Real-Time Generation
for
Optimal Robot Motion

Graduate School of Systems and Information Engineering
University of Tsukuba
March,2005

Takeuchi Hiroki

Doctor’s Thesis
submitted to Graduate School of Systems and Information Engineering
University of Tsukuba
in partial fulfillment of requirements for the degree of
DOCTOR of ENGINEERING
Takeuchi Hiroki

March 2005

NI e

Takeuchi Hiroki, Graduate School of Systems and Information Engineering

Author

~

et

Inn
Suw
=

=

Certified by

Yasunobu Seiji, Professor, Thesis Adviser

Thesis committee:

Professor, Thesis Adviser: Yasunobu Seiji
Professor: Sankai Yoshiyuki
Professor: Onisawa Takehisa
Associate Professor: Hori Noriyuki

Associate Professor(Osaka University): Ohtsuka Toshiyuki

Copyright(©)2005 Takeuchi Hiroki

yasunobu
takeuchi

yasunobu
安信サイン

Acknowledgement

The author would first like to express his sincere gratitude to warm encouragement and
support of his adviser, Dr. Yasunobu Seiji in pursuing this research. The author gratefully
acknowledges the support of The University of Tsukuba and staffs from The Graduate
School of Systems and Information Engineering. Especially he also thanks Dr.Ohtsuka
Toshiyuki. Dr.Ohtsuka did support to him when he was in Tsukuba University.

The author is also appreciative of my lovely guitars Tokai EA-25 and Taylor-510CE
which have comforted him with some songs. Montgomery’s book ”Green Gables Anne”
has given him struggling with the research great hope and various beautiful words about
nature of Prince Edward Island.

iii

Abstract

Robot movement generation requires optimization treatment. However, the need for
off-line computation makes it difficult to apply traditional optimization techniques to
real-time robot control. An important goal is to develop a new algorithm that allows for
real-time optimization. The most likely candidate which is called as Receding Horizon
Control or Model Predictive Control algorithms have yet to be widely applied to real-time
robot control environments.

This thesis uses a legged robot as a control object, one that possesses unstable dynamics
and requires specific balance conditions, with the Zero Moment Point balance condition
being a particularly important challenge. Equal constraint, proposed in this thesis as
a means for meeting such conditions during optimization formulation, overcomes Zero
Moment Point problems.

The state variable inequality constraint is a complex challenge because the optimal path
must tangentially enter a constrained arc, and one or more time constraint derivatives
must equal zero at all entry points. A second challenge addressed in this thesis is the
description of a legged robot’s swing leg condition as a state variable inequality. Both the
nonlinear swing leg and Zero Moment Point balance conditions are involved in Receding
Horizon Control formulation.

In this thesis, improvements in the Receding Horizon Control algorithm are discussed,
and a new algorithm that allows for real-time robot control is proposed. The real-time
optimization techniques described in this paper can be applied to various industrial envi-
ronments, including aerospace, railway, and automobile manufacturing.

Contents

1 Introduction
1.1 Background
1.2 Conventional Research Overview
1.2.1 Optimization Theory and Calculus History
1.2.2 Early Practical Application of Optimization Theory
1.2.3 Real-Time OS and Control
1.2.4 Formula Manipulation
1.3 Objective and Approach

2 Application of Optimization Problem to Mechanics

2.1 Introduction
2.2 Definition of Optimization Problem
2.3 Equal Constraint
2.4 Gradient Method

2.4.1 First Order Gradient of Performance Index

2.4.2 Various Sorts of Gradient Method

2.4.3 Example of Gradient Method
2.5 Application of Gradient Method to real-time control robot and Matters . .
2.6 Conclusion e

3 Real-Time Optimization Technique

3.1 Introduction
3.2 Homotopy Method
3.3 Continuation Method
3.4 Solve Optmization Problem with Stabilized Continuation Method

3.4.1 Formulation
3.5 Receding Horizon Control
3.6 Conclusions

4 Real-Time Control for Robot
4.1 Introduction e
4.2 Numerical Model
4.2.1 Lagrange Method
4.2.2 Newton-Euler Formulation
4.2.3 State Equations
4.3 Real-Time Control using Modern Control Theory

vii

4.4 Singular Pointo

4.5 Real-Time OS e
4.5.1 Real-Time OS
4.5.2 Interrupts

4.6 Application to Legged Robot Control

4.7 Conclusions

Equal Constraint for Balance Condition of Legged Robot
5.1 Introduction

5.2 Receding Horizon Control with Equality Constraint
5.3 Formulation
5.3.1 Model Expression as a Point Mass
5.3.2 Equality Constraints
5.3.3 Performance Index
5.4 Numerical Simulation
5.4.1 Two Dimensional Formulation
5.4.2 Three Dimensional Formulation
5.5 Mass Behavior and ZMP
5.5.1 Imcaseofz >0
5.5.2 Incaseof Cut Acrossx=0
5.5.3 Sudden Acceleration
5,54 Sudden Stop
5.6 Weight Matrix
5.7 Application
5.7.1 Inthe Caseofa Biped
5.7.2 In the Case of a Quadruped,
5.8 Conclusion

State Variable Inequality Constraint of Swing Leg

6.1 Introduction e e
6.2 Modeling of Swing Lego
6.3 Performance Index
6.4 Numerical Calculation
6.5 Constraint for Swing Legso
6.5.1 State Variable Constraint
6.5.2 Slack Variable Method
6.5.3 Performance Index
6.5.4 Numerical Calculation(Linear Case)
6.5.5 Numerical Calculation (Nonlinear Case)
6.6 Conclusion e

Nonlinear Receding Horizon Gradient Method

7.1 Introduction
7.2 Continuation Method and Gradient
7.2.1 Continuation Method
7.2.2 Gradient

7.2.3 Sampling Interval Lo 90

7.3 Simulation 92
7.3.1 Example 92

7.3.2 Nonlinear Two Link System 96

7.4 Practical Installation into Real-Time System 101
7.5 Singular Point 107
7.6 Conclusion e 111

8 Conclusion and Recommendation 113
8.1 Overall Perspective 113
8.2 Recommendations for Future Research 114

A Transition Matrix 117

List of Figures

1.1 Main Objective
2.1 Two Points Boundary Value Problem
2.2.1 x1(Steepest Descent)
2.2.2 x9(Steepest Descent)
2.2.3 Ai(Steepest Descent) oo
2.2.4 Xo(Steepest Descent)
2.2.5 wy(Steepest Descent)
2.2.6 Performance index value / Number of iteration (Steepest Descent)
2.3 Dilemma between off-line optimization and real-time control
3.1 Predictor-Corrector Method
3.2 1l case in Predictor-Corrector Method
3.3 Solve Optimization Problem with Continuation Method
3.4 Moving Horizon
4.1 Force and Moment on a Link
4.2 Frame Relation Lo

4.3 Difference between Optimal Regulator and Receding Horizon Control . . .
4.4 Structure of Real-Time OS
4.5 Interrupt driven I/O cycle Lo
4.6 Control for Legged Robot

5.1 Definition of Zero Moment Point
5.2 Definition of sagittal plane and frontal plane
5.3 Linearization and Reduction 0000000
54 2-D Model in Sagittal Plane oL
551 x(2-Dcase)
5,52 z(2-Dcase)
553 (2-Dcase)
5.54 Z(2-Dcase)
5.5.5 wg(2-Dcase)
5.5.6 wy(2-Dcase)
5.5.7 wuzyp(2-Dcase) o o oo
5.5.8 Sum of errors (2-Dcase)
5.5.9 Left side of equal constraint(2-D case)
5.5.10 Right side of equal constraint(2-D case)
5.6 3 Dimensional Formulation o0

xi

571 x(3-D Case) oo 46
5.72 y(3-D Case) 46
5.73 z(3-D Case) 46
5.74 (3D Case) 46
575 y(3-D Case) 46
5.76 2(3-DCase) 46
5.7.7 we(3-D Case)o 46
5.78 uy(3-D Case) 47
5.79 w,(3-D Case) 47
5.710 uzyp,(3-D Case) oo 47
5.7.11 UZMPy (3-D Case) 47
5.7.12 Left side of the equal constraint(3-D Case) 47
5.7.13 Right side of the equal constraint(3-D Case) 47
5.7.14 Sum of Error1-6(3-D Case) 47
5.7.15 Mass Behavior Ahead x=0/Behind x=0 48
5716In Caseof z >0 Lo 49
581 x(InCaseofx>0) 50
582 y(InCaseof x> 0) 50
583 z(InCaseofx >0) 50
584 i(InCaseof x >0) 50
585 g(InCaseof z>0) 50
586 z2(InCaseofz>0) 50
587 wuy(InCaseof x>0) 50
588 wuy(InCaseof z>0) 51
589 wu,(InCaseofx>0) 51
5.8.10 uzyp,(In Caseof x >0) 51
5811 uzyp,(In Caseof 2 >0) 51
5.9.1 x(Across =10) 54
5.9.2 y(Across . =0) 54
5.9.3 z(Across x =10) 54
594 @(Acrossz=0) 54
595 g(Acrossx=0) 54
5.9.6 Z(Acrossz=0) 54
5.9.7 wgz(Across z=0) 54
5.9.8 wuy(Acrossx=0) 55
5.99 wu (Across z=0) 55
5.9.10 uzpp,(Across x=0) 55
5.9.11 uzyp,(Acrossx=0) 55
5.10.1 x(Sudden Acceleration) 57
5.10.2 y(Sudden Acceleration) 57
5.10.3 z(Sudden Acceleration)o Lo 57
5.10.4 #(Sudden Acceleration)o 57
5.10.5 y(Sudden Acceleration)o 57
5.10.6 Z(Sudden Acceleration) 57
5.10.7 u,(Sudden Acceleration) 57

xii

5.10.8 w,(Sudden Acceleration) Lo 58

5.10.9 w,(Sudden Acceleration)o 58
5.10.10uzpp, (Sudden Acceleration)o 58
5.10.11uzpp, (Sudden Acceleration) 58
5.11.1 x(Sudden Stop) 60
5.11.2 y(Sudden Stop) 60
5.11.3 z(Sudden Stop) 60
5.11.4 &(Sudden Stop) 60
5.11.5 g(Sudden Stop) 60
5.11.6 2(Sudden Stop) 60
5.11.7 uz(Sudden Stop) 60
5.11.8 wy(Sudden Stop) 61
5.11.9 u,(Sudden Stop) 61
5.11.10uzpp, (Sudden Stop)o 61
511.11uzpyp,(Sudden Stop) 61
5.12.1 x(Make ugzypsmall)o 63
5.12.2 y(Make uzpyp small)o 63
5.12.3 z(Make uzpyp small)o 63
5.12.4 (Make uzpyp small) 63
5.12.5 g(Make ugzpypsmall) oo 63
5.12.6 Z(Make uzypsmall)o 63
5.12.7 uz(Make ugzpypsmall)o 63
5.12.8 uy(Make uzppsmall)o 64
5.12.9 w,(Make uzpypsmall) o .00 64
5.12.10uzpyp,(Make ugzpyp small) . . . 0 0000 64
512.11uzpyp,(Make ugpyp small) .o 000 64
513 Caseof Biped 65
5.14 Control Block Diagram 66
5.15 Case of Quadruped 66
6.1 Image of formulization oo 71
6.2.1 x(No Constraint Case) 73
6.2.2 z(No Constraint Case) 73
6.2.3 6;(No Constraint Case) 73
6.2.4 6y(No Constraint Case) o 73
6.2.5 #(No Constraint Case) 73
6.2.6 Z(No Constraint Case) 73
6.2.7 0;(No Constraint Case)o 73
6.2.8 6y(No Constraint Case)o 74
6.2.9 wu,(No Constraint Case) 74
6.2.10 u,(No Constraint Case) 74
6.2.11 up, (No Constraint Case) v 74
6.2.12 up,(No Constraint Case) 74
6.2.13 uzyp(No Constraint Case) 74

6.2.14 Stick Figure(No Constraint Case) 74

6.3 Parameters 75

6.4.1 x(Linear Case) 79
6.4.2 z(Linear Case) 79
6.4.3 Op(Linear Case) 79
6.4.4 6Gy(Linear Case) 79
6.4.5 Z(Linear Case) 79
6.4.6 Z(Linear Case) 79
6.4.7 Oy(Linear Case)ot 79
6.4.8 Oy(Linear Case) oo ot 80
6.4.9 slack d(Linear Case) 80
6.4.10 slack d(Linear Case) 80
6.4.11 u,(Linear Case) 80
6.4.12 u,(Linear Case) 80
6.4.13 up, (Linear Case) 80
6.4.14 ug,(Linear Case) 80
6.4.15 uzyp(Linear Case)o 80
6.4.16 ugqer(Linear Case) 81
6.4.17 py(Linear Case) 81
6.4.18 po(Linear Case) 81
6.4.19 Stick Figure(Linear Case) 81
6.5.1 x(Nonlinear Case) 84
6.5.2 z(Nonlinear Case) 84
6.5.3 0;(Nonlinear Case) 84
6.5.4 6y(Nonlinear Case) 84
6.5.5 @(Nonlinear Case) 84
6.5.6 Z(Nomlinear Case) 84
6.5.7 O1((Nonlinear Case) oo v vt 84
6.5.8 Oy(Nonlinear Case) 85
6.5.9 slack d(Nonlinear Case) 85
6.5.10 slack d(Nonlinear Case) 85
6.5.11 u,(Nonlinear Case) 85
6.5.12 u,(Nonlinear Case) 85
6.5.13 up, (Nonlinear Case) 85
6.5.14 wg,(Nonlinear Case) 85
6.5.15 uzyp(Nonlinear Case) 85
6.5.16 ugqer(Nonlinear Case) 87
6.5.17 pi(Nonlinear Case) 87
6.5.18 po(Nonlinear Case) 87
6.5.19 Stick Figure(Nonlinear Case) 87
7.1 Differential changes in the terminal time 91
7.2 scaling for input variableo 92
7.3.1 x;(dashed line: gradient method, solid line: RHGM) 94
7.3.2 1zy(dashed line: gradient method, solid line: RHGM) 94
7.3.3 wuy(dashed line: gradient method, solid line: RHGM) 94

Xiv

7.3.4 \j(dashed line: gradient method, solid line: RHGM) 94

7.3.5 Xy(dashed line: gradient method, solid line: RHGM) 94
7.3.6 Errory(RHGM) 94
7.3.7 Errory(RHGM)0 o 95
7.4 Nonlinear Two link system 96
7.5 Experiment Systemo 97
7.6.1 6;(Nonlinear Two link System (vertical)) 98
7.6.2 Oy(Nonlinear Two link System (vertical)) 98
7.6.3 0y(Nonlinear Two link System (vertical)) 98
7.6.4 6y(Nonlinear Two link System (vertical)) 98

7.6.5 wg, (Nonlinear Two link System (vertical)) 98
7.6.6 g, (Nonlinear Two link System (vertical)) 98
7.6.7 Ai(Nonlinear Two link System (vertical)) 99
7.6.8 Xy(Nonlinear Two link System (vertical)) 99
7.6.9 A3(Nonlinear Two link System (vertical)) 99
7.6.10 A4(Nonlinear Two link System (vertical)) 99
7.6.11 Error;(Nonlinear Two link System (vertical)) 99
7.6.12 Errory(Nonlinear Two link System (vertical)) 99
7.6.13 Errorz(Nonlinear Two link System (vertical)) 100
7.6.14 Errory(Nonlinear Two link System (vertical)) 100
7.6.15 Stick Figure(Nonlinear Two link System (vertical)) 100
7.7 Experiment Device)o 102
7.8.1 6;(from counter)(Experiment) 103
7.8.2 Oy(from counter)(Experiment)o 103
7.8.3 0y(from counter)(Experiment) 103
7.84 Oy(from counter)(Experiment) 103
7.8.5 Orreference(Experiment) Lo 103
7.8.6 Oareference(Experiment) oL 103
787 Oire ference(EXperiment)o o Lo 103
7.8.8 0o ference(EXperiment)o oL Lo Lo 104
7.8.9 wy(Experiment)o 104
7.8.10 uga(Experiment)o 104
7.8.11 Stick Figure(Experiment), . 104
7.9.1 6 (Kinematic Three Links) 109
7.9.2 6y(Kinematic Three Links) 109
7.9.3 63(Kinematic Three Links) 109
7.9.4 6 (Kinematic Three Links) v v i 109
7.9.5 Oy(Kinematic Three Links)o 109
7.9.6 03(Kinematic Three Links) 109
7.9.7 Errori(Kinematic Three Links) 109
7.9.8 Errory(Kinematic Three Links) 110
7.9.9 Errors(Kinematic Three Links) 110
7.9.10 Errors(Kinematic Three Links) 110
7.9.11 Errors(Kinematic Three Links) 110
7.9.12 Errorg(Kinematic Three Links) 110

7.9.13 Stick Figure(Kinematic Three Links)

xXvi

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

Simulation Data(2-D Case) 39
Simulation Data(3-D Case) 45
Simulation Data(In caseof z >0) 49
Simulation Data(Cut Across x=0) 53
Simulation Data(Sudden Acceleration) 56
Simulation Data(Sudden Stop) 59
Simulation Data(Make uzyp small) 62
Two Links Mechanical Parameters. 72
Parameters for Simulation(without constraint) 72
Parameters for Simulation(Linear Case) 78
Parameters for Simulation(Nonlinear Case) 83
Simulation Data L o 93
Simulation Datao 97
Experiment Specand Data 0oL 102
Simulation Data for Kinematic Three Links 108

XVvil

Legend

Symbol Definition
g gravity acceleration
href helght of C.G.
b position along x axis
z velocity along x axis
x acceleration along x axis
y position along y axis
Y velocity along y axis
] acceleration along y axis
z position along z axis
z velocity along z axis
z acceleration along z axis
Tref reference trajectory along x axis
Yref reference trajectory along y axis
Zref reference trajectory along z axis
Tref reference velocity trajectory along x axis
Yref reference velocity trajectory along y axis
Zref reference velocity trajectory along z axis
Uy input along x axis
Uy input along y axis
U, input along z axis
Uzmp ZMP input
Ty x of terminal state variable
Yy y of terminal state variable
2f z of terminal state variable
A co-state variable
10} constraint at terminal state
M Inertial Matrix
\Y% coliolis term
G gravity term
H hamiltonian
¢ 4F =—(-F
F Error of transversality condition F' = ¢, (z(t,T)) — A(¢,T)
R weight matrix at performance index
Q weight matrix at performance index
At time step on real-time axis
AT time step on moving evaluated interval
* variable on moving evaluated interval
my mass of link;
Mo mass of links
I length of link,

xviil

Definition

i+1
TR

length of link,
length of links
length of link; center of gravity
length of links center of gravity
02‘ . lZAz = [0, 0, QZ]T
rotational matrix : Frame;— > Frame;
rotational matrix : Frame;.1— > Frame;

Acronyms and Abbreviations

Symbol

Definition

TPBVP
RHC
MPC

RHGM
SCGRA
MQA
ZMP
C.G.

RTOS
2-D
3-D
0S

Two Point Boundary Value Problem
Receding Horizon Control
Model Predictive Control
Receding Horizon Gradient Method
Sequential Conjugate Gradient Restration Algorithm
Modified Quasi Linearlization Algorithm
Zero Moment Point
Center of Gravity
Real-time Operating System
Two Dimensional
Three Dimensional
Operating System

XX

Chapter 1

Introduction

1.1 Background

Developments in computer technology have made real-time robot control possible at
very high levels of intelligence. Current work in control theory is aimed at industrial ap-
plications that require optimal performance in terms of maneuverability and non-linearity.
A common example is a car’s braking system, which requires real-time operations that
allow drivers to avoid accidents. Other machines require real-time controllers to avoid
instability, which can lead to accidental damage or the complete destruction of systems,
people, or objects.

When machines are designed for specialized functions, control is considered a relatively
straightforward task. That is not the case today, since robots and other machines are
becoming more complex and generalized. Today’s engineers must therefore deal with the
issue of motion generation. Some of the earliest work in this area involved aerospace
applications. One problem in spacecraft design involves generating a vehicle orbit that
satisfies a considerable number of requirements, including air conditions, gravity, fuel
consumption, upper output limits, and acceleration limits. Similar problems have arisen
in other industrial fields as computer have progressed.

The first discussions of the optimization problem can be traced to the 16th century
mathematicians Leonhard Euler(1707-1783) and Johann Bernoulli(1667-1748). The tran-
versality condition was solved by Joseph-Louis Lagrange(1736-1813) in the 17th century.
Variations in these methods were developed but not applied for several centuries. Lev
Semenovic Pontryagin (1908-1988) started work on a theory of oscillations and automatic
control with his physicist friend A. A. Andoronov in the 1930s. However, solvable opti-
mization problems were restricted in the 1950s and 1960s because computer capacity was
limited and formula manipulation had yet to emerge. In a book entitled ”The Mathe-
matical Theory of Optimal Processes” (1961)[1], Pontryagin claimed Maximal Principle.
His proposal made it possible to establish the variation method. Computers could then
be used for optimization, which led to the creation of the gradient method. The gradient
method was favored by many researchers because of its simplicity and utility, leading
to a considerable number of variations-for example, the Sequential Conjugate Gradient
Algorithm (SCGRA)[2] and the Modified Quasi Linearlisation Algorithm (MQA)[3].

The formula manipulation tool has had an important role in developing optimization
techniques. Software was developed for solving accelerator problems that could not be

solved by hand, and the original tool was subsequently adapted for a variety of mathemat-
ical problems. Commercial tools such as Mathematica and Maple have made it possible
for computers to be used to solve differential equations and to manipulate formulas in the
calculus of variation. These tools raised the bar in terms of effectiveness when the multi-
links numerical model was derived for robotics. Advancements in optimization techniques
were also made possible by this new environment.

A real-time OS is required to control such real-time oriented machines as robots, intelli-
gent automobiles, and aerospace vehicles. Whereas an ordinal operating system does not
ensure time-restricted commitment execution, an RTOS does, making RTOS a require-
ment in environments where control is measured in terms of milliseconds.

This requirement has fueled a large amount of research in real-time optimization tech-
niques, resulting in a considerable number of gradient method variations. Still, the method
suffers from a considerable drawback in the form of off-line calculations that require ex-
cessive amounts of time. For instance, several workstation hours are needed to calculate
aerospace orbit optimization. Determining an optimal trajectory from preliminary stocks
requires a modern approach that utilizes a Receding Horizon Control (RHC) or Model
Predictive Control (MPC) algorithm. Both algorithms hold considerable potential for
real-time (dynamic) optimization.

1.2 Conventional Research Overview

1.2.1 Optimization Theory and Calculus History

Philosopher and mathematician Bernard Bolzano(1781-1848) was one pioneer in the
area of fundamental calculus concepts. However, Bolzano’s proofs involved arithmetic,
algebra and analysis, whereas Johann Carl Friedrich Gauss(1777-1855) offered proofs of
the fundamental theorem of algebra using geometry. The calculus has often been described
as arising from the Pythagorean recognition of the difficulty involved in attempting to
substitute numerical considerations for continuous geometrical magnitudes. Sir Isaac
Newton(1642 - 1727) avoided this via the intuition of continuous motion, and Gottfried
Wilhelm Leibniz (1646-1716) evaded the question via the postulate of continuity. In his
definition of continuous function, Bolzano asserted that the basis of continuity was found
in the limit concept. His definition of a function f(x) as continuous in an interval if for
any value of x in the interval the difference f(z + dz) — f(x) becomes and remains less
than any given quantity for dx that is sufficiently small is essentially the same as that
later offered by Augustin-Louis Cauchy (1789-1857). After recognizing that the subject
could be explained in terms of limits of finite difference ratios, Bolzano defined the F(x)
derivative for any value of x as the F’(x) quantity in which the ratio:

F(x —dx) — F(x)
5 (1.1)

indefinitely approaches as dz approaches zero[4] [5].

Pierre de Fermat(1601-1665) proposed the principal which light travels in minimum time
with calculus of variations. Johannes Bernouil(1667-1748) solved brachistchrone problem

2

in discrete step using Fermat idea. Issac Newton (1642-1727) used calculus of variations to
design minimum drag nose shape of a projectile. Leonard Euler published ”The Method
of Finding Curves that Show Some Property of Maximum or Minimum. Jean Louis
Lagrange (1736-1813) invented a method of variations and multipliers. Euler adopted
this idea and proposed Euler-Lagrange equations. Adrean Marie Legendre(1752-1833)
proposed the second variation. William Rowan Hamilton (1805-1865) published his work
on least action in mechanical systems that involved two partial differential equations. Karl
Gustav Jacob Jacobi(1804-1851) proposed Hamilton-Jocobi equation based on Hamilton’s
result. Karl Wilhelm Theodor Weierstrass (1815-1897) proposed the condition involving
excess function, which is predecessor of maximum principle of Pontryagin.

Pontryagin submitted ” The Mathematical Theory of Optimal Processes” in 1962; Richard
Bellman had already used the term in the 1940s to describe the problem-solving process
in which best decisions are found one after another. Bellman also proposed dynamic
programming-a method to directly solve the Hamilton-Jacobi-Bellman equation begin-
ning at terminal conditions. However, this method is considered impractical because it
requires storing entire extremal fields in computer memory.

The original method for solving optimal problems involved choosing values for unspec-
ified initial conditions and improving estimates of terminal conditions in order to satisfy
specific terminal conditions. A major challenge associated with this method is that ex-
tremal solutions are too sensitive for estimating initial conditions. The gradient method
was proposed to get around this difficulty. Such a direct integration method, which is con-
sidered practical for finding extremal solutions, is characterized as an iterative algorithm
for improving estimates of control histories to reach optimal and boundary conditions.
While the first order gradient method does offer a dramatic improvement for a few iter-
ations, convergence slows considerably as the trajectories approach an optimal solution.
For this reason, a second order gradient has been created for later iterations.

1.2.2 Early Practical Application of Optimization Theory

Robert H Goddard(1882-1945) worked on the aerospace trajectory problem (i.e., the
optimal thrust series required to reach maximum altitude[6]) as early as 1919. Toward
the end of his report, Goddard described a scenario in which a rocket reached the moon
and detonated its load of ignitable powder to mark its arrival.

The shooting method was initially adopted to solve the spacecraft orbit problem, pri-
marily because the method was feasible for analyzing conservative systems. However,
since Euler-Lagrange equations are considered unstable for aircraft dynamics, the shoot-
ing method is considered unfeasible for aircraft dynamics. In an attempt to overcome this
instability, the initial value of the Lagrange multiplier from a gradient code was used as
an initial estimate. The gradient method (considered sufficient for arriving at an accurate
solution) was used to calculate the minimum time for a low-thrust spacecraft to travel
from Earth to Mars. The gradient method was also used to determine the minimum time
for an F'4 fighter to reach the highest altitude for launching a Sparrow missile.

1.2.3 Real-Time OS and Control

A real-time system (used when rigid time requirements are placed on processor oper-
ations or data flow) serves as a control device in a dedicated application. Applications
that commonly use real-time systems are medical imaging, industrial control, and certain
types of displays. Real-time systems have well-defined, fixed time constraints within which
processing tasks must be completed. The two primary categories of real-time systems are:

% Hard real-time system These systems ensure that all critical tasks are completed
on time. To accomplish this, all system delays (from the retrieval of stored data
to the time it takes the operating system to finish a request) are bounded. Most
advanced operating systems tend to separate users from their hardware, resulting
in uncertainty concerning the amount of time an operation requires. Since virtual
memory is almost never found in real-time systems, hard real-time systems cannot
be used with time-sharing systems. No existing general-purpose operating systems
support hard real-time functionality.

% Soft real-time system These are considered less restrictive systems in which critical
real-time tasks are given priority over other tasks and retain priority status they
are completed. Kernel delays need to be bounded. Soft real-time systems can be
mixed with other types of systems. Given their lack of deadline support, they are
considered risky for industrial control purposes. However, because of their expanded
functionality, soft real-time systems have been added to most current operating
systems, including major versions of UNIX.

1.2.4 Formula Manipulation

Formula manipulation programs have specific differentiation and integration capabilities
and supporting simplification, display and input/output editing, and precision arithmetic
capabilities. Mathematica, Maple, and Reduce are three commercial examples and Max-
ima is an open-source example. These tools empower PCs to a) produce multi-link system
dynamic equations, and b) work with calculus operations associated with optimization
techniques.

1.3 Objective and Approach

A significant issue in robot construction is motion generation; without good motion
generation software, even well-built hardware will perform poorly. Although optimization
techniques allow for smooth and natural motion, the off-line computing characteristic is
considered disadvantageous for real-time robot control.

Based on my conviction that Receding Horizon Control (RHC) will eventually become
a key technology for generating high-performance robot motion, the main objectives of
this thesis are to show how Receding Horizon Control can be applied to real-time robot
control and to start the development process for a Receding Horizon Control algorithm.

4

This thesis consists of eight chapters.

Overview of optimization problem is introduced in chapter 2. Formulation in optimiza-
tion problem is defined in section 2.2. A gradient method is explained in section 2.3. The
defect points of gradient method are discussed in section 2.3.

Real-time optimization is discussed in chapter 3. Homotopy method is introduced in
section 3.1. Continuation method is introduced in section 3.2. Receding Horizon Control
theory is explained in section 3.3.

Real-time control is discussed in chapter 4. Numerical model for optimization is intro-
duced in section 4.1. Modern control theory is introduced in section 4.2. How to real-time
control robot is discussed in section 4.3.

Chapter 5 gives an application of Receding Horizon Control to legged robot motion
generation. Any type of legged robot has to be considered for Zero Moment Point bal-
ance condition. How the condition could be involved in formulation of Receding Horizon
Control is discussed in this chapter. Two dimensional plane and three-dimensional space
simulation are mentioned in section 5.4

Chapter 6 gives an application of Receding Horizon Control to swing leg of legged
robot. The notion of Chapter 5 is extended to formulation with swing leg. Constraint of
swing leg condition is more complicated than equal constraint in Chapter 5. Inequality
constraint and state variable constraint are discussed in this chapter.

Chapter 7 proposes a new algorithm of Receding Horizon Control. To avoid difficulties
of complicated matrix manipulation in former algorithm[7][8], this algorithm has been
reduced to be simple and basic. Such basic measure could be lead to further develop-
ment of Receding Horizon Control algorithm. The algorithm is explained in section 7.2.
Simulation is introduced in section 7.3.

| Main Objective |
Real-Time Generation for Optimal Robot Motion

E (1) Equal Constraint ~ (2) Inequality Constraint ! ——

| I |)

1 11 : . 9

: Support Leg SWIng Leg Legged Robot E

1 "1 1 8_

' X ' 2

1 1

' ZMP Balance Condition :: Position of the tip of the leg>01 C;
1

! ' ' Z

BNy A ll_ 4

............................ Y ..

(3) Receding Horizon Gradient Method

Matrix Manipulation Simpler

Slack Variable Method b e a

Figure 1.1: Main Objective

Chapter 2

Application of Optimization
Problem to Mechanics

2.1 Introduction

There are various types of formulation about optimization. In this section, formulation
necessary for mechanical object is briefly explained.

The algorithm of Gradient Method is also explained here. Well known algorithms in
Gradient Method are described.

2.2 Definition of Optimization Problem
The state equation treated is multi-variable and nonlinear.

#(t) = fla(t), u(t),] (2.1)

x denotes state variable, u denotes input variable, t denotes real-time. x(t):n vector
function is determined by u(t):m vector function.

Considered performance index is scalar function. The optimization problem is to find
the functions u(t) that minimizes the performance index.

J = ¢lz*(T +1t)] + /0 ' Liz(t), u(t), t]dt (2.2)

1) denotes terminal conditions. Then Hamiltonian is defined as:

H = Liz(t), \(t),u(t), t] + X (t) - flz(t),u(t),t] (2.3)

denotes co-state variable, which fills the role as Lagrange multiplier. Euler-Lagrange
equation below is derived from Hamiltonian.

At) = —HT (2.4)

H,=0 (2.5)

7

i(t) = —H} (2.6)
£(0) = zo(?) (2.7)

Ats) = ¢g [2(ts)] (2.8)

Euler-Lagrange equation gives the initial condition of the state and the terminal con-
dition of the co-state and its fact implies the notion about two points boundary value
problem as Fig.2.1. The initial condition about the state is known but the terminal
condition is not known. However, the initial condition about co-state is not known but
the terminal condition is known. This improperly paired problem is called as two points
boundary value problem. If all condition in Euler-Lagrange equation is satisfied, any
gradient is not raised.

X).(:HA(X, u, t)
|

known |

C\/\QL unknown

A)1.=Hx(x, u, t)

unknown

Figure 2.1: Two Points Boundary Value Problem

2.3 Equal Constraint

It takes more than state equation to solve mechanical control object. Limitation of
control input, constraint of state variable, particular condition about the mechanics, dy-
namics change, and etc. could not be described without equal constraint. Let us see how
equal constraint is useful in this section. Here we have a equal constraint as:

Clz(t), ult),] = 0 (2.9)

We have to consider this constraint to be involved into Euler-Lagrange equation.A new
lagrange multiplier p is introduced here and Hamiltonian is:

H=1L+M\(t) fla(t),ut),t] + pT(¢) - Cla(t), ult), 1] (2.10)

To search the control input u to minimize Hamiltonian H means to solve H, = 0. If
Euler-Lagrange equation is satisfied, then the equal constraint is also satisfied.

2.4 Gradient Method

Gradient method is well known and has been used in science and engineering field. In
this section, the method is explained.

2.4.1 First Order Gradient of Performance Index

Consider the first order variation in J due to variations in the control vector u(t) for
fixed time ¢y and ty,

! ty .
M:@%ﬁ%mw+Wmuﬁ/Km+ﬂww+mmﬁ (2.11)
to
ty
to

This equation implies that is the gradient of J if u(t) holds a constant value. If x(¢)
holds a constant, H, represents the variation in J.

2.4.2 Various Sorts of Gradient Method

Gradient method has various variations nowadays. Such mainstays are introduced here.

1. Sequential Gradient Restoration Algorithm

Sequential Gradient Restoration method[2] has been introduced to solve nonlinear
programming problems. The idea of this method is optimization process is divided
into two phases: gradient phase and restoration phase.

(a) Restoration Phase

Equation(2.11) and (2.12) are the conditions of the restoration, then the per-
formance index at this phase is defined as Equation(2.13).

C(z,u) =0 (2.13)

& —¢(z,u) =0 (2.14)

p:/f Hi’—gb(x,u)Hdt—i—/f IClz, u]| dt (2.15)

to to

(b) Gradient Phase
The augmented performance index is defined as:

J = Pl—o + / f[f(x,u) + A& — o(z,u) + p" C(x,u)]dt (2.16)

to

Its first order differential is :
tr . tr ty
Q= [|- st dta=clofar [55+ 6ta - Cpldes [a6 at
t t t
’ ’ T 1)

Equation(2.15) is merely considered in optimization at this phase. The restora-
tion conditions are not considered here. The process of the method iterates
these phases alternatively, and the gradient is reduced step by step.

2. Modified Quasi-linearization Algorithm

P and Q are reduced at once in MQA[3]. MQA uses second order variation because
partial differential of P and Q. Q is originally first order function, and its partial
differential comes to be second order. First order algorithm converges dramatically
at first few steps, however its convergence could not last long in later steps. This
is because the algorithm uses the gradient going up through first order variation.
Then, second order algorith like as MQA 1is used for making good convergence at
the later steps.

2.4.3 Example of Gradient Method

An example[11] solved with steepest descent algorithm. The state equation is defined
as.

d aa(®)] _ [0 = ak(t) = s30)aa(t) —2a(6) + u(®)
=] =1 A (218)

Performance index is defined as.

T =2 @)+ adey) + [(20 +a3e) + o) (2.19)

to

The solution is figured in Fig.2.2. This algorithm is converged within 30 iterations.

10

x1

1md2

1 2 3 4 5
time (s)

1 2 3 4 5
time(s)

Fig2.2.1 x1(Steepest Descent)
Fig2.2.4 Aa(Steepest Descent)

x2

! 2t:ime (s) ’ * ’ 0.5
Fig2.2.2 xo(Steepest Descent) .

1 2 3 4 5
time(s)

Fig2.2.5 uy (Steepest Descent)

1mdl
o
[- T T S

1 2 3 4 5
time (s)

Fig2.2.3 A1 (Steepest Descent) *

Performance Index Value

5 10 15 20 25 30
Iteration
Fig2.2.6 Performance index value /

Number of iteration (Steepest Descent)

2.5 Application of Gradient Method to real-time con-
trol robot and Matters

The question that inevitably arises in real-time control of robot is how to make motion
generation. Robot cannot behave without this solution. Its trajectory or motion must be
optimized so as to possess naturally smoothness. Some robot of early date does awkward
motion because some trigonometric functions make up the motion function.

However optimization must be needed, its calculation time is too long to execute on
real-time controller. For example, 5 seconds simulation needs 1-hour calculation time.
Then the measure which pre-optimized trajectories are stored in computer memory was
taken. The defect of this measure is lack of flexibility against unexpected happening.
The action of the robot is restricted in the measure. It cannot maximize the effect of the
optimization.

Iteration
Off-line Computing On-line Computing
Optimization Control
Gradient Method Real-Time Control

Computing Capacity

Figure 2.3: Dilemma between off-line optimization and real-time control

12

2.6 Conclusion

Optimization formulation and application to real-time control is discussed in this chap-
ter. Equal constraint is quite useful to make necessary conditions for mechanics involve
with formulation of optimization. Gradient Method is popular to solve optimization prob-

lem.

Chapter 3

Real-Time Optimization Technique

3.1 Introduction

Homotopy Method and Continuation Method constitute substantial portion of Receding
Horizon Control used in this study. Those fundamentals are explained in this chapter.

3.2 Homotopy Method

A banach space which the sphere with radius r forms is defined as:

B={z e X||r>=z|} (3.1)

B — > X is put a case that it is compact mapping

M, t) = (1 =71)-g(x) +7- f(z)

(z,7) € B x[0,1] (3.2)
This equation has a property as:
h(z,0) = g(z)
h(z,1) = f(z) (3.3)

This is called Homotopy of mapping f(x) and g(x). g(x) has the trivial solution g(zo).

h(z,7) = (1 =7) - g(zo) +1- f(2) (3.4)

We can obtain the solution shifting from 7 = 0(trivial solution g(z¢)) to 7 = 1.

3.3 Continuation Method

To obtain the solution using Homotopy method, the solution trajectory must be tracked
along parameter t. Predictor-Corrector Method is orthodox for the tracking. Predictor-
Corrector Method is composed of two steps below.

15

(1)Predictor
The Jacobian of f(x) is defined as:

Dften) = ., 35)

Then calculate Df(xy) at the current point z,. The current point is redefined as the
contact point and a line v(x) directing to Df(zy) is assumed.

Df(zo)v(z) =0 (3.6)

(2)Corrector The length of v(x) is,

lv()]| =1 (3.7)

A normal line is set from the point which has distance v(x) from the point xy. The
intersection of the normal line with the curve f(x) is set as the next point. Iterating these
steps until t=1 and the tracking of the solution trajectory can be done.

v
xk /
xk+1

Figure 3.1: Predictor-Corrector Method

Figure 3.2: Il case in Predictor-Corrector Method

One of defects of this method is a case, which the curve of the solution trajectory is
extremely crooked like as Fig.3.2.

16

3.4 Solve Optmization Problem with Stabilized Con-
tinuation Method

3.4.1 Formulation

Let us consider to solve a generalized optimization problem below with continuation
method. 7 € [0, 1] is defined as a continuation parameter

&(t) = flx(t), u(t),t, 7| (3.8)

J = glu(ty)] + / " LLe(e), u(t) b, 7)dt (3.9)

One of the advantages to use Continuation Method is that it starts from a trivial
solution. Popular one is terminal time t; = 0. Transversality condition comes off as
below. Starting from ¢y = 0, TPBVP extends the terminal time bit at a time.

¢(z(0)) = A(0) (3.10)
In order to make the Euler-Lagrange equation transit in a continuous fashion, the

perturbation from optimal path of Euler-Lagrange equation. In this case, the terminal
time is unspecified.

d)\(tf) = Qppdx + %¢wdtf (3.11)

The formation of the equation avobe resembles the formation of the equation in Back-
ward Sweep Method[23]. An equation below is assumed to obtain costate variable in
Backward Sweep Method.

IAN(t) = S(t)ox + c(t)dt (3.12)

These S and ¢ are defined as equations below.

d

ES(t)z—AT-S—S-AJrS-B-S—C (3.13)
%c(t) =—(AT-S8-B)-c (3.14)

The matrix A is treated in transition matrix[23](Appendix:A).
d |z A —B| |éx
dt Ln} = {—c —AT] LS)J (8.15)

C(t) = H, —H, -H, -H,

The costate variable can be obtained from equations above, and we can also obtain
optimal input variable in the equation below.

H, =0 (3.16)

Optimal Solution

[\ t

Trivial Solution =0

Figure 3.3: Solve Optimization Problem with Continuation Method

3.5 Receding Horizon Control

Receding Horizon Control or Moving Horizon Control has been emerged as a feed-
back strategy for linear and nonlinear plants. Mayne and Michalska[19], Eaton and
Rawlings[21] proposed formulations for nonlinear system. Some stability analysis about
linear system without constrains at finite horizon[15][14]. The concept of Receding Hori-
zon Control is to determine the control input that optimizes some open loop performance
objective on a time interval extending from the current time to the future terminal time.
One of the features is that feedback is incorporated using the measurement to update the
optimization problem for the next time step. Ohtsuka and Fujii[7][8] has developed an
algorithm using homotopy notion and backward sweep method. This algorithm is used
for numerical simulation in Chapter5 and Chapter6. An idea of homotopy method like
here is that they had their eye on error of transversality condition. TPBVP on receding
horizon has transversality condition:

F = \ty) — ¢u(z(ty)) (3.17)

The difference between Receding Horizon Control and previous section is that the eval-
uated interval of performance index moves along time. Because Receding Horizon Control
updates the initial condition of the state variable, it gives state feedback. We have to make
a notation to describe such space as x*(t,7). The axis 7 means the evaluated interval.

The initial digits of the input variable and costate variable to update on real-time axis.
This is feature of Receding Horizon Control. Controller uses only initial array of variables
on 7T axis.

18

Figure 3.4: Moving Horizon

d . .
(L) = 57(,0) - 62 + ¢"(t,0) (3.18)

H, =0 (3.19)

* means that the variable is on 7 axis.

Receding Horizon Control predicts future performance from current time until ¢ +
T. Receding Horizon Control is different from full-time optimization. The full-time
optimization evaluates performance index in full range of the time. However, advantage
of Receding Horizon Control is that it can treat with unexpected happening real-timely.

3.6 Conclusions

Homotopy Method and Continuation Method are the basic building block of Receding
Horizon Control algorithm. Backward Sweep Method is well known method to obtain
optimal solution of gradient method traditionally. Receding Horizon algorithm is com-
posed of Continuation Method and Backward Sweep method. Chapter5 and Chapter 6
are explained using this algorithm.

Chapter 4

Real-Time Control for Robot

4.1 Introduction

Real-time control of a robot requires specific items. The numerical model of a robot
can be described as mechanical link system. Then some method of its derivation has been
considered. The popular one is Lagrange Method, another one is Newton-Euler Method.
Those methods are briefly introduced in this chapter.

Real-time OS is also indispensable item. What take a look at its contexture is important
to consider real-time optimization technique.

4.2 Numerical Model

The robot must be numerically modeled when real-time control of the robot is done.
In robotics engineering, methods to build numerical model of link mechanism has been
developed. Such methods are Lagrange Method, Newton-Euler Method, and so on.

4.2.1 Lagrange Method

Lagrange Method derives numerical model from kinetic energy and potential energy.
Because Lagrange Method uses generalized coordinates, arbitrary coordinates without
Cartesian coordinates. It has flexibility that some restrictions can be added when the
problem is formulated. This method has been effective after some formula manipulation
softs emerged. K is defined as kinetic energy and P as potential energy. Lagrange function
L is,

L=K-P (4.1)

The variable of generalized coordinates denotes q:

d (0L oL
at (a—c)) (42)

21

4.2.2 Newton-Euler Formulation

Newton-Euler formulation is force and moment -based, and requires an ability to de-
scribe all the forces and moments acting upon the different components of the link-system.

C.G.

Figure 4.1: Force and Moment on a Link

The degree of the freedom of each component is six. To describe the movement, trans-
lational motion: three and rotational motion: three are needed. D denotes kinetic mo-
mentum, E denotes angular momentum.

dD
F=— 4.
o (4.3)
dE
N=— 4.4
o (4.4)

The relation between links ”i” and ”i+1” is described as rotational matrix. The rota-
tional matrix, which is from link ”i” to ”i4+1” is defined as:

‘ COS (91'4_1 —sin 6@'—}-1 0
iviR= |sinfi; cosli; O (4.5)
0 0 1

The inverse operation of it is defined as:

COS (91'4_1 sin (91'4_1 0
R = |—sin6,, cosbiy O (4.6)
0 0 1

This notation is based on [10]. Angular velocity, which is from the coordinate ”i” to
the coordinate ”i+1”, is defined as:

iwi+1 (47)

The formulation is recursive and simple sequence. It is divided to inward iterations and
outward iterations.
(Inward Iteration) Link 0 — > The end effector: (Angular Velocity)

22

Frame i

78 ~Frame i+1

Figure 4.2: Frame Relation

i+1 _ itlpi) i1 5
wiy1 = ;5 Rwi+01"" Zip
0
i 5
0;

(Angular Acceleration)
i+1 - __ i+l pi;). i+lp i+1 pi). i+l n. i+l5
Wiy1 = R'wi + 01" Zigy + 77 Rlwy X 010" Zijn + 01" Zi
(Translation Acceleration)
e i -
T =R (" X Py +fwi X ("wy X TPig) + ')

(Translation Acceleration at the center of the gravity)

i+1 (it - i i+1 i+1 i+1 i+1,
Voip1 = (" Wip1 X "Poipr + T wipr X (Twipr X T Paiga) 17 i)

(Force of Translation motion)

i+1ﬂ+1 = Mjy1 H_I{JCH-I (4'11)
(Moment of Translation Motion)
LN, = O G ORI L (4.12)
(Outward Iteration) The end effector — > Link 0:

fi =i R fin +F (4.13)
‘n; ="'N; + f+1Ri+1m’+1 + Poi X 'Fy + "Piyqy X L R iy (4.14)
4.2.3 State Equations

To describe the robot model as a state equations, joint angle and joint angular velocity
are tend to be defined as the state variables, joint torques are defined as input variables.

0. (t)
: 01(t)
d |0.(t) :
~ |~ — o 4.1
dt | 01(¢) O, (t) (4.15)
: M (u—-V(0,0) - G(O))
0a(t)
01(t) uy ()
0= : JU = : , M :inertial matriz,V : colioris term, G : gravity term
On(t) Uun(t)

Describing nonlinearlity causes complication to be feasible. In the era when there is no
formula manipulation software, Three-Dimensional description was too much difficult to
be feasible. Then such measurements below were considered:

% Two 2-D equations constitute a 3-D model.
% The perturbation model is used and the model is simplified.
% Eliminate some nonlinear terms

% Linearization

After formula manipulation software has been emerged, this problem has not been
critical.

24

4.3 Real-Time Control using Modern Control The-
ory

Various methods have been developed to control robot or another subjects. Classical
control theory, H infinity, Fuzzy, Neuro-control, Adaptive control, have been applied into
real-time control of robot. In such applications, most controversial feature is how to
generate its motion, especially each joint trajectory.

The basic in modrn control theory is optimal regulator. However, optimal regulator was
not designed for robotics originally. Optimal regulator treats state equation as a linear
problem.

t=A-x+B-u (4.16)

Matrix A and B should be time invariant. Such equation could not treat nonlinear
dynamics like as robot arm.

u(t) = M(©(t)) - @(t) + V(O(1), @(t)) + G(O(t)) (4.17)
One of the most popular method to handle nonlinear mechanical links is nonlinear
compensation method. The control input has nonlinear terms.

u(t) (Kp - (@rep = 2(t)) + Ko - (Zrey — (1))

= M(O(t)) -
VK- / (2re) — 2(0))dt + V(O(t), O(1)) + G(O(1)) (4.18)

If the control input above is acted into the control object of a nonlinear mechanical link
system, the nonlinear term of the dynamics is canceled.

O(t) = Ky - (reg — (t)) + Ky - (drey — &(t)) + K - /(xref — a(t))dt (4.19)

Then the dynamics is changed to linear equation, and optimal regulator theory could
be applied. This is main story of nonlinear compensation method. The nonlinear term
is compensated at this method, however, designer have to define the trajectories of the
angular position, velocity, and acceleration of the joints. Optimal regulator acts only at
these error among reference and current states. Angular position, velocity, and accelera-
tion of one link arm like as Fig.4.3 must be defined by a designer. Designer has to consider
how to use gravity term(nonlinear term) well. The link behavior which makes an effective
use of nonlinear term could not be generated automatically.

Autonomous generation needs somewhat intelligence or designers support. Eventual
result always reached to optimization. Optimization could generate a motion closed to
natural motion by animal or human. It is recognized as least energy consumption, least
time, or some least criteria.

If optimization technique treat such problem, the problem is formulated as a TPBVP.
Although the initial and terminal conditions are defined, the transition of the trajectories
rely on optimization process. The links behavior is generated automatically and it makes
an effective use of nonlinear term.

The critical path was the calculation time of optimization. To avoid this, some mea-
surements were considered.

C\ —)

TPBVP Nonlinear Compensation

Figure 4.3: Difference between Optimal Regulator and Receding Horizon Control

4.4 Singular Point

The relation between Cartesian coordination and Joint angle coordination is defined
as:

i=J-0 (4.20)

J is called as Jacobian. We always use Cartesian coordination to order a robot and
have to translate it to joint angle coordination using Jacobian.

O=J"'i (4.21)

J consists of trigonometric functions and J~! diverges if the posture goes to singular
point. To avoid singular point is one of major problems in robotics field.

Jacobian has one more problem that the calculation needs long time if the link system
is large scaled. Computing of the inverse of the Jacobian matrix takes long time. This is
critical path for real-time control.

Furthermore, if the link system is redundant system, it becomes difficult to obtain the
inverse of the Jacobian. A common practice in such case is to make pseudo inverse.

Jt=Jr- gt (4.22)

JT is merely pseudo and it is not real inverse. If we use this to generate robot motion,
it is far from optimal motion.

Receding Horizon Control eliminates these problems because it does not use Jacobian
matrix. These problems are discussed in Chapter?7.

26

4.5 Real-Time OS

4.5.1 Real-Time OS

The round robin scheduling used in Unix cannot treat periodical task processing. If
the system falls in deadlock, which task will over the deadline cannot be expected. Multi-
task real-time operating system treats that the timing control will not interfere[13]. It
has both functional decomposition and time decomposition. The level to make processes
parallelized varies three below:

1. Fine-graded: Statement level
2. Middle-graded: Iteration level

3. Coarse-graded: Function level

Generally the embedded operating system is a coarse-graded.

Real-time system is divided to thread model (Itron, VxWorks) and process model (RT-
Linux). Address space is independent in each process of the process model. The reliability
of the process model is high because the data of process-process is protected. Even if it has
bugs, it is protected. Process model is a Coarse-graded. Object oriented is a thread model.
A large scaled system needs a thread model because of development efficiency. Then,
such two models merits are utilized to multi-process/multi-thread model (QNX,Lynx,OS-
9,v3,0SE). UNIX and Windows also multi-process/multi-thread model. Linux converted
to real-time operating system has varied like as RT-Linux or Time-Sys Linux. RT-Linux
does not have protected function of process model, and if it has a bug, it will be crashed.
Time-Sys Linux has a protect function but the accuracy of time lacks a digit than kernel
space execution.

File System, Network
Service Layer (API)

Scheduler Service Handler

General Purpose
Routine

Interval Timer Interrupt Handler

Device Driver

Figure 4.4: Structure of Real-Time OS

4.5.2 Interrupts

The CPU hardware has a wire called the interrupt-request line. When the CPU detects
that a controller has asserted a signal on the interrupt request line, the CPU saves small

amount of state, and jumps to the interrupt-handler routine at a fixed address in mem-
ory. The interrupt handler determines the cause of the interrupt, performs the necessary
processing, and executes a return from interrupt instruction to return the CPU to the
execution state prior to the interrupt. This basic interrupt mechanism enables the CPU to
respond to an asynchronous event, such as a device controller becoming ready for service.
Most CPUs have two interrupt request lines. One is the non-maskable interrupt, which
is reserved for events such as unrecoverable memory errors. The second is maskable. It
can be turned off by the CPU before the execution of critical instruction sequences that
must not be interrupted. Device controllers to request service use the maskable interrupt.
The interrupt mechanism accepts an address - a number that selects a specific interrupt
handling routine from a small set. In most architecture, this address is an offset in a table
called the interrupt vector. Hitachi Super-H2 has hardware interrupt vector table and the
respond time is several tens - hundreds of nanoseconds. Hitachi Super-H3 has software
interrupt vector table and the respond time is several microseconds. The practical time to
respond for interrupt is interrupt time + interrupt mask time. The interrupt mask time
is based on the time, which is the longest system call time to be taken. Hitachi Super-H3
has several - several tens of microseconds in thread model, several tens of microseconds -
several milliseconds in process model.

Device Driver initiates 1/0

\

Initiates 1/0

CPU receiving interrupt,
transfers control to interrupt

handler
Input Ready, Output complete or

Error generates Interrupt signal

Interrupt Handler processes
data, returns from interrupt

CPU resumes processing of
Interrupted task

Figure 4.5: Interrupt driven I/O cycle

4.6 Application to Legged Robot Control

Modern control theory enabled robot precisely control as acceleration, velocity, and
position level. One of strong progresses in robot control is force control. Sophisticated
force sensor has enabled a controller to add compliance control, and then robot has been

28

able to do some dexterity such as holding Tofu by end-effectors. Control of legged robot
is higher leveled control than another kind of robot because its must be dynamically
balanced. Almost early stage of legged robots does static walk, but nowadays many
legged robots have done dynamic walk. ZMP (Zero Moment Point) must be somewhat
controlled in dynamic walk.

Legged Robot Control

ZNP Balance Control Gait and motion of legs

Figure 4.6: Control for Legged Robot

4.7 Conclusions

Items for real-time control of robot are discussed in this chapter. Newton-Euler Method
to make numerical model for robot is useful item. Formulation of optimization problem
at later chapters treats this model.

To manage real-time control, the knowledge about real-time OS is essential. RT-Linux, Tornado, T-
Engine,etc. are based on real-time OS architecture.

Accumulation of various knowledge is needed for real-time control of a robot.

Chapter 5

Equal Constraint for Balance
Condition of Legged Robot

5.1 Introduction

Legged robot has specific balance condition attributable to the unstable dynamics. It
needs to contrive ways to involve such condition into formulation.

While the legged robot is standing on one foot, the point at which the center of gravity
(C.G.) of the robot is projected onto the ground must be located on the sole plane to
enable it static walk. While standing on two feet, there must be a point on the plane,
which connects both the soles. While standing on four feet, there must be a point on the
polygon, which consist of the four soles. While the robot moves, in order to be stabilized
dynamically and to walk, the same concept is required. Generally, this is called ZMP (Zero
Moment Point [16][17]Fig.5.1). ZMP within sagittal plane(Fig.5.2) can be expressed as
follows from link i=0 to i=n.

ZMP is the point on the ground where ground reaction forces are applied.

= omi(—g + Z)x + L gmdz;
S omi(—g + Z)

g is gravity acceleration and m is the mass of each link. If the "M” is represented for
the whole mass,

— M(g—i—z)x:l—M:vz (5.2)
M(—g+ %)

This equation means that the sum total of moment of the point-mass around the origin
of the coordinate balances with the moment generated by the ZMP distance from the
origin and the reaction force from the ground. If the ZMP is located in the polygon
constituted by the soles as well as the point at which the C.G. projects itself onto the
ground in a static walk, the robot is stabilized and a dynamic walk can be carried out.
If the ZMP runs-over from this polygon, it will cause the robot to fall and it cannot
continue to walk. An attempt to converge the ZMP to a referenced ZMP trajectory
by using feedback control in recent years has been performed [18]. Then, how a ZMP
reference trajectory could be generated poses the next problem.

31

#

j"kZ\'l P

/

Figure 5.1: Definition of Zero Moment Point

FrontalPlane -~

SagittalPlane —

Figure 5.2: Definition of sagittal plane and frontal plane

In the conventional research of legged robot, there are two variables "x” and ”z” in

Equation(5.2) and poses a problem in solving the ZMP variable. Because it is not solved
uniquely. An optimization problem must be solved to obtain a solution. If the condition
, which holds a center of gravity position at fixed height, is added, we can avoid this
problem temporarily. Then, the variable Z in the equation is set to 0, the equation could
be described as follows, and a pseudo solution is uniquely obtained(Fig.5.3).

In the conventional legged robot research, one of big problems was to compute ZMP
by Equation(5.2) since there are two variables of ”x” and ”z”. To avoid this problem,
some treatments had been concerned[22]. The main concept was to make the numerical
model unique. Nonlinear dynamic equation is linearized adding constraints and reduced
to unique equation like as Fig.5.3

A constraint below is added:

2=k-x+ ey (5.3)

hres denotes a fixed height. Then we have linear equation:

. g 1
— . . 4
Z hos x+ — T (5.4)

32

ref

Z /
%
Reaction Force /

V>

| 0
I |
I |
I |
Xz

Figure 5.3: Linearization and Reduction

7 denotes ankle joint torque. The value of ZMP can be obtained from 7 and sensed
value of floor reaction force. Then the ZMP could be in proportion with the acceleration
of x. One of the defects in this equation is that the torque necessary for whole the robot is
collected on the ankle joint. Redundancy, which the robot possesses, could not be utilized
effectively. Equation(5.3) is defined arbitrarily by designer.

% Excessive torque for whole the robot is converged to the ankle joint

% Robot motion is restricted because the constraint is adopted (The motion is on a
linear line)

% Solutions for another joints without the ankle joint could not be obtained

The second item implies that robot motion is not natural. What it takes to utilize
redundancy of a robot is optimization. Since iterative calculation is needed in the opti-
mization by the gradient method, such technique usually turns into off-line calculation.
However, in a robot control that the real-time performance is required, off-line optimiza-
tion is disadvantageous. When an unexpected situation appears, it could not be coped
with.

Many engineering applications require real-time solutions of optimization problems.
However, traditional algorithms for digital computers may not provide real-time opti-
mization. An attractive and promising approach was introduced to real-time solutions for
optimization problems known as Receding Horizon Control [7] [8] [19] [20]. This new op-
timization technique goes into the practical usage stage. Since Receding Horizon Control
does not use a gradient method for optimization, it can carry out calculation processing
of the optimal solution in short time such as a real-time control interval. Although much
research has been conducted in respect to the theory, applying Receding Horizon Control

to robotics still has no actual example. This paper describes ZMP control of the legged
robot using Receding Horizon Control proving that real-time optimization is available.
Furthermore, it proposes a method of generating the optimum ZMP reference [28].

5.2 Receding Horizon Control with Equality Con-
straint

At the first stage in the history of Receding Horizon Control, Receding Horizon Control
has been proposed for the linear system [14]. Then, Chen and Shaw [15], Mayne and
Michalska [19] applied Receding Horizon Control to the general nonlinear system. Mayne
and Michalska [20] is described the Robust design technique of Receding Horizon Control.
Ohtsuka and Fujii [7] [8] developed the practical nonlinear control system design technique
of Receding Horizon Control.

Receding Horizon Control formulation without constraints has been performed back-
wards. In this chapter, Receding Horizon Control containing the equality constraint is
focused on and explained.

The state equation to treat,

#(t) = flz(t), u(t),t] (5.5)
As equality constraint,
Clz(t), u(t),f] = 0 (5.6)

If equality constraint condition can be used, it is convenient when formulizing a problem
like real-time control of a robot.
The performance index is defined as,

t+T
J=¢lz" (T +1)] + /t Liz*(t,7),u"(t,7)|dr (5.7)

Receding Horizon Control has added superscript * to the variable on the time-axis 7
which moves, in order that the evaluation section may move with time. The left side of
the bracket ”(t,7)” means the real time ”t”, and the right side of this bracket means the
time on the 7 axis. Hamiltonian is described as,

H=L+XTf+pTC (5.8)

A*, p*are co-state variables. Euler-Lagrange equations are described as,

N(t,7) = —HY (5.9)
H,=0 (5.10)
i (t,7) = —HY (5.11)

Clz*(t,7),u*(t,7), 7] = (5.12)
" (t,0) = z(t) (5.13)
N(t,T) = ¢y [2"(t,T)] (5.14)

It considers obtaining a solution using the continuation method [7] [8]. The perturbation
from an optimal path is described as:

0t = fpoz + fudu+ f,op (5.15)

0N = —H,w0x — fL6N — Hpbu — H,,0p (5.16)
H,.67 + fLoN + Hyydu — Hyydp =0 (5.17)
Cuu + Cpdz =0 (5.18)

Here,0u and dp are eliminable if Equation(5.17),Equation(5.18) are solved as simulta-
neous equations. Then Equation(5.15),Equation(5.16) are described as:

d |ox A B| |6z
at [5)\] = [C D] [5)\} (5.19)
= fm—i_prJplHuz_prJleuuCJICx_fucljlC:E
fﬂ) H;pl ’ fg

= —Hup+Hp C'-Co—Hyp-Hy) - Hyw+ Hyp- Hy) - Hy - CH - Gy
= —fo —Hy H, - fy

S Qwm =

The subsequent calculation method follows the continuation method which Ohtsuka
and Fujii developed [7] [8]. This is explained briefly below. This technique pursues the
optimal solution so that the error F of the transversality conditions of an Euler-Lagrange
equation is converged to 0.

%F[A(t), (), T(t)] = Coef f - FIA(t), z(t), T(¢)] (5.20)

Thus, F can be stabilized. The equation below is assumed here.

IN*(7,t) = S*(t,7) - dx(t,7) + c*(t, 7)dt (5.21)
This is substituted for Equation(5.19).

S*=D-S"—S§-A-8 -B-§+C (5.22)

cc=(D—-8"-B)-c (5.23)

This terminal value is acquired from Equation(5.21). An S*(¢,0),c*(¢,0) will be ac-
quired if it finds the integral from the terminal value along time reversely.

A(t) = S*(t,0) - &(t) + ¢*(t,0) (5.24)

Then, optimized A(t) will be obtained if it integrates with the upper equation on real

time. Also optimized u(t) can be obtained from H, = 0. See Ohtsuka and Fujii [7] [8] for
detail.

5.3 Formulation

5.3.1 Model Expression as a Point Mass

Modeling of robot mechanics has been studied for many years. One of the ways is to
describe nonlinearity of the robot precisely. However such dynamic equations leads to a
result that the equation itself is too much complicated to treat. Such modeling also could
not be applicable to even similar type robots. From this point of view, a concept of simple
modeling has been emerged. Modeling simply leads to be basic and flexible to apply it to
various type controlled objects. The fundamental treatment should be formulated at first,
and then applied to more complicated modeling properly. However, overdo of reduction
and linearization in modeling leads to many defects mentioned in 5.1 Introduction. The
modeling must be simple, but also, must be with wide application.

In this study, when a legged robot is modeled, the whole robot is treated as a point mass
of most fundamental case. Treating the whole robot center of gravity as inverted pendu-
lum is a technique generally performed. According to such simple modeling, a method
applicable to a biped robot, a quadruped robot, and other multi-legged type robots can
be proposed so that Chapter5.7 may describe. First, in order to help understanding, it
deals with a problem at a 2-dimensional plane. Chapter5.4.2 describes what extended
this to 3 dimensions. As an input of a system, it sets setting up the acceleration of axis

"x” and "z” u, = &,u, = Z. Gravity is applied to a perpendicular lower part.

z(t z(t
@ ¢ = | w) (5.25)
(1) u.(t) — g

Although this is considered on Sagittal plane, if it considers at Frontal plane,

ol |4

2(t 2(t

@ |li)| = | w0 (5.26)
0 R PR

This modeling does not include ankle joint torque explicitly. Then the problem men-
tioned in 5.1 Introduction could not be emerged. The potential of the redundancy of the

36

INP

Figure 5.4: 2-D Model in Sagittal Plane

robot could be left and it produces extensive utility. Furthermore, we can obtain ZMP
trajectory.

5.3.2 Equality Constraints

Difficulties in taking the ZMP variable into a state equation as a state variable com-
plicates the problem in formulation. Because the right side of Equation(5.2) has the
dimension of acceleration, it causes differentiation of acceleration. Then, the use of the
equality constraint expressing ZMP eliminates this problem.

Tamp (1) (U= (t) — g) = 2() (u:(t) — g) — 2(D)ua(?) (5.27)

This means that the total moment by the acceleration inputs and gravity balances with
the moment by the ZMP distance and reaction force from the ground like as Fig.5.3. ZMP
is the point of satisfying Equation(5.27). If ZMP is located in the polygon constituted
by the sole plane, it can support the reaction force without generating any moment.
Furthermore, this paper proposes that the 3rd input u.,,, substitute for x,,,,, then this
idea compliments using the ZMP variable in formulation. It is not necessary for w,,,, to
be included in the state equation.

Wenp(t) (= () = 9) = (1) (u=(t) — g) — 2(V)ua () (5.28)

If ZMP is treated as one of the inputs, when an optimum solution is calculated, the op-
timum ZMP input will be obtained simultaneously. At this point, the equality constraint
has an important role.

5.3.3 Performance Index

The performance index is created using norm of inputs. Here, features include that the
term of w.,, is added in the performance index. Thus, by setting up the solution , which
minimizes the norm of each axial acceleration and the ZMP sway, will be calculated.
Considering that the ZMP may not sway within the sole of the robot, this has lead to the
design of the robot’s sole to be as small as possible.

t+T

J = XT-Sf-X+/ (XT.Q-X+U"-R-U)dr (5.29)
t

U = [u::<t77—)7uz(taT)vuzmp(taTﬂT

Sy and R are diagonal weight matrix.

5.4 Numerical Simulation

5.4.1 Two Dimensional Formulation

The example of numerical simulation is shown in Fig.5.5. The used parameter car-
ried out in 0.5m/s in horizontal speed and the perpendicular direction speed of 0.0m/s
in the mass of m = 1.0kg at the initial state and the terminal state. The initial state
is (z, 2,2, 2)= (-0.25m, 0.8m, 0.5m/s ,0.0m/s), the terminal state is (z, z, &, 2)= (0.25m,
0.8m, 0.5m/s ,0.0m/s). R = diag(1.0, 1.0,1.0) and Sy=diag (1.0, 4400.0, 1.0,0.0). trajec-
tory "x,z,x, 2”7 follows on moving to the terminal state of Fig.5.5.1-5.5.4, and signs that the
ZMP input "u,,,” also transit as Fig.5.5.7. u,, u, are also obtained as Fig.5.5.5,Fig.5.5.6.
In this example, the action of the legged robot which advances 0.5m in 1.0s at 0.8m height
is exaggerated, but this is to be understandable. Even in such a big action the optimum
the ZMP input can also be generated by this technique. Fig.5.5.9,Fig.5.5.10 comparing
the left side and right side of the equality constraint equations of the following to see if
the solution is suitable.

Wenp(t) (= () = 9) = (1) (u2(t) — g) — 2(D)ua () (5.30)

Balance is mostly maintained by the Fig.5.5.9,Fig.5.5.10. It can be understood that the
optimum ZMP input is generated appropriately. The CPU time taken for this calculation
is 0.09s by a Linux OS PC with a Celeron processor 333MHz. It can be completed in a
sufficiently short time to 1.0s of the simulation time. The control interval is 2ms. It is
understood that real-time control is possible. Since the ZMP input is generable on real
time, as compared with the conventional technique that the optimum ZMP trajectory
is beforehand generated by off-line calculation, it is very convenient. Fig.5.5.8 is the
transition of the value of error F from the ”transversality condition”. The optimum
solution is achieved as this value F is close to 0. Although the value F overshoots from
0, the value return to 0 quickly in this figure. This figure provides the evidence that the
optimum solution is achieved.

38

Table 5.1: Simulation Data(2-D Case)

Simulation Time 1.0s
dt 2.0 ms
Continuation Terminal Time T=0.2
Initial Condition [0.0,0.0,0.8,0.5,0.0]F
Terminal Condition [0.25,0.8,0.5,0.0]7
Sy diag[1,540,1,1]
R diag[1,1,1]
Q diag[0,0,0,0]
Number of time steps of tau axis 5
¢ 450

FAt),2(t), T(t)] = X*(t, T) = ¢y [2"(t, T)] (5.31)

% (m)

x dot(m/s)

0.2 0.4 0.6 0.8 1

time (s)

Figh.5.1 x(2-D case)

0.2 0.4 0.6 0.8 1
time (s)

Figh.5.2 z(2-D case)

)
@

)
o

)
S

o

.2|

time (s)

Figh.5.3 z(2-D case)

u_zmp (m)

|

Figh.5.7

z dot (m/s)

0 o vk 0N

-1.5

0.2 0.4 0.6 0.8 1
time (s)

Figh.5.4 2(2-D case)

% (m/s"2)
°

1-0.25}F
-0.5
-0.75
0.2 0.4 0.6 0.8 1
time(s)

uz(2-D case)

u_z(m/s"2)

0.2 0.4 0.6 0.8 1
time(s)

Figh5.5.6 u,(2-D case)

0.2 0.4 0.6 0.8 1
time (s)

uzmp(2-D case)

sum of errorl,2,3,4

~

0.2 0.4 0.6 0.8 1
time (s)

Figd.5.8 Sum of errors (2-D case)

left side of constraint
o

time(s)

Figh.5.9 Left side of equal
constraint(2-D case)

right side of constraint
°

0.2 0.4 0.6 0.8 1
time (s)

Figh5.5.10 Right side of equal
constraint(2-D case)

42

5.4.2 Three Dimensional Formulation

Although the preceding chapter stated at the two dimensional plane in order to give
intelligible explanation, formulation in the three dimensional space is also available. The
state equation of the three dimensional mass is described as,

fa(t)] [@)]
B
z(t z(t
y(t) uy(t)
| 2(t) | u(t) —g |

Figure 5.6: 3 Dimensional Formulation

The equality constraint of the ZMP balance along the x axis and the balance along the
y axis must be taken into consideration.

Tomp(t) (U= (t) = 9) = —ua(t)2(8) + (us(t) — g)2(?) (5.33)

Yamp(t) (u=(t) = g) = —uy ()2(t) + (u=(t) = 9)y(?) (5.34)

These two equations are collected in order to reduce the number of the equality con-
straint.

U (8)2(8) (Yzmp () — y(8)) = 1y (8)2() (22mp (t) — (1)) (5.35)

The performance index makes the minimum norm of each axial acceleration and ZMP
inputs.

t+T
J:XT~Sf~X+/ (XT-Q-X+U"-R-Udr
t

U= [u;(t,T),uZ(t,T),uZ(t,T) w w: T

) Tzmp? T Yzmp

X = [$f —z(t, T)a