integration system, all kinds of data objects | not only re-

lations stored in relational databases, but also document collections and Web

pages | are transformed into relations by wrappers. And the unit of data

transfer is a relation. However, naive implementation of such a framework

requires the modules to spend a lot of working space, and sometime unnec-

essary data translation and transfer occur. In the prototype system, data

objects are transferred on demand. The on-demand policy is realized as fol-

lows. (1) It implements the basic spirit of query processing and optimization

scheme explained in Chapter 6. It decomposes queries into a number of ex-

pressions the wrappers can process, although it does not use query rewriting

rules. In addition, it implements methods for ASD values. (2) It transfers

relation handle objects instead of relations themselves. Actual tuples are

transferred on demand. Thus, unnecessary data objects are not transferred

into the visual user interface module and the mediator. For example, the

visual user interface module requires one tuple at a time in browsing.

In addition to relations, there are many types of data objects which are

transferred among modules. In the following, the major data objects are

explained. The modules exchange metadata of information sources, infor-

mation about query processing capability of the mediator and wrappers,

151

WebNR/SD algebra expression objects, and relation handle objects.

Metadata of information sources Metadata of an information source is

represented by an object having InfoSourceMetaData interface. Basi-

cally, an InfoSourceMetaData object consists of a number of objects

having RelationMetaData interface. Each of them contains metadata

of a relation stored in the information source. The RelationMetaData

interface is designed based on JDBC's ResultSetMetaData interface.

Figure 8.6 shows a part of RelationMetaData interface.

Query processing capability information As described before, modules

(i.e. the mediator and wrappers) vary in the degree of the query pro-

cessing capability. Information about query processing capability of

a module is represented by a string-typed data object called an exe-

cutable expression speci�cation. It contains the syntax of executable

expressions whose alphabets are WebNR/SD algebra operators. Fig-

ure 8.7 shows the executable expression speci�cation of the Opentext

wrapper.

WebNR/SD algebra expressions A WebNR/SD algebra expression is

represented by a data object of NestedList class. For example, ex-

pression Uaddr!(city[city] as x)(�addr(Faculty 1fname=supervisor (Group 1

�mname='Lin'(Member)))) is represented as \(US (addr (city (RIG

city) X)) (PROJECTION (addr) (JOIN (= fname supervisor)

152

(REL Faculty) (NJOIN (REL Group) (SELECTION (= mname

'Lin') (REL member))))))."

Relation handles In the prototype system, relations in WebNR/SD are

implemented by relation handle objects. Namely, it is relation handle

objects that wrap physical data structures which correspond to logical

relations. The actual data structures vary among the mediator and

wrappers. When the JDBC wrapper obtains the query result from the

JDBC driver, the result is represented by a java object whose type is

determined by JDBC API. On the other hand, the Illustra database

stores nested relations in the form of a number of
at relations, and

the mediator deals with them through cursors. As mentioned before,

by transferring relation handle objects instead of objects containing

all data in relations, the system realizes on-demand tuple transfer for

reduction of working spaces of the modules.

8.6 Screen Shots of the Prototype System

In this section, some screen shots of the prototype system are shown. Figure

8.8 shows a data box for relation \Member" in the Oracle 8 database. It also

shows the corresponding metadata box. In this �gure, the user is submitting

an elementary HQBE description. Figure 8.9 shows a data box for a docu-

153

public interface RelationMetaData{

int getAttCount(); // the number of attributes

String getAttName(int index); // attribute name of

index-th attribute

int getAttIndex(String attName); // inverse of getAttName

int getAttType(int index); // type identifier of

index-th attribute

String getAttTypeName(int index); // type name of

index-th attribute

RelationMetaData getMetaData(int index);

// RelationMetaData of sub-relations

in index-th attribute

}

Figure 8.6: RelationMetaData interface (in part)

Expr ::= ['SDA'] ['SELECTION_R'] '(REL' RELATION ')' ;

Figure 8.7: Executable expression speci�cation for the Opentext wrapper

ment collection in the Opentext database. Figure 8.10 shows a data box for

a Web page. The page is written in XML.

154

Figure 8.8: Data box and metadata box for a relation in the Oracle 8 database

155

Figure 8.9: Data box for a document collection in the Opentext database

156

Figure 8.10: Data box for a Web page

157

Chapter 9

Conclusions

This dissertation has proposed a new information integration system for

structured documents, Web, and relational databases. In order to achieve

symmetric and dynamic integration of the information sources, the system

employs hybrid and symmetric data models which combine nested relations

and SD values with dynamic transformation mechanisms. This dissertation

has shown that utilization of the hybrid and symmetric data models is a very

promising approach to attain the integration. This is the main contribution

of this dissertation. More detailed contributions are summarized below.

158

Hybrid and Symmetric Data Models

In Chapter 5, three variations of the hybrid and symmetric data models |

the NR/SD integration models | have been explained. They are NR/SD,

NR/SD+, and WebNR/SD. By providing WebNR/SD algebra expressions

that express a complex information integration example, this chapter has

shown the applicability of the models to practical integration problems.

Query Processing and Optimization Scheme in the
Proposed Integration System

Chapter 6 has shown that the query expressions written in the NR/SD in-

tegration models can be processed in the practical system having mediator-

based architecture. Also, it has shown that there is a query optimization

scheme for more e�cient processing in the information integration system

based on this approach.

Visual User Interface

Chapter 7 has described design of a visual user interface for integration of

structured documents, Web, and relational databases. The user interface

159

gives a means to cope with the largeness and complexity which arise in

integration of heterogeneous and distributed information sources. To my

knowledge, HQBE is the �rst visual data manipulation language designed

for integration of heterogeneous information sources.

Development of a Prototype System

Chapter 8 has explained the basic design of a prototype system. Currently,

the prototype system is working in part. Development of the prototype sys-

tem has shown that the proposed information integration system is imple-

mentable, and that, since this approach is based on existing approaches, the

implementation can be e�ectively supported by existing software products

such as Illustra.

I think integration of heterogeneous and distributed information sources

continues to be one of the most important issues in practical computer uti-

lization. I hope that in the future the technology of information integration

will provide people with the ability of manipulating all kinds of information

in the world easily, as they like.

160

Bibliography

[AB84] Searge Abiteboul and Nicole Bidoit. Non �rst normal form rela-

tions to represent hierarchically organized data. In Proc. ACM

Symposium on Principles of Database Systems, pages 191{200,

Waterloo, Ontario, Canada, 1984.

[AB86] Serge Abiteboul and Nicole Bidoit. Non �rst normal form rela-

tions: An algebra allowing data restructuring. Journal of Com-

puter and System Sciences, 33(3):361{393, December 1986.

[Abi97] Serge Abiteboul. Querying semi-structured data. In Proc. 6th

International Conference on Data Theory (ICDT'97), pages 1{

18, 1997.

[ACM93] Serge Abiteboul, Sophie Cluet, and Tova Milo. Querying and

updating the �le. In Proc. 19th VLDB Conference., pages 73{84,

1993.

161

[ACM95] Serge Abiteboul, Sophie Cluet, and Tova Milo. A database in-

terface for �le update. In Proc. ACM SIGMOD Conference.,

pages 386{397, 1995.

[AFS89] Serge Abiteboul, Patrick C. Fischer, and H. J. Scheck. Nested

Relations and Complex Objects in Databases. no. 361 in Lecture

Notes in Computer Science. Springer-Verlag, 1989.

[AQM+97] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer

Widom, and Janet L. Wiener. The Lorel query language for

semistructured data. International Journal on Digital Libraries,

1(1):68{88, 1997.

[AV97] Serge Abiteboul and Victor Vianu. Queries and computation on

the Web. In Proc. 6th International Conference on Data Theory

(ICDT'97), pages 262{275, 1997.

[BCK+94] G. Elizabeth Blake, Mariano P. Consens, Pekka Kilpel�ainen,

P. Larson, T. Snider, and F. Tompa. Text/relational database

management systems: Harmonizing SQL and SGML. In Proc.

International Conference on Applications of Databases, no. 819

in Lecture Notes in Computer Science, pages 267{280, Vadstena,

Sweden, 1994.

[BDH+95] Peter Buneman, Susan B. Davidson, Kyle Hart, G. Christian

Overton, and Limsoon Wong. A data transformation system for

162

biological data sources. In Proc. 21st VLDB Conference, pages

158{169, 1995.

[BDHS96] Peter Buneman, Susan B. Davidson, Gerd G. Hillebrand, and

Dan Suciu. A query language and optimization techniques for

unstructrured data. In Proc. ACM SIGMOD Conference, pages

505{516, 1996.

[BLS+94] Peter Buneman, Leonid Libkin, Dan Suciu, Val Tannen, and

LimsoonWong. Comprehension syntax. SIGMOD Record, 23(1),

1994.

[BSOO96] N. H. Balkir, E. Sukan, Gultekin Ozsoyoglu, and M. Ozsoyoglu.

VISUAL: A graphical icon-based query language. In Proc. DE

Conference, pages 524{533, 1996.

[Bun97] Peter Buneman. Semistructured data. In Proc. 16th ACM Sym-

posium on Principles of Database Systems (PODS'97), pages

117{121, 1997.

[Bur91] Forbes J. Burkowski. An algebra for hierarchically organized

text-dominated databases. Information Processing & Manage-

ment, 28(3):333{348, 1991.

[CACS94] Vassilis Christophides, Serge Abiteboul, Sophie Cluet, and

Michel Scholl. From structured documents to novel query fa-

163

cilities. In Proc. ACM SIGMOD Conference, pages 313{324,

1994.

[CCB95] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J.

Burkowski. An algebra for structured text search and a frame-

work for its implementation. The Computer Journal, 38(1):43{

56, 1995.

[CGT75] Donald D. Chamberlin, Jim N. Gray, and Irving L. Traiger.

Views, authorization, and locking in a relational database sys-

tem. In Proc. National Computer Conference, pages 425{430,

Anaheim, 1975.

[CHMW96] Michael Carey, Laura Haas, Vivek Maganty, and John Williams.

PESTO: An integrated query/browser for object databases. In

Proc. VLDB Conference, pages 203{214, Munbai, India, 1996.

[CM94] Mariano P. Consens and Tova Milo. Optimizing queries on �les.

In Proc. ACM SIGMOD Conference, pages 301{312, Minneapo-

lis, Minnesota, 1994.

[CM95] Mariano P. Consens and Tova Milo. Algebras for querying text

regions. In Proc. ACM Symposium on Principles of Database

Systems, pages 11{22, 1995.

[Cod70] E. F. Codd. A relational model for large shared databank. Com-

munications of the ACM, 13(6):377{387, May 1970.

164

[Col89] Latha S. Colby. A recursive algebra and query optimization for

nested relations. In Proc. ACM SIGMOD Conference, pages

273{283, Portland, OR, 1989.

[Col90] Latha S. Colby. A recursive algebra for nested relations. Infor-

mation Systems, 15(5):567{582, 1990.

[CSG94] Latha S. Colby, Lawrence V. Saxton, and Dirk Van Gucht. Con-

cepts for modeling and querying list-structured data. Informa-

tion Processing & Management, 30(5):687{709, 1994.

[CST92] W. Bruce Croft, Lisa Ann Smith, and Howard R. Turtle. A

loosely-coupled integration of a text retrieval system and an

object-oriented database system. In Proc. ACM SIGIR Con-

ference, pages 223{232, 1992.

[DKS92] Weimin Du, Ravi Krishnamurthy, and Ming-Chien Shan.

Query optimization in heterogeneous DBMS. In Proc. of the

18th VLDB Conference, pages 277{291, Vancouver, British

Columbia, Canada, 1992.

[EP90] Ahmed K. Elmagarmid and Calton Pu, editors. Special Issues

on Heterogeneous Databases, volume 20 of ACM Computing Sur-

veys. 1990.

[FFK+97] Mary F. Fernandez, Daniela Florescu, Jaewwoo Kang, Alon Y.

Levy, and Dan Suciu. STRUDEL: A Web-site management sys-

165

tem. In Proc. SIGMOD Conference, pages 549{552, Tucson,

May 1997.

[FSTG85] Patrick C. Fischer, Lawrence V. Saxton, Stan J. Thomas, and

Dirk Van Gucht. Interactions between dependencies and nested

relational structures. Journal of Computer and System Sciences,

31(3):343{354, 1985.

[FT83] Patrick C. Fischer and Stan J. Thomas. Operators for non-

�rst-normal-form relations. In Proc. IEEE COMPSAC83, pages

464{475, Chicago, 1983.

[FWM97] Thorsten Fiebig, J�urgen Weiss, and Guido Moerkotte. RAW:

A relational algebra for the Web. In Proc. of the Workshop on

Management of Semi-structured Data, pages 34{41, May 1997.

[GF88] Dirk Van Gucht and Patrick C. Fischer. Multilevel nested re-

lational structures. Journal of Computer and System Sciences,

36(1):77{105, 1988.

[GG88] Marc Gyssens and Dirk Van Gucht. The powerset algebra as a

result of adding programming constructs to the nested relational

algebra. In Proc. ACM SIGMOD Conference, pages 225{232,

Chicago, Illinois, 1988.

166

[GKD97] Michael R. Genesereth, Arthur M. Keller, and Oliver M.

Duschka. Infomaster: An information integration system. In

Proc. SIGMOD Conference, pages 539{542, Tucson, May 1997.

[Guc87] Dirk Van Guch. On the expressive power of the extended rela-

tional algebra for the unnormalized relational model. In Proc.

ACM Symposium on Principles of Database Systems, pages 302{

312, San Diego, California, 1987.

[GW97] Roy Goldman and Jennifer Widom. DataGuides: En-

abling query formulation and optimization in semistructured

databases. In Proc. VLDB Conference, Atheans, Greece, 1997.

[GZ89] Ralf H. G�uting and Roberto Zicari. An introduction to the

nested sequences of tuples data model and algebra. In Nested

Relations and Complex Objects in Databases, no. 361 in Lecture

Notes in Computer Science. Springer-Verlag, 1989.

[GZC89] Ralf H. G�uting, Roberto Zicari, and David M. Choy. An algebra

for structured o�ce documents. ACM Trans. O�ce Information

Systems, 7(4):123{157, April 1989.

[HBP94] A. R. Hurson, M. W. Bright, and Simin H. Pakzad, editors.

Multidatabase Systems: An Advanced Solution for Global Infor-

mation Sharing. IEEE Computer Society Press, 1994.

167

[HIL95] Eben M. Haber, Yannis E. Ioannidis, and Miron Livny. OPOS-

SUM: Desk-top schema management through customizable vi-

sualization. In Proc. VLDB Conference, pages 527{538, Zurich,

Switzerland, 1995.

[Hir97] Satoshi Hirano. HORB: Distributed execution of java programs.

In Proc. International Conference on Worldwide Computing and

Its Applications, pages 29{42, Tsukuba, Japan, 1997.

[HN96] Joseph M. Hellerstein and Je�ery F. Naughton. Query execution

techniques for caching expensive methods. In Proc. SIGMOD

Conference, pages 423{434, Montreal, Canada, 1996.

[HS93] Joseph M. Hellerstein and Michael Stonebraker. Predicate mi-

gration: Optimizing queries with expensive predicates. In Proc.

SIGMOD Conference, pages 267{276, Washington, DC, USA,

1993.

[Hug] Hughes Technologies, Ltd. Hughes technologies web site.

http://www.Hughes.com.au/.

[HY84] Richard Hull and Chee K. Yap. The format model: A theory

of database organization. Journal of the ACM, 31(3):518{537,

1984.

[Inf] Informix Software, Inc. Informix home page. http://www.

informix.com/.

168

[ISO86] ISO. Information processing { text and o�ce system { standard

generalized markup language (SGML), 1986. ISO 8879.

[ISO92] ISO. Hypermedia/time-based structuring language (Hytime),

1992. ISO/IEC 10744.

[JN95] Kalervo J�arvelin and Timo Niemi. An NF2 relational interface

for document retrieval, restructuring and aggregation. In Proc.

SIGIR Conference, pages 102{110, 1995.

[JS82] G. Jaeschke and H.-J. Schek. Remarks on the algebra of non

�rst normal form relations. In Proc. ACM Symposiumon on

Principles of Database Systems, pages 124{138, Los Angeles,

CA, 1982.

[KD95] Christian Kalus and Peter Dadam. Flexible relations { oper-

ational support of variang relational structures. In Proc. of

the 21th VLDB Conference, pages 539{550, Zurich, Switzerland,

1995.

[KK89] Hiroyuki Kitagawa and Tosiyasu L. Kunii. The Unnormalized

Relational Data Model | For O�ce Form Processor Design|.

Springer-Verlag, 1989.

[Kra97] Ralf Kramer. Databases on the Web: Technologies for federation

architectures and case studies. In Proc. SIGMOD Conference,

pages 503{506, Tucson, May 1997.

169

[KS95] David Konopnicki and Oded Shmueli. W3QS: A query system

for the world-wide web. In Proc. of VLDB Conference, pages

54{65, 1995.

[LSS96] Laks V. S. Lakshmannan, Fereidoon Sadri, and Iyer N. Subra-

manian. A declarative language for querying and restructuring

the Web. In Proc. of the 6th Int. Workshop on Research Issues

in Data Eng. (RIDE'96), February 1996.

[Mai83] David Maier. The Theory of Relational Databases. Computer

Science Press, 1983.

[Mak77] Akifumi Makinouchi. A consideration on normal form of not-

necessarily-normalized relation in the relational data model. In

Proc. 3rd VLDB Conference, pages 447{453, 1977.

[MK93] Lil Mohan and Rangasami L. Kashyap. A visual query language

for graphical interaction with schema-intensive databases. IEEE

Trans. Knowledge and Data Engineering, 5(5):843{858, 1993.

[MK97a] Atsuyuki Morishima and Hiroyuki Kitagawa. A data modeling

and query processing scheme for integration of structured docu-

ment repositories and relational databases. In Proc. Fifth Inter-

national Conference on Database Systems for Advanced Appli-

cations (DASFAA'97), pages 145{154, Melbourne, April 1997.

170

[MK97b] Atsuyuki Morishima and Hiroyuki Kitagawa. A data modeling

approach to the seamless information exchange among struc-

tured documents and databases. In Proc. 1997 ACM Sympo-

sium on Applied Computing (ACM SAC'97), pages 78{87, San

Jose, Feburary 1997.

[MK97c] Atsuyuki Morishima and Hiroyuki Kitagawa. Integrated query-

ing and restructuring of the world wide web and databases. In

Proc. International Symposium on Digital Media Information

Base (DMIB'97), pages 261{271, Nara, Japan, 1997.

[MK98] Atsuyuki Morishima and Hiroyuki Kitagawa. NR/SD+ data

model and its query processing | for integration of structured

documents and relational databases. Transactions of Infor-

mation Processing Society of Japan, 39(4):964{967, 1998. (in

Japanese, with English Abstract).

[MM97] Alberto O. Mendelzon and Tova Milo. Formal models of

Web queries. In Proc. 16th ACM Symposium on Principles of

Database Systems (PODS'97), pages 134{143, 1997.

[MMM96] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo.

Querying the world wide web. In Proc. PDIS'96, pages 80{91,

December 1996.

171

[NS96] Tam Nguyen and V. Srinivasan. Accessing relational databases

from the world wide web. In Proc. SIGMOD Conference, pages

529{540, Montreal, 1996.

[�OM�O89] Gultekin �Ozsoyo�glu, Victor Matos, and Z. Meral �Ozsoyo�glu.

Query processing techniques in the summary-table-by-example

database query language. ACM TODS, 14(4):526{573, 1989.

[Ope] Opentext Corporation. Opentext home page. http://www.

opentext.com/.

[Ora] Oracle Corporation. Oracle home page. http://www.oracle.

com/.

[�OW89] Gultekin �Ozsoyo�glu and Huaqing Wang. A relational calculus

with set operators, its safety, and equivalent graphical languages.

IEEE Trans. on Software Engineering, 15(9):1038{1052, Sept.

1989.

[PBE95] Evaggelia Pitoura, Omran A. Bukhres, and Ahmed K. Elma-

garmid. Object orientation in multidatabase systems. ACM

Computing Surveys, 27(2):141{195, June 1995.

[PGMW95] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer

Widom. Object exchange across heterogeneous information

sources. In Proc. 11th Data Engineering Conference, pages 251{

260, 1995.

172

[PGMW96] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer

Widom. MedMaker: A mediation system based on declarative

speci�cations. In Proc. 12th Data Engineering Conference, pages

132{141, 1996.

[QRS+95] Dallan Quass, Anand Rajaraman, Yehoshua Sagiv, Je�rey Ull-

man, and Jennifer Widom. Querying semistructured heteroge-

neous information. In Proc. 4th International Conference on De-

ductive and Object-Oriented Databases (DOOD'95), pages 319{

344, Singapore, 1995.

[RAH+96] Mary Tork Roth, Manish Arya, Laura M. Haas, Michael J.

Carey, William F. Cody, Ronald Fagin, Peter M. Schwarz,

Joachim Thomas II, and Edward L. Wimmers. The garlic

project. In Proc. SIGMOD Conference, page 557, Montreal,

Canada, 1996.

[RS97] Mary Tork Roth and Peter M. Schwarz. Don't scrap it, wrap it!

a wrapper architecture for legacy data sources. In Proc. VLDB

Conference, pages 266{275, Athens, Greece, 1997.

[SDAMZ94] Ron Sacks-Davis, T. Arnold-Moore, and J. Zobel. Database sys-

tems for structured documents. In Proc. International Sympo-

sium on Advanced Database Technologies and Their Integration,

pages 272{283, Nara, Japan, 1994.

173

[SDKR+95] Ron Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom, and

J. Zobel. Atlas: A nested relational database system for text

applications. IEEE Trans. Knowledge and Data Engineering,

7(3):454{470, 1995.

[ST92] Airi Salminen and Frank Wm. Tompa. PAT expressions: an

algebra for text search. In Proc. the 2nd International Confer-

ence on Computational Lexicography (COMPLEX '92), pages

309{332, 1992.

[TF86] Stan J. Thomas and Patric C. Fischer. Nested relational struc-

tures. Advances in Computing Research, 3:269{307, 1986.

[Tri91] Phil Trinder. Comprehensions, a query notation for DBPLs. In

Proc. International Workshop on Database Programming Lan-

guages, pages 49{62, 1991.

[VAB96] Marc Volz, Karl Aberer, and Klemens B�ohm. Applying a
exible

OODBMS-IRS-coupling to structured document handling. In

Proc. 12th Data Engineering Conference, 1996.

[W3C97] W3C. HTML 4.0 speci�cation, December 1997. World Wide

Web Consortium Recommendations, http://www.w3.org/.

[W3C98] W3C. Extensible markup language (XML) 1.0, February

1998. WorldWide Web Consortium Recommendations, http://

www.w3.org/.

174

[Wie92] Gio Wiederhold. Mediators in the architecture of future infor-

mation systems. IEEE Computer, 25(3):38{49, March 1992.

[YA94] Tak W. Yan and Jurgen Annevelink. Integrating a structured-

text retrieval system with an object-oriented database system.

In Proc. 20th VLDB Conference, pages 740{749, Santiago, Chile,

1994.

[YIU96] Masatoshi Yoshikawa, Osamu Ichikawa, and Shunsuke Uemura.

Amalgamating SGML documents and databases. In Proc. 5th

International Conference on Extending Database Technology,

March 1996.

[YKY+91] Kenichi Yajima, Hiroyuki Kitagawa, Kazunori Yamaguchi,

Nobuo Ohbo, and Yuzuru Fujiwara. Optimization of queries

including ADT functions. In Proc. of International Symposium

on Database Systems for Advanced Applications (DASFAA'91),

pages 366{373, Tokyo, Japan, 1991.

[Zlo77] Mosh M. Zloof. Query by example: a data base language. IBM

Systems Journal, 16(4):324{343, 1977.

175

