
Real-Time Generation

for

Optimal Robot Motion

Graduate School of Systems and Information Engineering

University of Tsukuba

March,2005

Takeuchi Hiroki

Doctor’s Thesis
submitted to Graduate School of Systems and Information Engineering

University of Tsukuba
in partial fulfillment of requirements for the degree of

DOCTOR of ENGINEERING

Takeuchi Hiroki

March 2005

Author

Takeuchi Hiroki, Graduate School of Systems and Information Engineering

Certified by

Yasunobu Seiji, Professor, Thesis Adviser

Thesis committee:
Professor,Thesis Adviser: Yasunobu Seiji
Professor: Sankai Yoshiyuki
Professor: Onisawa Takehisa
Associate Professor: Hori Noriyuki
Associate Professor(Osaka University): Ohtsuka Toshiyuki

Copyright c°2005 Takeuchi Hiroki

yasunobu
takeuchi

yasunobu
安信サイン

Acknowledgement

The author would first like to express his sincere gratitude to warm encouragement and
support of his adviser, Dr. Yasunobu Seiji in pursuing this research. The author gratefully
acknowledges the support of The University of Tsukuba and staffs from The Graduate
School of Systems and Information Engineering. Especially he also thanks Dr.Ohtsuka
Toshiyuki. Dr.Ohtsuka did support to him when he was in Tsukuba University.
The author is also appreciative of my lovely guitars Tokai EA-25 and Taylor-510CE

which have comforted him with some songs. Montgomery’s book ”Green Gables Anne”
has given him struggling with the research great hope and various beautiful words about
nature of Prince Edward Island.

iii

Abstract

Robot movement generation requires optimization treatment. However, the need for
off-line computation makes it difficult to apply traditional optimization techniques to
real-time robot control. An important goal is to develop a new algorithm that allows for
real-time optimization. The most likely candidate which is called as Receding Horizon
Control or Model Predictive Control algorithms have yet to be widely applied to real-time
robot control environments.
This thesis uses a legged robot as a control object, one that possesses unstable dynamics

and requires specific balance conditions, with the Zero Moment Point balance condition
being a particularly important challenge. Equal constraint, proposed in this thesis as
a means for meeting such conditions during optimization formulation, overcomes Zero
Moment Point problems.
The state variable inequality constraint is a complex challenge because the optimal path

must tangentially enter a constrained arc, and one or more time constraint derivatives
must equal zero at all entry points. A second challenge addressed in this thesis is the
description of a legged robot’s swing leg condition as a state variable inequality. Both the
nonlinear swing leg and Zero Moment Point balance conditions are involved in Receding
Horizon Control formulation.
In this thesis, improvements in the Receding Horizon Control algorithm are discussed,

and a new algorithm that allows for real-time robot control is proposed. The real-time
optimization techniques described in this paper can be applied to various industrial envi-
ronments, including aerospace, railway, and automobile manufacturing.

v

Contents

1 Introduction 1
1.1 Background . 1
1.2 Conventional Research Overview . 2

1.2.1 Optimization Theory and Calculus History 2
1.2.2 Early Practical Application of Optimization Theory 3
1.2.3 Real-Time OS and Control . 4
1.2.4 Formula Manipulation . 4

1.3 Objective and Approach . 4

2 Application of Optimization Problem to Mechanics 7
2.1 Introduction . 7
2.2 Definition of Optimization Problem . 7
2.3 Equal Constraint . 8
2.4 Gradient Method . 9

2.4.1 First Order Gradient of Performance Index 9
2.4.2 Various Sorts of Gradient Method 9
2.4.3 Example of Gradient Method . 10

2.5 Application of Gradient Method to real-time control robot and Matters . . 12
2.6 Conclusion . 13

3 Real-Time Optimization Technique 15
3.1 Introduction . 15
3.2 Homotopy Method . 15
3.3 Continuation Method . 15
3.4 Solve Optmization Problem with Stabilized Continuation Method 17

3.4.1 Formulation . 17
3.5 Receding Horizon Control . 18
3.6 Conclusions . 19

4 Real-Time Control for Robot 21
4.1 Introduction . 21
4.2 Numerical Model . 21

4.2.1 Lagrange Method . 21
4.2.2 Newton-Euler Formulation . 22
4.2.3 State Equations . 24

4.3 Real-Time Control using Modern Control Theory 25

vii

4.4 Singular Point . 26
4.5 Real-Time OS . 27

4.5.1 Real-Time OS . 27
4.5.2 Interrupts . 27

4.6 Application to Legged Robot Control . 28
4.7 Conclusions . 29

5 Equal Constraint for Balance Condition of Legged Robot 31
5.1 Introduction . 31
5.2 Receding Horizon Control with Equality Constraint 34
5.3 Formulation . 36

5.3.1 Model Expression as a Point Mass 36
5.3.2 Equality Constraints . 37
5.3.3 Performance Index . 38

5.4 Numerical Simulation . 38
5.4.1 Two Dimensional Formulation . 38
5.4.2 Three Dimensional Formulation . 43

5.5 Mass Behavior and ZMP . 48
5.5.1 In case of x > 0 . 48
5.5.2 In case of Cut Across x=0 . 53
5.5.3 Sudden Acceleration . 56
5.5.4 Sudden Stop . 59

5.6 Weight Matrix . 62
5.7 Application . 65

5.7.1 In the Case of a Biped . 65
5.7.2 In the Case of a Quadruped . 66

5.8 Conclusion . 66

6 State Variable Inequality Constraint of Swing Leg 69
6.1 Introduction . 69
6.2 Modeling of Swing Leg . 69
6.3 Performance Index . 71
6.4 Numerical Calculation . 71
6.5 Constraint for Swing Legs . 75

6.5.1 State Variable Constraint . 75
6.5.2 Slack Variable Method . 75
6.5.3 Performance Index . 77
6.5.4 Numerical Calculation(Linear Case) 77
6.5.5 Numerical Calculation (Nonlinear Case) 82

6.6 Conclusion . 88

7 Nonlinear Receding Horizon Gradient Method 89
7.1 Introduction . 89
7.2 Continuation Method and Gradient . 89

7.2.1 Continuation Method . 89
7.2.2 Gradient . 90

viii

7.2.3 Sampling Interval . 90
7.3 Simulation . 92

7.3.1 Example . 92
7.3.2 Nonlinear Two Link System . 96

7.4 Practical Installation into Real-Time System 101
7.5 Singular Point . 107
7.6 Conclusion . 111

8 Conclusion and Recommendation 113
8.1 Overall Perspective . 113
8.2 Recommendations for Future Research . 114

A Transition Matrix 117

List of Figures

1.1 Main Objective . 6

2.1 Two Points Boundary Value Problem . 8
2.2.1 x1(Steepest Descent) . 11
2.2.2 x2(Steepest Descent) . 11
2.2.3 λ1(Steepest Descent) . 11
2.2.4 λ2(Steepest Descent) . 11
2.2.5 u1(Steepest Descent) . 11
2.2.6 Performance index value / Number of iteration (Steepest Descent) 11
2.3 Dilemma between off-line optimization and real-time control 12

3.1 Predictor-Corrector Method . 16
3.2 Ill case in Predictor-Corrector Method . 16
3.3 Solve Optimization Problem with Continuation Method 18
3.4 Moving Horizon . 19

4.1 Force and Moment on a Link . 22
4.2 Frame Relation . 23
4.3 Difference between Optimal Regulator and Receding Horizon Control . . . 26
4.4 Structure of Real-Time OS . 27
4.5 Interrupt driven I/O cycle . 28
4.6 Control for Legged Robot . 29

5.1 Definition of Zero Moment Point . 32
5.2 Definition of sagittal plane and frontal plane 32
5.3 Linearization and Reduction . 33
5.4 2-D Model in Sagittal Plane . 37
5.5.1 x(2-D case) . 40
5.5.2 z(2-D case) . 40
5.5.3 ẋ(2-D case) . 40
5.5.4 ż(2-D case) . 40
5.5.5 ux(2-D case) . 40
5.5.6 uz(2-D case) . 40
5.5.7 uZMP (2-D case) . 40
5.5.8 Sum of errors (2-D case) . 41
5.5.9 Left side of equal constraint(2-D case) 41
5.5.10 Right side of equal constraint(2-D case) 41
5.6 3 Dimensional Formulation . 43

xi

5.7.1 x(3-D Case) . 46
5.7.2 y(3-D Case) . 46
5.7.3 z(3-D Case) . 46
5.7.4 ẋ(3-D Case) . 46
5.7.5 ẏ(3-D Case) . 46
5.7.6 ż(3-D Case) . 46
5.7.7 ux(3-D Case) . 46
5.7.8 uy(3-D Case) . 47
5.7.9 uz(3-D Case) . 47
5.7.10 uZMPx(3-D Case) . 47
5.7.11 uZMP y(3-D Case) . 47
5.7.12 Left side of the equal constraint(3-D Case) 47
5.7.13 Right side of the equal constraint(3-D Case) 47
5.7.14 Sum of Error1-6(3-D Case) . 47
5.7.15 Mass Behavior Ahead x=0/Behind x=0 48
5.7.16 In Case of x > 0 . 49
5.8.1 x(In Case of x > 0) . 50
5.8.2 y(In Case of x > 0) . 50
5.8.3 z(In Case of x > 0) . 50
5.8.4 ẋ(In Case of x > 0) . 50
5.8.5 ẏ(In Case of x > 0) . 50
5.8.6 ż(In Case of x > 0) . 50
5.8.7 ux(In Case of x > 0) . 50
5.8.8 uy(In Case of x > 0) . 51
5.8.9 uz(In Case of x > 0) . 51
5.8.10 uZMPx(In Case of x > 0) . 51
5.8.11 uZMPy(In Case of x > 0) . 51
5.9.1 x(Across x = 0) . 54
5.9.2 y(Across x = 0) . 54
5.9.3 z(Across x = 0) . 54
5.9.4 ẋ(Across x = 0) . 54
5.9.5 ẏ(Across x = 0) . 54
5.9.6 ż(Across x = 0) . 54
5.9.7 ux(Across x = 0) . 54
5.9.8 uy(Across x = 0) . 55
5.9.9 uz(Across x = 0) . 55
5.9.10 uZMPx(Across x = 0) . 55
5.9.11 uZMPy(Across x = 0) . 55
5.10.1 x(Sudden Acceleration) . 57
5.10.2 y(Sudden Acceleration) . 57
5.10.3 z(Sudden Acceleration) . 57
5.10.4 ẋ(Sudden Acceleration) . 57
5.10.5 ẏ(Sudden Acceleration) . 57
5.10.6 ż(Sudden Acceleration) . 57
5.10.7 ux(Sudden Acceleration) . 57

xii

5.10.8 uy(Sudden Acceleration) . 58
5.10.9 uz(Sudden Acceleration) . 58
5.10.10uZMPx(Sudden Acceleration) . 58
5.10.11uZMPy(Sudden Acceleration) . 58
5.11.1 x(Sudden Stop) . 60
5.11.2 y(Sudden Stop) . 60
5.11.3 z(Sudden Stop) . 60
5.11.4 ẋ(Sudden Stop) . 60
5.11.5 ẏ(Sudden Stop) . 60
5.11.6 ż(Sudden Stop) . 60
5.11.7 ux(Sudden Stop) . 60
5.11.8 uy(Sudden Stop) . 61
5.11.9 uz(Sudden Stop) . 61
5.11.10uZMPx(Sudden Stop) . 61
5.11.11uZMPy(Sudden Stop) . 61
5.12.1 x(Make uZMP small) . 63
5.12.2 y(Make uZMP small) . 63
5.12.3 z(Make uZMP small) . 63
5.12.4 ẋ(Make uZMP small) . 63
5.12.5 ẏ(Make uZMP small) . 63
5.12.6 ż(Make uZMP small) . 63
5.12.7 ux(Make uZMP small) . 63
5.12.8 uy(Make uZMP small) . 64
5.12.9 uz(Make uZMP small) . 64
5.12.10uZMPx(Make uZMP small) . 64
5.12.11uZMPy(Make uZMP small) . 64
5.13 Case of Biped . 65
5.14 Control Block Diagram . 66
5.15 Case of Quadruped . 66

6.1 Image of formulization . 71
6.2.1 x(No Constraint Case) . 73
6.2.2 z(No Constraint Case) . 73
6.2.3 θ1(No Constraint Case) . 73
6.2.4 θ2(No Constraint Case) . 73
6.2.5 ẋ(No Constraint Case) . 73
6.2.6 ż(No Constraint Case) . 73
6.2.7 θ̇1(No Constraint Case) . 73
6.2.8 θ̇2(No Constraint Case) . 74
6.2.9 ux(No Constraint Case) . 74
6.2.10 uz(No Constraint Case) . 74
6.2.11 uθ1(No Constraint Case) . 74
6.2.12 uθ2(No Constraint Case) . 74
6.2.13 uZMP (No Constraint Case) . 74
6.2.14 Stick Figure(No Constraint Case) . 74

6.3 Parameters . 75
6.4.1 x(Linear Case) . 79
6.4.2 z(Linear Case) . 79
6.4.3 θ1(Linear Case) . 79
6.4.4 θ2(Linear Case) . 79
6.4.5 ẋ(Linear Case) . 79
6.4.6 ż(Linear Case) . 79
6.4.7 θ̇1(Linear Case) . 79
6.4.8 θ̇2(Linear Case) . 80
6.4.9 slack d(Linear Case) . 80
6.4.10 slack ḋ(Linear Case) . 80
6.4.11 ux(Linear Case) . 80
6.4.12 uz(Linear Case) . 80
6.4.13 uθ1(Linear Case) . 80
6.4.14 uθ2(Linear Case) . 80
6.4.15 uZMP (Linear Case) . 80
6.4.16 uslack(Linear Case) . 81
6.4.17 ρ1(Linear Case) . 81
6.4.18 ρ2(Linear Case) . 81
6.4.19 Stick Figure(Linear Case) . 81
6.5.1 x(Nonlinear Case) . 84
6.5.2 z(Nonlinear Case) . 84
6.5.3 θ1(Nonlinear Case) . 84
6.5.4 θ2(Nonlinear Case) . 84
6.5.5 ẋ(Nonlinear Case) . 84
6.5.6 ż(Nonlinear Case) . 84
6.5.7 θ̇1((Nonlinear Case) . 84
6.5.8 θ̇2(Nonlinear Case) . 85
6.5.9 slack d(Nonlinear Case) . 85
6.5.10 slack ḋ(Nonlinear Case) . 85
6.5.11 ux(Nonlinear Case) . 85
6.5.12 uz(Nonlinear Case) . 85
6.5.13 uθ1(Nonlinear Case) . 85
6.5.14 uθ2(Nonlinear Case) . 85
6.5.15 uZMP (Nonlinear Case) . 85
6.5.16 uslack(Nonlinear Case) . 87
6.5.17 ρ1(Nonlinear Case) . 87
6.5.18 ρ2(Nonlinear Case) . 87
6.5.19 Stick Figure(Nonlinear Case) . 87

7.1 Differential changes in the terminal time 91
7.2 scaling for input variable . 92
7.3.1 x1(dashed line: gradient method, solid line: RHGM) 94
7.3.2 x2(dashed line: gradient method, solid line: RHGM) 94
7.3.3 u1(dashed line: gradient method, solid line: RHGM) 94

xiv

7.3.4 λ1(dashed line: gradient method, solid line: RHGM) 94
7.3.5 λ2(dashed line: gradient method, solid line: RHGM) 94
7.3.6 Error1(RHGM) . 94
7.3.7 Error2(RHGM) . 95
7.4 Nonlinear Two link system . 96
7.5 Experiment System . 97
7.6.1 θ1(Nonlinear Two link System (vertical)) 98
7.6.2 θ2(Nonlinear Two link System (vertical)) 98
7.6.3 θ̇1(Nonlinear Two link System (vertical)) 98
7.6.4 θ̇2(Nonlinear Two link System (vertical)) 98
7.6.5 uθ1(Nonlinear Two link System (vertical)) 98
7.6.6 uθ1(Nonlinear Two link System (vertical)) 98
7.6.7 λ1(Nonlinear Two link System (vertical)) 99
7.6.8 λ2(Nonlinear Two link System (vertical)) 99
7.6.9 λ3(Nonlinear Two link System (vertical)) 99
7.6.10 λ4(Nonlinear Two link System (vertical)) 99
7.6.11 Error1(Nonlinear Two link System (vertical)) 99
7.6.12 Error2(Nonlinear Two link System (vertical)) 99
7.6.13 Error3(Nonlinear Two link System (vertical)) 100
7.6.14 Error4(Nonlinear Two link System (vertical)) 100
7.6.15 Stick Figure(Nonlinear Two link System (vertical)) 100
7.7 Experiment Device) . 102
7.8.1 θ1(from counter)(Experiment) . 103
7.8.2 θ2(from counter)(Experiment) . 103
7.8.3 θ̇1(from counter)(Experiment) . 103
7.8.4 θ̇2(from counter)(Experiment) . 103
7.8.5 θ1reference(Experiment) . 103
7.8.6 θ2reference(Experiment) . 103
7.8.7 θ̇1reference(Experiment) . 103
7.8.8 θ̇2reference(Experiment) . 104
7.8.9 u1(Experiment) . 104
7.8.10 u2(Experiment) . 104
7.8.11 Stick Figure(Experiment) . 104
7.9.1 θ1(Kinematic Three Links) . 109
7.9.2 θ2(Kinematic Three Links) . 109
7.9.3 θ3(Kinematic Three Links) . 109
7.9.4 θ̇1(Kinematic Three Links) . 109
7.9.5 θ̇2(Kinematic Three Links) . 109
7.9.6 θ̇3(Kinematic Three Links) . 109
7.9.7 Error1(Kinematic Three Links) . 109
7.9.8 Error2(Kinematic Three Links) . 110
7.9.9 Error3(Kinematic Three Links) . 110
7.9.10 Error4(Kinematic Three Links) . 110
7.9.11 Error5(Kinematic Three Links) . 110
7.9.12 Error6(Kinematic Three Links) . 110

7.9.13 Stick Figure(Kinematic Three Links) . 110

xvi

List of Tables

5.1 Simulation Data(2-D Case) . 39
5.2 Simulation Data(3-D Case) . 45
5.3 Simulation Data(In case of x > 0) . 49
5.4 Simulation Data(Cut Across x=0) . 53
5.5 Simulation Data(Sudden Acceleration) . 56
5.6 Simulation Data(Sudden Stop) . 59
5.7 Simulation Data(Make uZMP small) . 62

6.1 Two Links Mechanical Parameters . 72
6.2 Parameters for Simulation(without constraint) 72
6.3 Parameters for Simulation(Linear Case) . 78
6.4 Parameters for Simulation(Nonlinear Case) 83

7.1 Simulation Data . 93
7.2 Simulation Data . 97
7.3 Experiment Spec and Data . 102
7.4 Simulation Data for Kinematic Three Links 108

xvii

Legend

Symbol Definition
g gravity acceleration
href height of C.G.
x position along x axis
ẋ velocity along x axis
ẍ acceleration along x axis
y position along y axis
ẏ velocity along y axis
ÿ acceleration along y axis
z position along z axis
ż velocity along z axis
z̈ acceleration along z axis
xref reference trajectory along x axis
yref reference trajectory along y axis
zref reference trajectory along z axis
ẋref reference velocity trajectory along x axis
ẏref reference velocity trajectory along y axis
żref reference velocity trajectory along z axis
ux input along x axis
uy input along y axis
uz input along z axis
uzmp ZMP input
xf x of terminal state variable
yf y of terminal state variable
zf z of terminal state variable
λ co-state variable
φ constraint at terminal state
M Inertial Matrix
V coliolis term
G gravity term
H hamiltonian
ζ d

dt
F = −ζ · F

F Error of transversality condition F = φx(x(t, T))− λ(t, T)
R weight matrix at performance index
Q weight matrix at performance index
∆t time step on real-time axis
∆τ time step on moving evaluated interval
* variable on moving evaluated interval
m1 mass of link1
m2 mass of link2
l1 length of link1

xviii

Symbol Definition
l2 length of link2
l3 length of link3
l1c length of link1 center of gravity
l2c length of link2 center of gravity
iẐi θi · iẐi = [0, 0, θi]T
i
i+1R rotational matrix : Framei− > Framei+1
i+1
i R rotational matrix : Framei+1− > Framei

Acronyms and Abbreviations

Symbol Definition
TPBVP Two Point Boundary Value Problem
RHC Receding Horizon Control
MPC Model Predictive Control
RHGM Receding Horizon Gradient Method
SCGRA Sequential Conjugate Gradient Restration Algorithm
MQA Modified Quasi Linearlization Algorithm
ZMP Zero Moment Point
C.G. Center of Gravity
RTOS Real-time Operating System
2-D Two Dimensional
3-D Three Dimensional
OS Operating System

xx

Chapter 1

Introduction

1.1 Background

Developments in computer technology have made real-time robot control possible at
very high levels of intelligence. Current work in control theory is aimed at industrial ap-
plications that require optimal performance in terms of maneuverability and non-linearity.
A common example is a car’s braking system, which requires real-time operations that
allow drivers to avoid accidents. Other machines require real-time controllers to avoid
instability, which can lead to accidental damage or the complete destruction of systems,
people, or objects.
When machines are designed for specialized functions, control is considered a relatively

straightforward task. That is not the case today, since robots and other machines are
becoming more complex and generalized. Today’s engineers must therefore deal with the
issue of motion generation. Some of the earliest work in this area involved aerospace
applications. One problem in spacecraft design involves generating a vehicle orbit that
satisfies a considerable number of requirements, including air conditions, gravity, fuel
consumption, upper output limits, and acceleration limits. Similar problems have arisen
in other industrial fields as computer have progressed.
The first discussions of the optimization problem can be traced to the 16th century

mathematicians Leonhard Euler(1707-1783) and Johann Bernoulli(1667-1748). The tran-
versality condition was solved by Joseph-Louis Lagrange(1736-1813) in the 17th century.
Variations in these methods were developed but not applied for several centuries. Lev
Semenovic Pontryagin (1908-1988) started work on a theory of oscillations and automatic
control with his physicist friend A. A. Andoronov in the 1930s. However, solvable opti-
mization problems were restricted in the 1950s and 1960s because computer capacity was
limited and formula manipulation had yet to emerge. In a book entitled ”The Mathe-
matical Theory of Optimal Processes” (1961)[1], Pontryagin claimed Maximal Principle.
His proposal made it possible to establish the variation method. Computers could then
be used for optimization, which led to the creation of the gradient method. The gradient
method was favored by many researchers because of its simplicity and utility, leading
to a considerable number of variations-for example, the Sequential Conjugate Gradient
Algorithm (SCGRA)[2] and the Modified Quasi Linearlisation Algorithm (MQA)[3].
The formula manipulation tool has had an important role in developing optimization

techniques. Software was developed for solving accelerator problems that could not be

1

solved by hand, and the original tool was subsequently adapted for a variety of mathemat-
ical problems. Commercial tools such as Mathematica and Maple have made it possible
for computers to be used to solve differential equations and to manipulate formulas in the
calculus of variation. These tools raised the bar in terms of effectiveness when the multi-
links numerical model was derived for robotics. Advancements in optimization techniques
were also made possible by this new environment.
A real-time OS is required to control such real-time oriented machines as robots, intelli-

gent automobiles, and aerospace vehicles. Whereas an ordinal operating system does not
ensure time-restricted commitment execution, an RTOS does, making RTOS a require-
ment in environments where control is measured in terms of milliseconds.
This requirement has fueled a large amount of research in real-time optimization tech-

niques, resulting in a considerable number of gradient method variations. Still, the method
suffers from a considerable drawback in the form of off-line calculations that require ex-
cessive amounts of time. For instance, several workstation hours are needed to calculate
aerospace orbit optimization. Determining an optimal trajectory from preliminary stocks
requires a modern approach that utilizes a Receding Horizon Control (RHC) or Model
Predictive Control (MPC) algorithm. Both algorithms hold considerable potential for
real-time (dynamic) optimization.

1.2 Conventional Research Overview

1.2.1 Optimization Theory and Calculus History

Philosopher and mathematician Bernard Bolzano(1781-1848) was one pioneer in the
area of fundamental calculus concepts. However, Bolzano’s proofs involved arithmetic,
algebra and analysis, whereas Johann Carl Friedrich Gauss(1777-1855) offered proofs of
the fundamental theorem of algebra using geometry. The calculus has often been described
as arising from the Pythagorean recognition of the difficulty involved in attempting to
substitute numerical considerations for continuous geometrical magnitudes. Sir Isaac
Newton(1642 - 1727) avoided this via the intuition of continuous motion, and Gottfried
Wilhelm Leibniz (1646-1716) evaded the question via the postulate of continuity. In his
definition of continuous function, Bolzano asserted that the basis of continuity was found
in the limit concept. His definition of a function f(x) as continuous in an interval if for
any value of x in the interval the difference f(x + δx) − f(x) becomes and remains less
than any given quantity for δx that is sufficiently small is essentially the same as that
later offered by Augustin-Louis Cauchy (1789-1857). After recognizing that the subject
could be explained in terms of limits of finite difference ratios, Bolzano defined the F(x)
derivative for any value of x as the F’(x) quantity in which the ratio:

F (x− δx)− F (x)
δx

(1.1)

indefinitely approaches as δx approaches zero[4] [5].

Pierre de Fermat(1601-1665) proposed the principal which light travels in minimum time
with calculus of variations. Johannes Bernouil(1667-1748) solved brachistchrone problem

2

in discrete step using Fermat idea. Issac Newton (1642-1727) used calculus of variations to
design minimum drag nose shape of a projectile. Leonard Euler published ”The Method
of Finding Curves that Show Some Property of Maximum or Minimum. Jean Louis
Lagrange (1736-1813) invented a method of variations and multipliers. Euler adopted
this idea and proposed Euler-Lagrange equations. Adrean Marie Legendre(1752-1833)
proposed the second variation. William Rowan Hamilton (1805-1865) published his work
on least action in mechanical systems that involved two partial differential equations. Karl
Gustav Jacob Jacobi(1804-1851) proposed Hamilton-Jocobi equation based on Hamilton’s
result. Karl Wilhelm Theodor Weierstrass (1815-1897) proposed the condition involving
excess function, which is predecessor of maximum principle of Pontryagin.
Pontryagin submitted ”The Mathematical Theory of Optimal Processes” in 1962; Richard

Bellman had already used the term in the 1940s to describe the problem-solving process
in which best decisions are found one after another. Bellman also proposed dynamic
programming-a method to directly solve the Hamilton-Jacobi-Bellman equation begin-
ning at terminal conditions. However, this method is considered impractical because it
requires storing entire extremal fields in computer memory.
The original method for solving optimal problems involved choosing values for unspec-

ified initial conditions and improving estimates of terminal conditions in order to satisfy
specific terminal conditions. A major challenge associated with this method is that ex-
tremal solutions are too sensitive for estimating initial conditions. The gradient method
was proposed to get around this difficulty. Such a direct integration method, which is con-
sidered practical for finding extremal solutions, is characterized as an iterative algorithm
for improving estimates of control histories to reach optimal and boundary conditions.
While the first order gradient method does offer a dramatic improvement for a few iter-
ations, convergence slows considerably as the trajectories approach an optimal solution.
For this reason, a second order gradient has been created for later iterations.

1.2.2 Early Practical Application of Optimization Theory

Robert H Goddard(1882-1945) worked on the aerospace trajectory problem (i.e., the
optimal thrust series required to reach maximum altitude[6]) as early as 1919. Toward
the end of his report, Goddard described a scenario in which a rocket reached the moon
and detonated its load of ignitable powder to mark its arrival.
The shooting method was initially adopted to solve the spacecraft orbit problem, pri-

marily because the method was feasible for analyzing conservative systems. However,
since Euler-Lagrange equations are considered unstable for aircraft dynamics, the shoot-
ing method is considered unfeasible for aircraft dynamics. In an attempt to overcome this
instability, the initial value of the Lagrange multiplier from a gradient code was used as
an initial estimate. The gradient method (considered sufficient for arriving at an accurate
solution) was used to calculate the minimum time for a low-thrust spacecraft to travel
from Earth to Mars. The gradient method was also used to determine the minimum time
for an F4 fighter to reach the highest altitude for launching a Sparrow missile.

1.2.3 Real-Time OS and Control

A real-time system (used when rigid time requirements are placed on processor oper-
ations or data flow) serves as a control device in a dedicated application. Applications
that commonly use real-time systems are medical imaging, industrial control, and certain
types of displays. Real-time systems have well-defined, fixed time constraints within which
processing tasks must be completed. The two primary categories of real-time systems are:

★Hard real-time system These systems ensure that all critical tasks are completed
on time. To accomplish this, all system delays (from the retrieval of stored data
to the time it takes the operating system to finish a request) are bounded. Most
advanced operating systems tend to separate users from their hardware, resulting
in uncertainty concerning the amount of time an operation requires. Since virtual
memory is almost never found in real-time systems, hard real-time systems cannot
be used with time-sharing systems. No existing general-purpose operating systems
support hard real-time functionality.

★ Soft real-time system These are considered less restrictive systems in which critical
real-time tasks are given priority over other tasks and retain priority status they
are completed. Kernel delays need to be bounded. Soft real-time systems can be
mixed with other types of systems. Given their lack of deadline support, they are
considered risky for industrial control purposes. However, because of their expanded
functionality, soft real-time systems have been added to most current operating
systems, including major versions of UNIX.

1.2.4 Formula Manipulation

Formula manipulation programs have specific differentiation and integration capabilities
and supporting simplification, display and input/output editing, and precision arithmetic
capabilities. Mathematica, Maple, and Reduce are three commercial examples and Max-
ima is an open-source example. These tools empower PCs to a) produce multi-link system
dynamic equations, and b) work with calculus operations associated with optimization
techniques.

1.3 Objective and Approach

A significant issue in robot construction is motion generation; without good motion
generation software, even well-built hardware will perform poorly. Although optimization
techniques allow for smooth and natural motion, the off-line computing characteristic is
considered disadvantageous for real-time robot control.
Based on my conviction that Receding Horizon Control (RHC) will eventually become

a key technology for generating high-performance robot motion, the main objectives of
this thesis are to show how Receding Horizon Control can be applied to real-time robot
control and to start the development process for a Receding Horizon Control algorithm.

4

This thesis consists of eight chapters.
Overview of optimization problem is introduced in chapter 2. Formulation in optimiza-

tion problem is defined in section 2.2. A gradient method is explained in section 2.3. The
defect points of gradient method are discussed in section 2.3.
Real-time optimization is discussed in chapter 3. Homotopy method is introduced in

section 3.1. Continuation method is introduced in section 3.2. Receding Horizon Control
theory is explained in section 3.3.
Real-time control is discussed in chapter 4. Numerical model for optimization is intro-

duced in section 4.1. Modern control theory is introduced in section 4.2. How to real-time
control robot is discussed in section 4.3.
Chapter 5 gives an application of Receding Horizon Control to legged robot motion

generation. Any type of legged robot has to be considered for Zero Moment Point bal-
ance condition. How the condition could be involved in formulation of Receding Horizon
Control is discussed in this chapter. Two dimensional plane and three-dimensional space
simulation are mentioned in section 5.4
Chapter 6 gives an application of Receding Horizon Control to swing leg of legged

robot. The notion of Chapter 5 is extended to formulation with swing leg. Constraint of
swing leg condition is more complicated than equal constraint in Chapter 5. Inequality
constraint and state variable constraint are discussed in this chapter.
Chapter 7 proposes a new algorithm of Receding Horizon Control. To avoid difficulties

of complicated matrix manipulation in former algorithm[7][8], this algorithm has been
reduced to be simple and basic. Such basic measure could be lead to further develop-
ment of Receding Horizon Control algorithm. The algorithm is explained in section 7.2.
Simulation is introduced in section 7.3.

　　　

　　　

Figure 1.1: Main Objective

6

Chapter 2

Application of Optimization
Problem to Mechanics

2.1 Introduction

There are various types of formulation about optimization. In this section, formulation
necessary for mechanical object is briefly explained.
The algorithm of Gradient Method is also explained here. Well known algorithms in

Gradient Method are described.

2.2 Definition of Optimization Problem

The state equation treated is multi-variable and nonlinear.

ẋ(t) = f [x(t), u(t), t] (2.1)

x denotes state variable, u denotes input variable, t denotes real-time. x(t):n vector
function is determined by u(t):m vector function.
Considered performance index is scalar function. The optimization problem is to find

the functions u(t) that minimizes the performance index.

J = φ[x∗(T + t)] +

Z tf

0

L[x(t), u(t), t]dt (2.2)

ψ denotes terminal conditions. Then Hamiltonian is defined as:

H = L[x(t),λ(t), u(t), t] + λT (t) · f [x(t), u(t), t] (2.3)

denotes co-state variable, which fills the role as Lagrange multiplier. Euler-Lagrange
equation below is derived from Hamiltonian.

λ̇(t) = −HT
x (2.4)

Hu = 0 (2.5)

7

ẋ(t) = −HT
λ (2.6)

ẋ(0) = x0(t) (2.7)

λ(tf) = φTx [x(tf)] (2.8)

Euler-Lagrange equation gives the initial condition of the state and the terminal con-
dition of the co-state and its fact implies the notion about two points boundary value
problem as Fig.2.1. The initial condition about the state is known but the terminal
condition is not known. However, the initial condition about co-state is not known but
the terminal condition is known. This improperly paired problem is called as two points
boundary value problem. If all condition in Euler-Lagrange equation is satisfied, any
gradient is not raised.

Figure 2.1: Two Points Boundary Value Problem

2.3 Equal Constraint

It takes more than state equation to solve mechanical control object. Limitation of
control input, constraint of state variable, particular condition about the mechanics, dy-
namics change, and etc. could not be described without equal constraint. Let us see how
equal constraint is useful in this section. Here we have a equal constraint as:

8

C[x(t), u(t), t] = 0 (2.9)

We have to consider this constraint to be involved into Euler-Lagrange equation.A new
lagrange multiplier ρ is introduced here and Hamiltonian is:

H = L+ λT (t) · f [x(t), u(t), t] + ρT (t) · C[x(t), u(t), t] (2.10)

To search the control input u to minimize Hamiltonian H means to solve Hu = 0. If
Euler-Lagrange equation is satisfied, then the equal constraint is also satisfied.

2.4 Gradient Method

Gradient method is well known and has been used in science and engineering field. In
this section, the method is explained.

2.4.1 First Order Gradient of Performance Index

Consider the first order variation in J due to variations in the control vector u(t) for
fixed time t0 and tf ,

δJ = [(
∂φ

∂x
− λT)δx]t=tf + [λ

T δx]t=t0 +

Z tf

t0

[(Hx + λ̇T (t))δx+Huδu]dt (2.11)

δJ = λT (t0)δx(t=t0) +

Z tf

t0

[Huδu]dt (2.12)

This equation implies that is the gradient of J if u(t) holds a constant value. If x(t0)
holds a constant, Hu represents the variation in J.

2.4.2 Various Sorts of Gradient Method

Gradient method has various variations nowadays. Such mainstays are introduced here.

1. Sequential Gradient Restoration Algorithm

Sequential Gradient Restoration method[2] has been introduced to solve nonlinear
programming problems. The idea of this method is optimization process is divided
into two phases: gradient phase and restoration phase.

(a) Restoration Phase

Equation(2.11) and (2.12) are the conditions of the restoration, then the per-
formance index at this phase is defined as Equation(2.13).

C(x, u) = 0 (2.13)

ẋ− φ(x, u) = 0 (2.14)

P =

Z tf

t0

kẋ− φ(x, u)k dt+
Z tf

t0

kC[x, u]k dt (2.15)

(b) Gradient Phase

The augmented performance index is defined as:

J = φ|t=0 +
Z tf

t0

[f(x, u) + λT (ẋ− φ(x, u)) + ρTC(x, u)]dt (2.16)

Its first order differential is :

Q =

Z tf

t0

°°°λ̇− fTx + φTxλ− CTx ρ
°°° dt+Z tf

t0

°°fTu + φTuλ− CTu ρ
°° dt+Z tf

t0

°°λ+ φTx
°° dt

(2.17)

Equation(2.15) is merely considered in optimization at this phase. The restora-
tion conditions are not considered here. The process of the method iterates
these phases alternatively, and the gradient is reduced step by step.

2. Modified Quasi-linearization Algorithm

P and Q are reduced at once in MQA[3]. MQA uses second order variation because
partial differential of P and Q. Q is originally first order function, and its partial
differential comes to be second order. First order algorithm converges dramatically
at first few steps, however its convergence could not last long in later steps. This
is because the algorithm uses the gradient going up through first order variation.
Then, second order algorith like as MQA is used for making good convergence at
the later steps.

2.4.3 Example of Gradient Method

An example[11] solved with steepest descent algorithm. The state equation is defined
as.

d

dt

∙
x1(t)
x2(t)

¸
=

∙
(1− x21(t)− x22(t))x1(t)− x2(t) + u(t)

x1(t)

¸
(2.18)

Performance index is defined as.

J = 2 · (x21(tf) + x22(tf)) +
Z tf

t0

(x21(t) + x
2
2(t) + u

2(t))dt (2.19)

The solution is figured in Fig.2.2. This algorithm is converged within 30 iterations.

10

　　　 　　　

Fig2.2.1　 x1(Steepest Descent)

　　　

　　　 　　　

Fig2.2.2　 x2(Steepest Descent)

　　　 　　　

Fig2.2.3　 λ1(Steepest Descent)

　　　 　　　

Fig2.2.4　 λ2(Steepest Descent)

　　　 　　　

Fig2.2.5　 u1(Steepest Descent)

　　　 　　　

Fig2.2.6　 Performance index value /
Number of iteration (Steepest Descent)

2.5 Application of Gradient Method to real-time con-

trol robot and Matters

The question that inevitably arises in real-time control of robot is how to make motion
generation. Robot cannot behave without this solution. Its trajectory or motion must be
optimized so as to possess naturally smoothness. Some robot of early date does awkward
motion because some trigonometric functions make up the motion function.
However optimization must be needed, its calculation time is too long to execute on

real-time controller. For example, 5 seconds simulation needs 1-hour calculation time.
Then the measure which pre-optimized trajectories are stored in computer memory was
taken. The defect of this measure is lack of flexibility against unexpected happening.
The action of the robot is restricted in the measure. It cannot maximize the effect of the
optimization.

　　　 　　　

Figure 2.3: Dilemma between off-line optimization and real-time control

12

2.6 Conclusion

Optimization formulation and application to real-time control is discussed in this chap-
ter. Equal constraint is quite useful to make necessary conditions for mechanics involve
with formulation of optimization. Gradient Method is popular to solve optimization prob-
lem.

Chapter 3

Real-Time Optimization Technique

3.1 Introduction

Homotopy Method and Continuation Method constitute substantial portion of Receding
Horizon Control used in this study. Those fundamentals are explained in this chapter.

3.2 Homotopy Method

A banach space which the sphere with radius r forms is defined as:

B = {x ∈ X| kr ≥ xk} (3.1)

B − > X is put a case that it is compact mapping

h(x, t) = (1− τ) · g(x) + τ · f(x)
(x, τ) ∈ B × [0, 1] (3.2)

This equation has a property as:

h(x, 0) = g(x)

h(x, 1) = f(x) (3.3)

This is called Homotopy of mapping f(x) and g(x). g(x) has the trivial solution g(x0).

h(x, τ) = (1− τ) · g(x0) + t · f(x) (3.4)

We can obtain the solution shifting from τ = 0(trivial solution g(x0)) to τ = 1.

3.3 Continuation Method

To obtain the solution using Homotopy method, the solution trajectory must be tracked
along parameter t. Predictor-Corrector Method is orthodox for the tracking. Predictor-
Corrector Method is composed of two steps below.

15

(1)Predictor
The Jacobian of f(x) is defined as:

Df(x0) =
∂fi(x)

∂xj
|x=x0 (3.5)

Then calculate Df(x0) at the current point x0. The current point is redefined as the
contact point and a line v(x) directing to Df(x0) is assumed.

Df(x0)ν(x) = 0 (3.6)

(2)Corrector The length of v(x) is,

kν(x)k = 1 (3.7)

A normal line is set from the point which has distance v(x) from the point x0. The
intersection of the normal line with the curve f(x) is set as the next point. Iterating these
steps until t=1 and the tracking of the solution trajectory can be done.

Figure 3.1: Predictor-Corrector Method

　　　 　　　

Figure 3.2: Ill case in Predictor-Corrector Method
　　　

One of defects of this method is a case, which the curve of the solution trajectory is
extremely crooked like as Fig.3.2.

16

3.4 Solve Optmization Problem with Stabilized Con-

tinuation Method

3.4.1 Formulation

Let us consider to solve a generalized optimization problem below with continuation
method. τ ∈ [0, 1] is defined as a continuation parameter

ẋ(t) = f [x(t), u(t), t, τ] (3.8)

J = φ[x(tf)] +

Z tf

0

L[x(t), u(t), t, τ]dt (3.9)

One of the advantages to use Continuation Method is that it starts from a trivial
solution. Popular one is terminal time tf = 0. Transversality condition comes off as
below. Starting from tf = 0, TPBVP extends the terminal time bit at a time.

φ(x(0)) = λ(0) (3.10)

In order to make the Euler-Lagrange equation transit in a continuous fashion, the
perturbation from optimal path of Euler-Lagrange equation. In this case, the terminal
time is unspecified.

dλ(tf) = φxxdx+
∂

∂t
φxdtf (3.11)

The formation of the equation avobe resembles the formation of the equation in Back-
ward Sweep Method[23]. An equation below is assumed to obtain costate variable in
Backward Sweep Method.

δλ(t) = S(t)δx+ c(t)dt (3.12)

These S and c are defined as equations below.

d

dt
S(t) = −AT · S − S · A+ S · B · S − C (3.13)

d

dt
c(t) = −(AT − S · B) · c (3.14)

The matrix A is treated in transition matrix[23](Appendix:A).

d

dt

∙
δx
δλ

¸
=

∙
A −B
−C −AT

¸ ∙
δx
δλ

¸
(3.15)

A(t) = fx − fu ·H−1uu ·Hux
B(t) = fu ·H−1uu · fTu
C(t) = H−1xx −H−1xu ·H−1uu ·H−1ux

The costate variable can be obtained from equations above, and we can also obtain
optimal input variable in the equation below.

Hu = 0 (3.16)

　　　 　　　

Figure 3.3: Solve Optimization Problem with Continuation Method

3.5 Receding Horizon Control

Receding Horizon Control or Moving Horizon Control has been emerged as a feed-
back strategy for linear and nonlinear plants. Mayne and Michalska[19], Eaton and
Rawlings[21] proposed formulations for nonlinear system. Some stability analysis about
linear system without constrains at finite horizon[15][14]. The concept of Receding Hori-
zon Control is to determine the control input that optimizes some open loop performance
objective on a time interval extending from the current time to the future terminal time.
One of the features is that feedback is incorporated using the measurement to update the
optimization problem for the next time step. Ohtsuka and Fujii[7][8] has developed an
algorithm using homotopy notion and backward sweep method. This algorithm is used
for numerical simulation in Chapter5 and Chapter6. An idea of homotopy method like
here is that they had their eye on error of transversality condition. TPBVP on receding
horizon has transversality condition:

F = λ(tf)− φx(x(tf)) (3.17)

The difference between Receding Horizon Control and previous section is that the eval-
uated interval of performance index moves along time. Because Receding Horizon Control
updates the initial condition of the state variable, it gives state feedback. We have to make
a notation to describe such space as x∗(t, τ). The axis τ means the evaluated interval.
The initial digits of the input variable and costate variable to update on real-time axis.

This is feature of Receding Horizon Control. Controller uses only initial array of variables
on τ axis.

18

　　　 　　　

Figure 3.4: Moving Horizon

d

dt
λ(t) = S∗(t, 0) · δx+ c∗(t, 0) (3.18)

Hu = 0 (3.19)

* means that the variable is on τ axis.
Receding Horizon Control predicts future performance from current time until t +

T . Receding Horizon Control is different from full-time optimization. The full-time
optimization evaluates performance index in full range of the time. However, advantage
of Receding Horizon Control is that it can treat with unexpected happening real-timely.

3.6 Conclusions

Homotopy Method and Continuation Method are the basic building block of Receding
Horizon Control algorithm. Backward Sweep Method is well known method to obtain
optimal solution of gradient method traditionally. Receding Horizon algorithm is com-
posed of Continuation Method and Backward Sweep method. Chapter5 and Chapter 6
are explained using this algorithm.

Chapter 4

Real-Time Control for Robot

4.1 Introduction

Real-time control of a robot requires specific items. The numerical model of a robot
can be described as mechanical link system. Then some method of its derivation has been
considered. The popular one is Lagrange Method, another one is Newton-Euler Method.
Those methods are briefly introduced in this chapter.
Real-time OS is also indispensable item. What take a look at its contexture is important

to consider real-time optimization technique.

4.2 Numerical Model

The robot must be numerically modeled when real-time control of the robot is done.
In robotics engineering, methods to build numerical model of link mechanism has been
developed. Such methods are Lagrange Method, Newton-Euler Method, and so on.

4.2.1 Lagrange Method

Lagrange Method derives numerical model from kinetic energy and potential energy.
Because Lagrange Method uses generalized coordinates, arbitrary coordinates without
Cartesian coordinates. It has flexibility that some restrictions can be added when the
problem is formulated. This method has been effective after some formula manipulation
softs emerged. K is defined as kinetic energy and P as potential energy. Lagrange function
L is,

L = K − P (4.1)

The variable of generalized coordinates denotes q:

d

dt

µ
∂L

∂q̇

¶
− ∂L

∂q
(4.2)

21

4.2.2 Newton-Euler Formulation

Newton-Euler formulation is force and moment -based, and requires an ability to de-
scribe all the forces and moments acting upon the different components of the link-system.

　　　 　　　

Figure 4.1: Force and Moment on a Link
　　　

The degree of the freedom of each component is six. To describe the movement, trans-
lational motion: three and rotational motion: three are needed. D denotes kinetic mo-
mentum, E denotes angular momentum.

F =
dD

dt
(4.3)

N =
dE

dt
(4.4)

The relation between links ”i” and ”i+1” is described as rotational matrix. The rota-
tional matrix, which is from link ”i” to ”i+1” is defined as:

i
i+1R =

⎡⎣cos θi+1 − sin θi+1 0
sin θi+1 cos θi+1 0
0 0 1

⎤⎦ (4.5)

The inverse operation of it is defined as:

i+1
i R =

⎡⎣ cos θi+1 sin θi+1 0
− sin θi+1 cos θi+1 0

0 0 1

⎤⎦ (4.6)

This notation is based on [10]. Angular velocity, which is from the coordinate ”i” to
the coordinate ”i+1”, is defined as:

iωi+1 (4.7)

The formulation is recursive and simple sequence. It is divided to inward iterations and
outward iterations.
(Inward Iteration) Link 0 − > The end effector: (Angular Velocity)

22

　　　 　　　

　　　

Figure 4.2: Frame Relation
　　　

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1

θi · iẐi =

⎡⎣00
θi

⎤⎦
(Angular Acceleration)

i+1ω̇i+1 =
i+1
i Riω̇i + θ̇i+1

i+1Ẑi+1 +
i+1
i Riωi × θ̇i+1

i+1Ẑi+1 + θ̈i+1
i+1Ẑi+1 (4.8)

(Translation Acceleration)

i+1v̇i+1 =
i+1
i Ri(iω̇i × iPi+1 +

iωi × (iωi × iPi+1) +
iv̇i) (4.9)

(Translation Acceleration at the center of the gravity)

i+1v̇Ci+1 = (
i+1ω̇i+1 × iPCi+1 +

i+1ωi+1 × (i+1ωi+1 × i+1PCi+1) +
i+1v̇i+1) (4.10)

(Force of Translation motion)

i+1Fi+1 = mi+1 · i+1v̇Ci+1 (4.11)

(Moment of Translation Motion)

i+1Ni+1 =
Ci+1Ii+1 · i+1ω̇i+1 + i+1ωi+1 × Ci+1Ii+1

i+1ωi+1 (4.12)

(Outward Iteration) The end effector − > Link 0:

ifi =
i
i+1R

i+1fi+1 +
iFi (4.13)

ini =
iNi +

i
i+1R

i+1ni+1 + PCi × iFi +
iPi+1 × i

i+1R
i+1fi+1 (4.14)

4.2.3 State Equations

To describe the robot model as a state equations, joint angle and joint angular velocity
are tend to be defined as the state variables, joint torques are defined as input variables.

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ1(t)
...

θn(t)

θ̇1(t)
...

θ̇n(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
θ̇1(t)
...

θ̇n(t)

M−1(u− V (Θ, Θ̇)−G(Θ))

⎤⎥⎥⎥⎦ (4.15)

Θ =

⎡⎢⎣θ1(t)...
θn(t)

⎤⎥⎦ , u =
⎡⎢⎣u1(t)...
un(t)

⎤⎥⎦ ,M : inertial matrix, V : colioris term,G : gravity term

Describing nonlinearlity causes complication to be feasible. In the era when there is no
formula manipulation software, Three-Dimensional description was too much difficult to
be feasible. Then such measurements below were considered:

★ Two 2-D equations constitute a 3-D model.

★ The perturbation model is used and the model is simplified.

★ Eliminate some nonlinear terms

★ Linearization

After formula manipulation software has been emerged, this problem has not been
critical.

24

4.3 Real-Time Control using Modern Control The-

ory

Various methods have been developed to control robot or another subjects. Classical
control theory, H infinity, Fuzzy, Neuro-control, Adaptive control, have been applied into
real-time control of robot. In such applications, most controversial feature is how to
generate its motion, especially each joint trajectory.
The basic in modrn control theory is optimal regulator. However, optimal regulator was

not designed for robotics originally. Optimal regulator treats state equation as a linear
problem.

ẋ = A · x+ B · u (4.16)

Matrix A and B should be time invariant. Such equation could not treat nonlinear
dynamics like as robot arm.

u(t) =M(Θ(t)) · Θ̈(t) + V (Θ(t), Θ̇(t)) +G(Θ(t)) (4.17)

One of the most popular method to handle nonlinear mechanical links is nonlinear
compensation method. The control input has nonlinear terms.

u(t) =M(Θ(t)) · (Kp · (xref − x(t)) +Kv · (ẋref − ẋ(t))

+Ki ·
Z
(xref − x(t))dt+ V (Θ(t), Θ̇(t)) +G(Θ(t)) (4.18)

If the control input above is acted into the control object of a nonlinear mechanical link
system, the nonlinear term of the dynamics is canceled.

Θ̈(t) = Kp · (xref − x(t)) +Kv · (ẋref − ẋ(t)) +Ki ·
Z
(xref − x(t))dt (4.19)

Then the dynamics is changed to linear equation, and optimal regulator theory could
be applied. This is main story of nonlinear compensation method. The nonlinear term
is compensated at this method, however, designer have to define the trajectories of the
angular position, velocity, and acceleration of the joints. Optimal regulator acts only at
these error among reference and current states. Angular position, velocity, and accelera-
tion of one link arm like as Fig.4.3 must be defined by a designer. Designer has to consider
how to use gravity term(nonlinear term) well. The link behavior which makes an effective
use of nonlinear term could not be generated automatically.
Autonomous generation needs somewhat intelligence or designers support. Eventual

result always reached to optimization. Optimization could generate a motion closed to
natural motion by animal or human. It is recognized as least energy consumption, least
time, or some least criteria.
If optimization technique treat such problem, the problem is formulated as a TPBVP.

Although the initial and terminal conditions are defined, the transition of the trajectories
rely on optimization process. The links behavior is generated automatically and it makes
an effective use of nonlinear term.

The critical path was the calculation time of optimization. To avoid this, some mea-
surements were considered.

　　　 　　　

Figure 4.3: Difference between Optimal Regulator and Receding Horizon Control

4.4 Singular Point

The relation between Cartesian coordination and Joint angle coordination is defined
as:

ẋ = J · Θ̇ (4.20)

J is called as Jacobian. We always use Cartesian coordination to order a robot and
have to translate it to joint angle coordination using Jacobian.

Θ̇ = J−1 · ẋ (4.21)

J consists of trigonometric functions and J−1 diverges if the posture goes to singular
point. To avoid singular point is one of major problems in robotics field.
Jacobian has one more problem that the calculation needs long time if the link system

is large scaled. Computing of the inverse of the Jacobian matrix takes long time. This is
critical path for real-time control.
Furthermore, if the link system is redundant system, it becomes difficult to obtain the

inverse of the Jacobian. A common practice in such case is to make pseudo inverse.

J+ = (JT · J)−1JT (4.22)

J+ is merely pseudo and it is not real inverse. If we use this to generate robot motion,
it is far from optimal motion.
Receding Horizon Control eliminates these problems because it does not use Jacobian

matrix. These problems are discussed in Chapter7.

26

4.5 Real-Time OS

4.5.1 Real-Time OS

The round robin scheduling used in Unix cannot treat periodical task processing. If
the system falls in deadlock, which task will over the deadline cannot be expected. Multi-
task real-time operating system treats that the timing control will not interfere[13]. It
has both functional decomposition and time decomposition. The level to make processes
parallelized varies three below:

1. Fine-graded: Statement level

2. Middle-graded: Iteration level

3. Coarse-graded: Function level

Generally the embedded operating system is a coarse-graded.
Real-time system is divided to thread model (Itron, VxWorks) and process model (RT-

Linux). Address space is independent in each process of the process model. The reliability
of the process model is high because the data of process-process is protected. Even if it has
bugs, it is protected. Process model is a Coarse-graded. Object oriented is a thread model.
A large scaled system needs a thread model because of development efficiency. Then,
such two models merits are utilized to multi-process/multi-thread model (QNX,Lynx,OS-
9,v3,OSE). UNIX and Windows also multi-process/multi-thread model. Linux converted
to real-time operating system has varied like as RT-Linux or Time-Sys Linux. RT-Linux
does not have protected function of process model, and if it has a bug, it will be crashed.
Time-Sys Linux has a protect function but the accuracy of time lacks a digit than kernel
space execution.

　　　 　　　

Figure 4.4: Structure of Real-Time OS

4.5.2 Interrupts

The CPU hardware has a wire called the interrupt-request line. When the CPU detects
that a controller has asserted a signal on the interrupt request line, the CPU saves small

amount of state, and jumps to the interrupt-handler routine at a fixed address in mem-
ory. The interrupt handler determines the cause of the interrupt, performs the necessary
processing, and executes a return from interrupt instruction to return the CPU to the
execution state prior to the interrupt. This basic interrupt mechanism enables the CPU to
respond to an asynchronous event, such as a device controller becoming ready for service.
Most CPUs have two interrupt request lines. One is the non-maskable interrupt, which
is reserved for events such as unrecoverable memory errors. The second is maskable. It
can be turned off by the CPU before the execution of critical instruction sequences that
must not be interrupted. Device controllers to request service use the maskable interrupt.
The interrupt mechanism accepts an address - a number that selects a specific interrupt
handling routine from a small set. In most architecture, this address is an offset in a table
called the interrupt vector. Hitachi Super-H2 has hardware interrupt vector table and the
respond time is several tens - hundreds of nanoseconds. Hitachi Super-H3 has software
interrupt vector table and the respond time is several microseconds. The practical time to
respond for interrupt is interrupt time + interrupt mask time. The interrupt mask time
is based on the time, which is the longest system call time to be taken. Hitachi Super-H3
has several - several tens of microseconds in thread model, several tens of microseconds -
several milliseconds in process model.

　　　 　　　

Figure 4.5: Interrupt driven I/O cycle
　　　

4.6 Application to Legged Robot Control

Modern control theory enabled robot precisely control as acceleration, velocity, and
position level. One of strong progresses in robot control is force control. Sophisticated
force sensor has enabled a controller to add compliance control, and then robot has been

28

able to do some dexterity such as holding Tofu by end-effectors. Control of legged robot
is higher leveled control than another kind of robot because its must be dynamically
balanced. Almost early stage of legged robots does static walk, but nowadays many
legged robots have done dynamic walk. ZMP (Zero Moment Point) must be somewhat
controlled in dynamic walk.

　　　 　　　

Figure 4.6: Control for Legged Robot

4.7 Conclusions

Items for real-time control of robot are discussed in this chapter. Newton-Euler Method
to make numerical model for robot is useful item. Formulation of optimization problem
at later chapters treats this model.
To manage real-time control, the knowledge about real-time OS is essential.RT-Linux,Tornado,T-

Engine,etc. are based on real-time OS architecture.
Accumulation of various knowledge is needed for real-time control of a robot.

Chapter 5

Equal Constraint for Balance
Condition of Legged Robot

5.1 Introduction

Legged robot has specific balance condition attributable to the unstable dynamics. It
needs to contrive ways to involve such condition into formulation.
While the legged robot is standing on one foot, the point at which the center of gravity

(C.G.) of the robot is projected onto the ground must be located on the sole plane to
enable it static walk. While standing on two feet, there must be a point on the plane,
which connects both the soles. While standing on four feet, there must be a point on the
polygon, which consist of the four soles. While the robot moves, in order to be stabilized
dynamically and to walk, the same concept is required. Generally, this is called ZMP (Zero
Moment Point [16][17]Fig.5.1). ZMP within sagittal plane(Fig.5.2) can be expressed as
follows from link i=0 to i=n.
ZMP is the point on the ground where ground reaction forces are applied.

xzmp =
−Σni=0mi(−g + z̈i)x+ Σni=0miẍizi

Σni=0mi(−g + z̈i)
(5.1)

g is gravity acceleration and m is the mass of each link. If the ”M” is represented for
the whole mass,

xzmp =
−M(−g + z̈)x+Mẍz

M(−g + z̈) (5.2)

This equation means that the sum total of moment of the point-mass around the origin
of the coordinate balances with the moment generated by the ZMP distance from the
origin and the reaction force from the ground. If the ZMP is located in the polygon
constituted by the soles as well as the point at which the C.G. projects itself onto the
ground in a static walk, the robot is stabilized and a dynamic walk can be carried out.
If the ZMP runs-over from this polygon, it will cause the robot to fall and it cannot
continue to walk. An attempt to converge the ZMP to a referenced ZMP trajectory
by using feedback control in recent years has been performed [18]. Then, how a ZMP
reference trajectory could be generated poses the next problem.

31

Figure 5.1: Definition of Zero Moment Point

Figure 5.2: Definition of sagittal plane and frontal plane

In the conventional research of legged robot, there are two variables ”x” and ”z” in
Equation(5.2) and poses a problem in solving the ZMP variable. Because it is not solved
uniquely. An optimization problem must be solved to obtain a solution. If the condition
, which holds a center of gravity position at fixed height, is added, we can avoid this
problem temporarily. Then, the variable z̈ in the equation is set to 0, the equation could
be described as follows, and a pseudo solution is uniquely obtained(Fig.5.3).
In the conventional legged robot research, one of big problems was to compute ZMP

by Equation(5.2) since there are two variables of ”x” and ”z”. To avoid this problem,
some treatments had been concerned[22]. The main concept was to make the numerical
model unique. Nonlinear dynamic equation is linearized adding constraints and reduced
to unique equation like as Fig.5.3
A constraint below is added:

z = k · x+ href (5.3)

href denotes a fixed height. Then we have linear equation:

ẍ =
g

href
· x+ 1

m · href
· τ (5.4)

32

Figure 5.3: Linearization and Reduction

τ denotes ankle joint torque. The value of ZMP can be obtained from τ and sensed
value of floor reaction force. Then the ZMP could be in proportion with the acceleration
of x. One of the defects in this equation is that the torque necessary for whole the robot is
collected on the ankle joint. Redundancy, which the robot possesses, could not be utilized
effectively. Equation(5.3) is defined arbitrarily by designer.

★ Excessive torque for whole the robot is converged to the ankle joint

★ Robot motion is restricted because the constraint is adopted (The motion is on a
linear line)

★ Solutions for another joints without the ankle joint could not be obtained

The second item implies that robot motion is not natural. What it takes to utilize
redundancy of a robot is optimization. Since iterative calculation is needed in the opti-
mization by the gradient method, such technique usually turns into off-line calculation.
However, in a robot control that the real-time performance is required, off-line optimiza-
tion is disadvantageous. When an unexpected situation appears, it could not be coped
with.
Many engineering applications require real-time solutions of optimization problems.

However, traditional algorithms for digital computers may not provide real-time opti-
mization. An attractive and promising approach was introduced to real-time solutions for
optimization problems known as Receding Horizon Control [7] [8] [19] [20]. This new op-
timization technique goes into the practical usage stage. Since Receding Horizon Control
does not use a gradient method for optimization, it can carry out calculation processing
of the optimal solution in short time such as a real-time control interval. Although much
research has been conducted in respect to the theory, applying Receding Horizon Control

to robotics still has no actual example. This paper describes ZMP control of the legged
robot using Receding Horizon Control proving that real-time optimization is available.
Furthermore, it proposes a method of generating the optimum ZMP reference [28].

5.2 Receding Horizon Control with Equality Con-

straint

At the first stage in the history of Receding Horizon Control, Receding Horizon Control
has been proposed for the linear system [14]. Then, Chen and Shaw [15], Mayne and
Michalska [19] applied Receding Horizon Control to the general nonlinear system. Mayne
and Michalska [20] is described the Robust design technique of Receding Horizon Control.
Ohtsuka and Fujii [7] [8] developed the practical nonlinear control system design technique
of Receding Horizon Control.
Receding Horizon Control formulation without constraints has been performed back-

wards. In this chapter, Receding Horizon Control containing the equality constraint is
focused on and explained.
The state equation to treat,

ẋ(t) = f [x(t), u(t), t] (5.5)

As equality constraint,

C[x(t), u(t), t] = 0 (5.6)

If equality constraint condition can be used, it is convenient when formulizing a problem
like real-time control of a robot.
The performance index is defined as,

J = φ[x∗(T + t)] +

Z t+T

t

L[x∗(t, τ), u∗(t, τ)]dτ (5.7)

Receding Horizon Control has added superscript * to the variable on the time-axis τ
which moves, in order that the evaluation section may move with time. The left side of
the bracket ”(t,τ)” means the real time ”t”, and the right side of this bracket means the
time on the τ axis. Hamiltonian is described as,

H = L+ λ∗Tf + ρ∗TC (5.8)

λ∗, ρ∗are co-state variables. Euler-Lagrange equations are described as,

λ̇∗(t, τ) = −HT
x (5.9)

Hu = 0 (5.10)

ẋ∗(t, τ) = −HT
λ (5.11)

34

C[x∗(t, τ), u∗(t, τ), τ] = 0 (5.12)

ẋ∗(t, 0) = x(t) (5.13)

λ∗(t, T) = φTx [x
∗(t, T)] (5.14)

It considers obtaining a solution using the continuation method [7] [8]. The perturbation
from an optimal path is described as:

δẋ = fxδx+ fuδu+ fρδρ (5.15)

δλ̇ = −Hxxδx− fTx δλ−Hxuδu−Hxρδρ (5.16)

Huxδx+ f
T
u δλ+Huuδu−Huρδρ = 0 (5.17)

Cuδu+ Cxδx = 0 (5.18)

Here,δu and δρ are eliminable if Equation(5.17),Equation(5.18) are solved as simulta-
neous equations. Then Equation(5.15),Equation(5.16) are described as:

d

dt

∙
δx
δλ

¸
=

∙
A B
C D

¸ ∙
δx
δλ

¸
(5.19)

A = fx + fρ ·H−1uρ ·Hux − fρ ·H−1uρ ·Huu · C−1u · Cx − fu · C−1u · Cx
B = fρ ·H−1uρ · fTu
C = −Hxx +Hxu · C−1u · Cx −Hxρ ·H−1uρ ·Hux +Hxρ ·H−1uρ ·Huu · C−1u · Cx
D = −fTx −Hxρ ·H−1uρ · fTu

The subsequent calculation method follows the continuation method which Ohtsuka
and Fujii developed [7] [8]. This is explained briefly below. This technique pursues the
optimal solution so that the error F of the transversality conditions of an Euler-Lagrange
equation is converged to 0.

d

dt
F [λ(t), x(t), T (t)] = Coeff · F [λ(t), x(t), T (t)] (5.20)

Thus, F can be stabilized. The equation below is assumed here.

δλ∗(τ, t) = S∗(t, τ) · δx(t, τ) + c∗(t, τ)dt (5.21)

This is substituted for Equation(5.19).

S∗τ = D · S∗ − S∗ · A− S∗ ·B · S∗ + C (5.22)

c∗τ = (D − S∗ · B) · c∗ (5.23)

This terminal value is acquired from Equation(5.21). An S∗(t, 0), c∗(t, 0) will be ac-
quired if it finds the integral from the terminal value along time reversely.

λ̇(t) = S∗(t, 0) · ẋ(t) + c∗(t, 0) (5.24)

Then, optimized λ(t) will be obtained if it integrates with the upper equation on real
time. Also optimized u(t) can be obtained from Hu = 0. See Ohtsuka and Fujii [7] [8] for
detail.

5.3 Formulation

5.3.1 Model Expression as a Point Mass

Modeling of robot mechanics has been studied for many years. One of the ways is to
describe nonlinearity of the robot precisely. However such dynamic equations leads to a
result that the equation itself is too much complicated to treat. Such modeling also could
not be applicable to even similar type robots. From this point of view, a concept of simple
modeling has been emerged. Modeling simply leads to be basic and flexible to apply it to
various type controlled objects. The fundamental treatment should be formulated at first,
and then applied to more complicated modeling properly. However, overdo of reduction
and linearization in modeling leads to many defects mentioned in 5.1 Introduction. The
modeling must be simple, but also, must be with wide application.
In this study, when a legged robot is modeled, the whole robot is treated as a point mass

of most fundamental case. Treating the whole robot center of gravity as inverted pendu-
lum is a technique generally performed. According to such simple modeling, a method
applicable to a biped robot, a quadruped robot, and other multi-legged type robots can
be proposed so that Chapter5.7 may describe. First, in order to help understanding, it
deals with a problem at a 2-dimensional plane. Chapter5.4.2 describes what extended
this to 3 dimensions. As an input of a system, it sets setting up the acceleration of axis
”x” and ”z”,ux = ẍ, uz = z̈. Gravity is applied to a perpendicular lower part.

d

dt

⎡⎢⎢⎣
x(t)
z(t)
ẋ(t)
ż(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

ẋ(t)
ż(t)
ux(t)

uz(t)− g

⎤⎥⎥⎦ (5.25)

Although this is considered on Sagittal plane, if it considers at Frontal plane,

d

dt

⎡⎢⎢⎣
y(t)
z(t)
ẏ(t)
ż(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

ẏ(t)
ż(t)
uy(t)

uz(t)− g

⎤⎥⎥⎦ (5.26)

This modeling does not include ankle joint torque explicitly. Then the problem men-
tioned in 5.1 Introduction could not be emerged. The potential of the redundancy of the

36

Figure 5.4: 2-D Model in Sagittal Plane

robot could be left and it produces extensive utility. Furthermore, we can obtain ZMP
trajectory.

5.3.2 Equality Constraints

Difficulties in taking the ZMP variable into a state equation as a state variable com-
plicates the problem in formulation. Because the right side of Equation(5.2) has the
dimension of acceleration, it causes differentiation of acceleration. Then, the use of the
equality constraint expressing ZMP eliminates this problem.

xzmp(t)(uz(t)− g) = x(t)(uz(t)− g)− z(t)ux(t) (5.27)

This means that the total moment by the acceleration inputs and gravity balances with
the moment by the ZMP distance and reaction force from the ground like as Fig.5.3. ZMP
is the point of satisfying Equation(5.27). If ZMP is located in the polygon constituted
by the sole plane, it can support the reaction force without generating any moment.
Furthermore, this paper proposes that the 3rd input uzmp substitute for xzmp, then this
idea compliments using the ZMP variable in formulation. It is not necessary for uzmp to
be included in the state equation.

uzmp(t)(uz(t)− g) = x(t)(uz(t)− g)− z(t)ux(t) (5.28)

If ZMP is treated as one of the inputs, when an optimum solution is calculated, the op-
timum ZMP input will be obtained simultaneously. At this point, the equality constraint
has an important role.

5.3.3 Performance Index

The performance index is created using norm of inputs. Here, features include that the
term of uzmp is added in the performance index. Thus, by setting up the solution , which
minimizes the norm of each axial acceleration and the ZMP sway, will be calculated.
Considering that the ZMP may not sway within the sole of the robot, this has lead to the
design of the robot’s sole to be as small as possible.

J = XT · Sf ·X +
Z t+T

t

(XT ·Q ·X + UT ·R · U)dτ (5.29)

X = [xf − x(t, T), yf − y(t, T), ẋf − ẋ(t, T), ẏf − ẏ(t, T)]T
U = [u∗x(t, τ), u

∗
z(t, τ), u

∗
zmp(t, τ)]

T

Sf and R are diagonal weight matrix.

5.4 Numerical Simulation

5.4.1 Two Dimensional Formulation

The example of numerical simulation is shown in Fig.5.5. The used parameter car-
ried out in 0.5m/s in horizontal speed and the perpendicular direction speed of 0.0m/s
in the mass of m = 1.0kg at the initial state and the terminal state. The initial state
is (x, z, ẋ, ż)= (-0.25m, 0.8m, 0.5m/s ,0.0m/s), the terminal state is (x, z, ẋ, ż)= (0.25m,
0.8m, 0.5m/s ,0.0m/s). R = diag(1.0, 1.0,1.0) and Sf=diag (1.0, 4400.0, 1.0,0.0). trajec-
tory ”x,z,ẋ, ż” follows on moving to the terminal state of Fig.5.5.1-5.5.4, and signs that the
ZMP input ”uzmp” also transit as Fig.5.5.7. ux, uz are also obtained as Fig.5.5.5,Fig.5.5.6.
In this example, the action of the legged robot which advances 0.5m in 1.0s at 0.8m height
is exaggerated, but this is to be understandable. Even in such a big action the optimum
the ZMP input can also be generated by this technique. Fig.5.5.9,Fig.5.5.10 comparing
the left side and right side of the equality constraint equations of the following to see if
the solution is suitable.

uzmp(t)(uz(t)− g) = x(t)(uz(t)− g)− z(t)ux(t) (5.30)

Balance is mostly maintained by the Fig.5.5.9,Fig.5.5.10. It can be understood that the
optimum ZMP input is generated appropriately. The CPU time taken for this calculation
is 0.09s by a Linux OS PC with a Celeron processor 333MHz. It can be completed in a
sufficiently short time to 1.0s of the simulation time. The control interval is 2ms. It is
understood that real-time control is possible. Since the ZMP input is generable on real
time, as compared with the conventional technique that the optimum ZMP trajectory
is beforehand generated by off-line calculation, it is very convenient. Fig.5.5.8 is the
transition of the value of error F from the ”transversality condition”. The optimum
solution is achieved as this value F is close to 0. Although the value F overshoots from
0, the value return to 0 quickly in this figure. This figure provides the evidence that the
optimum solution is achieved.

38

Table 5.1: Simulation Data(2-D Case)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.2

Initial Condition [0.0, 0.0, 0.8, 0.5, 0.0]T

Terminal Condition [0.25, 0.8, 0.5, 0.0]T

Sf diag[1,540,1,1]

R diag[1,1,1]

Q diag[0,0,0,0]

Number of time steps of tau axis 5

ζ 450

F [λ(t), x(t), T (t)] = λ∗(t, T)− φTx [x
∗(t, T)] (5.31)

　　　 　　　

Fig5.5.1　 x(2-D case)

　　　

　　　 　　　

Fig5.5.2　 z(2-D case)

　　　

　　　 　　　

Fig5.5.3　 ẋ(2-D case)

　　　

　　　 　　　

Fig5.5.4　 ż(2-D case)

　　　

　　　 　　　

Fig5.5.5　 ux(2-D case)

　　　

　　　 　　　

Fig5.5.6　 uz(2-D case)

　　　

　　　 　　　

Fig5.5.7　 uZMP (2-D case)

　　　

40

　　　 　　　

Fig5.5.8　 Sum of errors (2-D case)

　　　

　　　 　　　

Fig5.5.9　 Left side of equal
constraint(2-D case)

　　　

　　　 　　　

Fig5.5.10　 Right side of equal
constraint(2-D case)

　　　

42

5.4.2 Three Dimensional Formulation

Although the preceding chapter stated at the two dimensional plane in order to give
intelligible explanation, formulation in the three dimensional space is also available. The
state equation of the three dimensional mass is described as,

d

dt

⎡⎢⎢⎢⎢⎢⎢⎣
x(t)
y(t)
z(t)
ẋ(t)
ẏ(t)
ż(t)

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ẏ(t)
ż(t)
ux(t)
uy(t)

uz(t)− g

⎤⎥⎥⎥⎥⎥⎥⎦ (5.32)

Figure 5.6: 3 Dimensional Formulation

The equality constraint of the ZMP balance along the x axis and the balance along the
y axis must be taken into consideration.

xzmp(t)(uz(t)− g) = −ux(t)z(t) + (uz(t)− g)x(t) (5.33)

yzmp(t)(uz(t)− g) = −uy(t)z(t) + (uz(t)− g)y(t) (5.34)

These two equations are collected in order to reduce the number of the equality con-
straint.

ux(t)z(t)(yzmp(t)− y(t)) = uy(t)z(t)(xzmp(t)− x(t)) (5.35)

The performance index makes the minimum norm of each axial acceleration and ZMP
inputs.

J = XT · Sf ·X +
Z t+T

t

(XT ·Q ·X + UT · R · U)dτ

U = [u∗x(t, τ), u
∗
y(t, τ), u

∗
z(t, τ), u

∗
xzmp , u

∗
yzmp]

T

X = [xf − x(t, T), yf − y(t, T), zf − z(t, T),
ẋf − ẋ(t, T), ẏf − ẏ(t, T), żf − ż(t, T)]T (5.36)

The calculation result of this 3-D formulation is shown in Fig.5.7. The initial state
(x, y, z, ẋ, ẏ, ż)= (-0.125m, -0.125m, 0.800m, 0.500m/s, 0.500m/s, 0.000m/s) and the
terminal state(x, y, z, ẋ, ẏ, ż)= (0.125m, 0.125m, 0.800m, 0.500m/s, 0.500m/s,0.000m/s).
R = diag (1.0, 1.0, 1.0, 1.0, 1.0) and Sf = diag (100.0, 600.0, 3400.0, 0.1, 2.0, 0.1).
Fig.5.7.1-Fig.5.7.4 show the transitions of state variables on each axes. Fig.5.7.7-Fig.5.7.9
show transitions of the inputs of each axes. Fig.5.7.10 and Fig.5.7.11 show ZMP inputs
along axes x and y. The figures show signs that it has fitted in less than ± 0.05m on
the x axis, and less than ± 0.1m on the y axis. ZMP sway inside this range means that
the appropriate sole for the leg can be designed. Moreover, Fig.5.7.12 and Fig.5.7.13 and
show the left side value and right side value of Equation(5.33). These results fulfill the
equality constraint for the most part. Error F is suppressed well(Fig.5.7.14). This means
that the calculation result follows the optimum path well. The calculation time required
is 0.35s for this simulation time of 0.5s. In this calculation, the time unit of integration
was set to 200 µs.

44

Table 5.2: Simulation Data(3-D Case)

Simulation Time 0.5 s

dt 2.0 ms

Continuation Terminal Time T=0.2

Initial Condition [0.0, 0.0, 0.8, 0.25, 0.25, 0.0]T

Terminal Condition [0.125, 0.125, 0.8, 0.25, 0.25, 0.0]T

Sf diag[100,600,3400,0.1,2,0.1]

R diag[1,1,1,51,1]

Q diag[0,0,0,0,0,0]

Number of time steps of tau axis 5

ζ 4500

　　　 　　　

Fig5.7.1　 x(3-D Case)

　　　

　　　 　　　

Fig5.7.2　 y(3-D Case)

　　　

　　　 　　　

Fig5.7.3　 z(3-D Case)

　　　

　　　 　　　

Fig5.7.4　 ẋ(3-D Case)

　　　

　　　 　　　

Fig5.7.5　 ẏ(3-D Case)

　　　

　　　 　　　

Fig5.7.6　 ż(3-D Case)

　　　

　　　 　　　

Fig5.7.7　 ux(3-D Case)

　　　

46

　　　 　　　

Fig5.7.8　 uy(3-D Case)

　　　

　　　 　　　

Fig5.7.9　 uz(3-D Case)

　　　

　　　 　　　

Fig5.7.10　 uZMPx(3-D Case)

　　　

　　　 　　　

Fig5.7.11　 uZMP y(3-D Case)

　　　

　　　 　　　

Fig5.7.12　 Left side of the equal
constraint(3-D Case)

　　　

　　　 　　　

Fig5.7.13　 Right side of the equal
constraint(3-D Case)

　　　

　　　 　　

　

Fig5.7.14　 Sum of Error1-6(3-D Case)

　　　

5.5 Mass Behavior and ZMP

The ZMP balance condition varies with the mass movement. Here let’s confine the
mass movement solely to the x-axis like as Fig.5.4. The ZMP balance condition in case
of x < 0, the mass is pulled by gravity and thrust force along x axis is needed. However,
the condition in case of x > 0, the mass is pushed by gravity and the movement along
x-axis is easy. Some simulation results reflect such mass behavior.

　　　 　　　

Fig5.7.15　 Mass Behavior Ahead x=0/Behind x=0

　　　

5.5.1 In case of x > 0

If the movement of the mass starts from x > 0 and the velocity of the movement is
constant, the ZMP balance condition does not fluctuate so much. This case is base of
another cases.

48

　　　 　　　

Fig5.7.16　 In Case of x > 0

　　　

Table 5.3: Simulation Data(In case of x > 0)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.5

Initial Condition [0.0, 0.0, 0.8, 0.5, 0.0, 0.0]T

Terminal Condition [0.5, 0.0, 0.8, 0.5, 0.0, 0.0]T

Sf diag[1,1,100,0.1,0.1,100]

R diag[1,1,1,5,5]

Q diag[1,1,1,1,1,1]

Number of time steps of tau axis 50

ζ 300

　　　 　　　

Fig5.8.1　 x(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.2　 y(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.3　 z(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.4　 ẋ(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.5　 ẏ(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.6　 ż(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.7　 ux(In Case of x > 0)

　　　

50

　　　 　　　

Fig5.8.8　 uy(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.9　 uz(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.10　 uZMPx(In Case of x > 0)

　　　

　　　 　　　

Fig5.8.11　 uZMPy(In Case of x > 0)

　　　

52

Table 5.4: Simulation Data(Cut Across x=0)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.5

Initial Condition [−0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Terminal Condition [0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Sf diag[1,1,100,0.1,0.1,100]

R diag[1,1,1,5,5]

Q diag[1,1,1,1,1,1]

Number of time steps of tau axis 50

ζ 300

5.5.2 In case of Cut Across x=0

If the mass cuts across x = 0, effect of the ZMP balance condition alternates from
x < 0 to x > 0. ux increases in x < 0, however ux decrease immediately after the mass
acrossed x = 0. uZMP also perturbs along with the effect of ux.This behavior is very
interesting point about legged robot. At the anterior half of the support phase, the robot
needs acceleration. However at the last half of the support phase, the robot can draw on
gravity.

　　　 　　　

Fig5.9.1　 x(Across x = 0)

　　　

　　　 　　　

Fig5.9.2　 y(Across x = 0)

　　　

　　　 　　　

Fig5.9.3　 z(Across x = 0)

　　　

　　　 　　　

Fig5.9.4　 ẋ(Across x = 0)

　　　

　　　 　　　

Fig5.9.5　 ẏ(Across x = 0)

　　　

　　　 　　　

Fig5.9.6　 ż(Across x = 0)

　　　

　　　 　　　

Fig5.9.7　 ux(Across x = 0)

　　　

54

　　　 　　　

Fig5.9.8　 uy(Across x = 0)

　　　

　　　 　　　

Fig5.9.9　 uz(Across x = 0)

　　　

　　　 　　　

Fig5.9.10　 uZMPx(Across x = 0)

　　　

　　　 　　　

Fig5.9.11　 uZMPy(Across x = 0)

　　　

Table 5.5: Simulation Data(Sudden Acceleration)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.5

Initial Condition [−0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Terminal Condition [0.25, 0.0, 0.8, 0.0, 0.0, 0.0]T

Sf diag[10,1,100,1200,0.1,100]

R diag[5,1,1,5,5]

Q diag[1,1,1,1,1,1]

Number of time steps of tau axis 50

ζ 300

5.5.3 Sudden Acceleration

In this case the mass is suddenly accelerated from ẋ = 0.0 to ẋ = 0.5(Fig.5.10.4,Fig.5.10.7).
Accompanying the process of sudden acceleration, ZMP perturbs wildly. Fig.5.10.10 shows
that ZMPx trajectory comes up to 4m.

56

　　　 　　　

Fig5.10.1　 x(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.2　 y(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.3　 z(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.4　 ẋ(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.5　 ẏ(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.6　 ż(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.7　 ux(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.8　 uy(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.9　 uz(Sudden Acceleration)

　　　

　　　 　　　

Fig5.10.10　 uZMPx(Sudden
Acceleration)

　　　

　　　 　　　

Fig5.10.11　 uZMPy(Sudden
Acceleration)

　　　

58

Table 5.6: Simulation Data(Sudden Stop)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.5

Initial Condition [−0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Terminal Condition [−0.25, 0.0, 0.8, 0.0, 0.0, 0.0]T

Sf diag[10,1,100,1200,0.1,100]

R diag[5,1,1,5,5]

Q diag[1,1,1,1,1,1]

Number of time steps of tau axis 50

ζ 300

5.5.4 Sudden Stop

In this case the point mass has the velocity 0.5m/s at first, and rapidly decelerated
from ẋ = 0.5 to ẋ = 0.0. The trajectory x does not move ahead(Fig.5.11.1). ux generates
minus acceleration. Accompanying the process of sudden deceleration, ZMP perturbs
wildly(Fig.5.11.10).

　　　 　　　

Fig5.11.1　 x(Sudden Stop)

　　　

　　　 　　　

Fig5.11.2　 y(Sudden Stop)

　　　

　　　 　　　

Fig5.11.3　 z(Sudden Stop)

　　　

　　　 　　　

Fig5.11.4　 ẋ(Sudden Stop)

　　　

　　　 　　　

Fig5.11.5　 ẏ(Sudden Stop)

　　　

　　　 　　　

Fig5.11.6　 ż(Sudden Stop)

　　　

　　　 　　　

Fig5.11.7　 ux(Sudden Stop)

　　　

60

　　　 　　　

Fig5.11.8　 uy(Sudden Stop)

　　　

　　　 　　　

Fig5.11.9　 uz(Sudden Stop)

　　　

　　　 　　　

Fig5.11.10　 uZMPx(Sudden Stop)

　　　

　　　 　　　

Fig5.11.11　 uZMPy(Sudden Stop)

　　　

Table 5.7: Simulation Data(Make uZMP small)

Simulation Time 1.0 s

dt 2.0 ms

Continuation Terminal Time T=0.5

Initial Condition [−0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Terminal Condition [0.25, 0.0, 0.8, 0.5, 0.0, 0.0]T

Sf diag[1,1,100,0.1,0.1,100]

R diag[1,1,1,10,10]

Q diag[1,1,1,1,1,1]

Number of time steps of tau axis 50

ζ 300

5.6 Weight Matrix

We can make some inputs value small using weight matrix R, however this is trade-off
between another variables. Everything could not be small. If weight matrix R makes
ZMP input small, the trajectory of ux fluctuates.
A simulation case which makes weight of ZMP inputs 10 shows Fig.5.12. The trajectory

of ZMP input comes to be 0.04 ≥ kuZMPxk. However, the trajectory of ux is transformed.

62

　　　 　　　

Fig5.12.1　 x(Make uZMP small)

　　　

　　　 　　　

Fig5.12.2　 y(Make uZMP small)

　　　

　　　 　　　

Fig5.12.3　 z(Make uZMP small)

　　　

　　　 　　　

Fig5.12.4　 ẋ(Make uZMP small)

　　　

　　　 　　　

Fig5.12.5　 ẏ(Make uZMP small)

　　　

　　　 　　　

Fig5.12.6　 ż(Make uZMP small)

　　　

　　　 　　　

Fig5.12.7　 ux(Make uZMP small)

　　　

　　　 　　　

Fig5.12.8　 uy(Make uZMP small)

　　　

　　　 　　　

Fig5.12.9　 uz(Make uZMP small)

　　　

　　　 　　　

Fig5.12.10　 uZMPx(Make uZMP small)

　　　

　　　 　　　

Fig5.12.11　 uZMPy(Make uZMP small)

　　　

64

5.7 Application

A legged robot is generally a nonlinear mechanical multi-link system. In order to com-
pensate such nonlinearity, using this technique together with the conventional nonlinear
control technique is also worth consideration. The real-time optimum solution using
Receding Horizon Control can be used as reference trajectories. On the other hand, non-
linear control in modern control theory performs control of the whole multi-link system
of the robot to converge to the reference trajectories. When we have a powerful CPU for
real-time control, it is possible that it formulates everything in a nonlinear model using
Receding Horizon Control alone. Using the conventional control method for the legged
robot, the optimum reference trajectory have to be prepared before the real-time control.
If the robot encounters an unexpected situation, the robot cannot cope with it. In regards
to this point, the technique proposed is practical.
The optimum ZMP input, which is obtained using Receding Horizon Control, can gener-
ate the reference trajectory. Then a control system block diagram could be constructed
so that actual ZMP may follow this reference trajectory. Since ux, uy, and uz are obtained
for optimum inputs, they are newly regarded as reference trajectories. Thus, this sim-
ple method proposed is applicable also to a biped robot, a quadruped robot, and other
multiped robots.

5.7.1 In the Case of a Biped

In the case of the biped, the phase of leg behavior could be divided into a support phase
and a swing phase. The ZMP must be respectively settled in the sole planes. The ZMP
must transition in these planes, if the initial point and the terminal point are set as in
Fig.5.13. Control of the nonlinear force is performed in the nonlinear control part as is
shown in the Fig.5.14 control block diagram. Collecting the calculation results in which
each parameter is changed makes it possible to predict the range of ZMP sway in a sole.
This is a very interesting point. In design of a biped robot, an index can be obtained
which has an influence on the design dimensions of the sole plane.

Figure 5.13: Case of Biped

Figure 5.14: Control Block Diagram

5.7.2 In the Case of a Quadruped

The legs can be treated as the support legs pair and the swing legs pair by turns in ideal
gaits. The polygon which is constituted by some sets of legs can secure a larger plane
compared with a biped robot’s case. For example, when a quadruped robot performs a
”trot gait”, it is necessary to repeat a support phase - swing phase for the diagonal leg
entirely by turns. In Fig.5.15 , step planes cross in the trot gait. If the starting point of
ZMP is set at the tip of this plane, it can run to the tip of the following plane. Then a
stable locomotion pattern will be achieved.

Figure 5.15: Case of Quadruped

5.8 Conclusion

It is proposed that Receding Horizon Control is used adding an equality constraint
and then the formulation is performed. We discussed that the ZMP condition is used
in the formulation using an equality constraint. Generally, it is difficult to take a ZMP
variable as a state variable in a state equation. To ensure an optimal result, careful
consideration of the ZMP conditions is required for the formulation. Then, this paper

66

shows that the ZMP is defined as one of the input variables. Since ZMP input is obtained
as an optimal solution, the technique proposed can generate a true ZMP trajectory on
real time. Simulation results are performed by both the models in a two dimensional
plane and the three dimensional space.
This simple modeling enables an easy application to biped, quadruped and the other

multiple robots. This simple modeling forms a basis for robot control.

68

Chapter 6

State Variable Inequality Constraint
of Swing Leg

6.1 Introduction

The point mass modeling for formulation of Receding Horizon Control is introduced
in the preceding chapter. That idea is to look at the robot model in perspective. We
are in the next stage how the swing legs should be treated. The legged robot motion
can be categorized into two phases support leg phase and swing leg phase depending on
whether or not they are in contact with the floor while the legged robot is moving. The
support legs support the robot against gravity while the swing legs are swung forward
and then prepared for the subsequent support phase. Since a real robot’s legs behave
nonlinearly, nonlinear forces interfere with the motion of the swing legs when they move.
It is not practical to include all nonlinearities of the robot in a state equation. Therefore,
this chapter proposes a simple formulation that reflects the nonlinearity of the motion of
swing legs as far as possible. The root joint of the swing leg is connected to the center
of gravity of the robot in sagittal plane and the acceleration is transferred to the root
joint while the center of gravity satisfies the conditions of the ZMP constraint. This
formulation can be easily applied to multi-legged robots such as biped, quadruped, and
hexapod by simple addition of the equations of motion of the swing legs. It is necessary
to apply the constraint on the swing legs such that their position is always above floor
level. The absence of this constraint could create a situation in which the legs would be
positioned below the floor. Constraints such as these can be described as inequality state
variable constraints. This chapter describes a method for solving the problem by means
of the slack variable method.

6.2 Modeling of Swing Leg

Generally, a mathematical model of a legged robot increases in complexity if we try
to describe the nonlinearity of its movement precisely, with the result that the equations
of motion become too complex for the robot control to apply. A mathematical model
that requires less calculation is needed to shorten the control interval and allow real-time
control of the swing legs. [28] describes the ZMP condition on the sagittal plane Fig.5.4

69

using equal constraint.

xZMP (t)(uz(t)− g) = x(t)(uz(t)− g)− z(t)ux(t) (6.1)

This indicates that the moment, which consists of xZMP and the reaction force of the
floor, balances with the gross moment around the origin of the coordinate system. Kinetic
balance is maintained as long as xZMP is in the area of the sole (biped), or in the area of
the polygon described by the points where the toes of the grounding legs touch the floor
(quadruped). The state equation of the center of gravity of a robot in sagittal plane is
described as follows.

d

dt

⎡⎢⎢⎣
x(t)
z(t)
ẋ(t)
ż(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

ẋ(t)
ż(t)
ux(t)

uz(t)− g

⎤⎥⎥⎦ (6.2)

At practical control of legged robot, the control of swing legs must also be taken into
account. We have therefore described the swing legs as a nonlinear two-link coordinate
system and appended it to the state equation of the center of gravity of the robot. This
approach is based on the assumption that the root joint of the swing leg will receive the
acceleration of the center of gravity of the whole robot.

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
z(t)
θ1(t)
θ2(t)
ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)
ux(t)

uz(t)− g
M−1(Θ)(u(t)− V (Θ, Θ̇)−G(Θ))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.3)

Θ = [θ1, θ2]
T

Where M is the inertia matrix, V is the coriolis term, and G is the gravity term. The
acceleration of inertia originating in the acceleration of the center of gravity of the whole
robot is input to the acceleration of the root joint of the swing leg at the first step of the
Newton-Euler method. We set it at [ux, uz−g] in the Newton-Euler method for swing leg.
Equation(6.3) can be easily expanded to biped, quadruped, and another type of legged
robot by appending nonlinear equations of motion of swing legs to the state equation of
the center of gravity of the robot. In this method,

1. The nonlinearity of swing legs can be taken into account.

2. The state equation is simple and practical.

3. The equations for motion of swing legs are easily appended to state equations.
Therefore, this formulation can be extended to multi-legged robots.

These enable us to make feasible formation.

70

　　　 　　　

Figure 6.1: Image of formulization
　　　

6.3 Performance Index

Equation(6.4) is used as an evaluation function.

J = φ[x(t+ T)] +
1

2

Z t+T

t

(x(τ)− xf)T ·Q · (x(τ)− xf) +

(u(τ)− uf)T · R · (u(τ)− uf)dτ (6.4)

φ[x(t+ T)] = (x(t+ T)− xf)T · Sf · (x(t+ T)− xf)

(u(τ)− uf)T · R · (u(τ)− uf) = r1u2x(τ) + r2(uz(τ)− g)2 + r3u2ZMP (τ) + r4u2θ1(τ) + r5u2θ2
The first term is a terminal constraint. Including uzmp in the performance index is a

novel approach which allows us to obtain a solution that minimizes input of acceleration
in each axis direction, input of each joint torque of swing leg, and norm of ZMP. It reduces
sway of ZMP in the area of the robot sole (biped) or in the area of the polygon whose
vertexes are described by the toes of the grounding legs (quadruped).

6.4 Numerical Calculation

Fig.6.2 shows one of results of simulation of this formulation. The link parameters used
in the simulation are given in Table6.1 and explanations of the link parameters are given
in Fig.6.3. The parameters used in optimization are shown in Table6.2. The stick diagram
Fig.6.2.14 shows correct movement of the swing leg occurring by chance in this case, in
spite of no floor level constraint being imposed. Slight sway of the ZMP is appeared
because the time step on the τ axis is rough(Fig.6.2.13). The simulation time was set
at 1.0s and its calculation took 0.9s. The control interval was set at 2 ms. A personal

Table 6.1: Two Links Mechanical Parameters

l1 0.5m

l2 0.5m

l1c 0.25m

l2c 0.25m

m1 0.5kg

m2 0.5kg

Table 6.2: Parameters for Simulation(without constraint)

Sf diag[50.0,50.0,15.0,15.0,100.0,10.0,1.0e−4,1.0e−4]

Q diag[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]

R diag[1.0,2.0,1.0,1.0,6.0]

x0 [0.0, 1.0,−1.7,−0.6, 0.2, 0.0, 0.0, 0.0]T

xf [0.2, 1.0,−1.2,−1.6, 0.2, 0.0, 0.0, 0.0]T

uf [0.0, 9.8, 0.0, 0.0, 0.0]T

Tf 0.1s

∆t 2ms

Number of divide 5

ζ 450

computer with a 333MHz Celeron processor and running a Linux OS was employed. The
result shows that this type of computer enables real-time calculation and that there is
ample time for real-time calculation of the equation of motion for a nonlinear 2-link system
case.

72

　　　 　　　

Fig6.2.1　 x(No Constraint Case)

　　　

　　　 　　　

Fig6.2.2　 z(No Constraint Case)

　　　

　　　 　　　

Fig6.2.3　 θ1(No Constraint Case)

　　　

　　　 　　　

Fig6.2.4　 θ2(No Constraint Case)

　　　

　　　 　　　

Fig6.2.5　 ẋ(No Constraint Case)

　　　

　　　 　　　

Fig6.2.6　 ż(No Constraint Case)

　　　

　　　 　　　

Fig6.2.7　 θ̇1(No Constraint Case)

　　　

　　　 　　

Fig6.2.8　 θ̇2(No Constraint Case)

　　　

　　　 　　　

Fig6.2.9　 ux(No Constraint Case)

　　　

　　　 　　　

Fig6.2.10　 uz(No Constraint Case)

　　　

　　　 　　　

Fig6.2.11　 uθ1(No Constraint Case)

　　　

　　　 　　　

Fig6.2.12　 uθ2(No Constraint Case)

　　　

　　　 　　　

Fig6.2.13　 uZMP (No Constraint Case)

　　　

　　　 　　　

Fig6.2.14　 Stick Figure(No Constraint
Case)

　　　

74

6.5 Constraint for Swing Legs

6.5.1 State Variable Constraint

The constraint that the position of the swing leg must be above floor level is required
if the motion of swing legs is applied to the formulation. This section examines how
this condition is applied to the formulation. According to Fig.6.3, the condition where
the position of the tip of the swing leg is above the floor is described as an inequality
constraint.

height+ l1sinθ1(t) + l2sin(θ1 + θ2) ≥ 0 (6.5)

This is the state variable inequality constraint. This problem is difficult to handle since
the optimal path must enter tangentially onto a constrained arc. The control variable
u is not explicit in this inequality equation. Although the trajectory of state variable is
constrained, we have no control input to solve the equations. Dreyfus and Speyer gave
gradient method forsolving optimization problem with state variable constraint[25][26].

　　　 　　　

Figure 6.3: Parameters
　　　

6.5.2 Slack Variable Method

The slack variable d is introduced to make the control input explicit.

height+ l1sinθ1(t) + l2sin(θ1 + θ2)− d2(t) = 0 (6.6)

First, the inequality constraint is converted to a equality constraint equation. We
described this as S(x,t) = 0, and differentiate it with respect to time until the control
input appears in the equation.

dS

dt
=
∂S

∂t
+
∂S

∂x
ẋ =

∂S

∂t
+
∂S

∂x
f(x, u, t) (6.7)

In this case, the control input will appear by differentiating the equation twice.

l1cos(θ1(t))θ̇1(t) + l2cos(θ1(t) + θ2(t))(θ̇1(t) + θ̇2(t))− 2d(t)ḋ(t) = 0 (6.8)

l1cos(θ1(t))uθ1(t) + l2cos(θ1(t) + θ2(t))(uθ1(t) + uθ2(t))−
l1sin(θ1(t))θ

2
1(t)− l2sin(θ1(t) + θ2(t))(θ̇1(t) +

θ̇2(t))
2 − 2uslack(t)d(t)− 2d2(t) = 0 (6.9)

By introducing new state variables to the state equation,

d

dt
d(t) = ḋ(t) (6.10)

d

dt
(ḋ(t)) = uslack(t) (6.11)

The equation can be written with the new input variable uslack. The initial values d
and ḋ which satisfy equations (16) and (18) need to be determined. In the case of Table
3, d = 0.36, and ḋ = 0.0.

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
z(t)
θ1(t)
θ2(t)
ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)
d(t)

ḋ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)
ux(t)

uz(t)− g
uθ1(t)
uθ2(t)

ḋ(t)
uslack(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.12)

The number of state variables becomes 10 on addition of 2 new variables, and the input
variables become 6 by adding one. According to Reference [3], the ZMP condition can be
described as follows.

uZMP (t)(uz(t)− g) = x(t)(uz(t)− g)− z(t)ux(t) (6.13)

Equation(6.13) and Equation(6.9) derived by the slack variable method are 2 constraints
on this condition.

76

6.5.3 Performance Index

Equation(6.14) is used as an performance index.

J = φ[x(t+ T)] +
1

2

Z t+T

t

(x(τ)− xf)T ·Q · (x(τ)− xf)

+(u(τ)− uf)T · R · (u(τ)− uf)dτ
(6.14)

φ[x(t+ T)] = (x(t+ T)− xf)T · Sf · (x(t+ T)− xf)

(u(τ)− uf)T · R · (u(τ)− uf) = r1u
2
x(τ) + r2(uz(τ)− g)2 +

r3u
2
ZMP (τ) + r4u

2
θ1(τ) + r5u

2
θ2(τ)

The first term is a terminal constraint. After the state variables are converged to the
reference states, the inputs will be 0. In solution by Receding Horizon Control, the input
of the Z-axis component will start to be generated again when the altitude of the center
of gravity begins to drop. Major transition in the altitude causes major transition in its
ZMP variable. To decrease these, we devised a method in which the terms related to
uz in the function of performance index are replaced by uz − g and a constant value is
previously allocated to uz. This method is effective for problems including the gravity
term.

6.5.4 Numerical Calculation(Linear Case)

To verify the effectiveness of the slack variable method, we performed a simulation
with the state equation(6.12) that is simple and contains no nonlinear terms. The link
parameters used in this calculation are listed in Table 1 and the parameters used in the
optimization are shown in Table6.3. The height of the center of gravity was set at 1.0 m.
The simulation time was set at 1.0 s and its calculation took 0.3s. The control interval
was set at 2.0 ms. A personal computer with a 333 MHz Celeron processor and running
a Linux OS was employed. The result shows that it is adequate for real-time simulation.
Fig.6.4.15 shows the optimum input of ZMP variable. By setting the ZMP variable at
uZMP − 0.1, Abs(ZMP) can be set under 0.1m. This method is useful for the design of
legged robots. Using this method, a designer can set the ZMP variable within a range
in advance. 0.1m also means a practical value for the sole area of a biped robot or
polygon described by the grounding legs of a quadruped robot. Fig.6.4.17 and Fig.6.4.18
are, respectively, the constraint equation of the ZMP condition and an undetermined
multiplier ρ of the inequality state variable constraint. The first constraint is the ZMP
constraint and the second is the slack variable condition. ρ2 increases with decreased
altitude of the tip of the swing leg.

Table 6.3: Parameters for Simulation(Linear Case)

Sf diag[10.0,10.0,100.0,100.0,1.0e−4,1.0e−4,1.0e−4,1.0e−4,0.0,0.0]

Q diag[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0]

R diag[1.0,1.0,1.0,1.0,1.0,3.5]

x0 [0.0, 1.0,−1.7,−0.6, 0.2, 0.0, 0.0, 0.0, 0.36, 0.0]T

xf [0.2, 1.0,−1.2,−0.6, 0.2, 0.0, 0.0, 0.0]T

uf [0.0, 9.8, 0.0, 0.0, 0.1, 0.0]T

Tf 0.2s

∆t 2ms

Number of divide 5

ζ 450

height 1.0m

78

　　　 　　　

Fig6.4.1　 x(Linear Case)

　　　

　　　 　　　

Fig6.4.2　 z(Linear Case)

　　　

　　　 　　　

Fig6.4.3　 θ1(Linear Case)

　　　

　　　 　　　

Fig6.4.4　 θ2(Linear Case)

　　　

　　　 　　　

Fig6.4.5　 ẋ(Linear Case)

　　　

　　　 　　　

Fig6.4.6　 ż(Linear Case)

　　　

　　　 　　　

Fig6.4.7　 θ̇1(Linear Case)

　　　

　　　 　　　

Fig6.4.8　 θ̇2(Linear Case)

　　　

　　　 　　　

Fig6.4.9　 slack d(Linear Case)

　　　

　　　 　　　

Fig6.4.10　 slack ḋ(Linear Case)

　　　

　　　 　　　

Fig6.4.11　 ux(Linear Case)

　　　

　　　 　　　

Fig6.4.12　 uz(Linear Case)

　　　

　　　 　　　

Fig6.4.13　 uθ1(Linear Case)

　　　

　　　 　　　

Fig6.4.14　 uθ2(Linear Case)

　　　

　　　 　　　

Fig6.4.15　 uZMP (Linear Case)

　　　

80

　　　 　　　

Fig6.4.16　 uslack(Linear Case)

　　　

　　　 　　　

Fig6.4.17　 ρ1(Linear Case)

　　　

　　　 　　　

Fig6.4.18　 ρ2(Linear Case)

　　　

　　　 　　　

Fig6.4.19　 Stick Figure(Linear Case)

　　　

6.5.5 Numerical Calculation (Nonlinear Case)

We then formulated the problem, including the nonlinear term of the swing legs.

d

dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(t)
z(t)
θ1(t)
θ2(t)
ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)
d(t)

ḋ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ż(t)

θ̇1(t)

θ̇2(t)
ux(t)

uz(t)− g
M−1(Θ)(u(t)− V (Θ, Θ̇)−G(Θ))

ḋ(t)
uslack(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.15)

In this case, Equation(6.16) is substituted into u1 and u2 in Equation(6.9).

∙
uθ1(t)
uθ2(t)

¸
=M(Θ)Θ̈+ V (Θ, Θ̇) +G(Θ) (6.16)

The link parameters used in the calculation are listed in Table.6.1 and the parameters
used in the optimization are shown in Table.6.4. The simulation time was set at 1.0s
and its calculation took 0.9s. The simulation solution converged more rapidly than the
case of linear. The control interval is set at 2.0ms. How much nonlinearity can be taken
into account in the formulation depends on the capacity of the computer used. More
nonlinearity can be included in the formulation if a higher performance computer is used.

82

Table 6.4: Parameters for Simulation(Nonlinear Case)

Sf diag[10.0,200.0,20.0,10.0,1.0e−4,1.0e−4,1.0e−4,1.0e−4,1.0,1.0]

Q diag[1.0,4.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]

R diag[1.0,1.0,1.0,1.0,10.0,1.0]

x0 [0.0, 1.0,−1.7,−0.6, 0.27, 0.0, 0.36, 0.0]T

xf [0.2, 1.0,−1.2,−1.0, 0.27, 0.0, 0.0, 0.0]T

uf [0.0, 9.8, 0.0, 0.0, 0.1, 0.0]T

Tf 0.1s

∆t 2ms

Number of divide 5

ζ 450

height 1.0m

　　　 　　　

Fig6.5.1　 x(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.2　 z(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.3　 θ1(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.4　 θ2(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.5　 ẋ(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.6　 ż(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.7　 θ̇1((Nonlinear Case)

　　　

84

　　　 　　　

Fig6.5.8　 θ̇2(Nonlinear Case)

　　　

　　　

Fig6.5.9　 slack d(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.10　 slack ḋ(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.11　 ux(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.12　 uz(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.13　 uθ1(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.14　 uθ2(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.15　 uZMP (Nonlinear Case)

　　　

86

　　　 　　　

Fig6.5.16　 uslack(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.17　 ρ1(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.18　 ρ2(Nonlinear Case)

　　　

　　　 　　　

Fig6.5.19　 Stick Figure(Nonlinear Case)

　　　

6.6 Conclusion

We have discussed the formulation with consideration of swing legs of a legged robot.
The inequality state variable constraint (the position of a swing leg must be above the
floor) must be included. In general, this inequality constraint is difficult to solve, so
the slack variable method was added to the Receding Horizon Control. The method we
proposed has the following characteristics:

★ Nonlinearity of swing legs can be taken into account.

★ The state equation is simple and practical.

★ The equations of motion of swing legs are easily appended to state equations. There-
fore, this formulation can be extended to include multi-legged robots.

We performed a simulation of the equations including a ZMP constraint and the inequal-
ity state variable constraint in which the legs are always above the floor, and examined
the results of the calculation. The fact that the calculation time was shorter than the
simulation time indicates that this method can be used in real time.

88

Chapter 7

Nonlinear Receding Horizon
Gradient Method

7.1 Introduction

Generally, Gradient Method is most popular method in optimization technique. How-
ever, its long calculation time has made hurdle to use at real-time optimization. The
procedure which arbitrary trajectory for whole time converges into optimal solution us-
ing gradient makes a defect. This procedure also may cause the trajectory sink to local
minimum. Feasible real-time execution of optimization requires the least formula manip-
ulation, then it leads to feasibility that can treat with a large structure model. However
past algorithms of Receding Horizon Control involves some particular formula manipula-
tion. It makes the whole procedure taking time. The algorithm of [7][8] realized real-time
optimization using backward sweep method. The procedure of the backward sweep re-
quires additional matrix manipulation. It takes long time if the numerical model is large
scaled and complicated. To reduce this problem, a new algorithm of Receding Horizon
Control is proposed in this paper. This technique is assumed increasingly significant as
a tool to generate robot motion real-timely. It amounts to nothing and no-intelligent
controller if trajectory is not generated real-timely.

7.2 Continuation Method and Gradient

7.2.1 Continuation Method

Gradient Method has conventionally eliminated a problem that the initial condition of
state equation and terminal condition of co-state equation are known although terminal
condition of co-state equation and initial condition of co-state equation is unknown in
TPBVP. Gradient Method is the method that the initial trajectory which is assigned as
whole time(t = 0 → t = tf) on ral-time axis converges to optimal solution along its
gradient. Defects of this method are:

1. It could converge to minimum solution

2. It takes a good amount of time to converge.

89

3. This initial trajectory must be considered for immediate convergence each time.

Then a Continuation Method eliminated these problems in place of Gradient Method
[7] [8]. If the interval time in Euler-Lagrange equations set 0, the solution comes to be
trivial. The optimal solution can be chased to extend the time little by little based on this
trivial solution. Generally, Predictor-Corrector Method is used for pursuit in Continuation
Method. However it is too slow to execute on real-time control sequence.
Then a method which transverse condition is applied to balance to 0 eliminated this

problem [7] [8] [28]. The process to handle matrix operation needs longer calculation time
if the numerical model is larger scale. In this research, a proposed method eliminates
formula operation without Euler-Lagrange equations as much as possible. Such attempt
may be also said that it returns to its basic focus on.

7.2.2 Gradient

When the terminal time T on performance index interval perturbs T+dT, the trajectory
also perturbs. The extended performance index is described as:

J∗ = φ[x∗(t, τ)] +

Z t+T

t

L+ λ∗T (t, τ) · (f [x(t, τ), u(t, τ)]− ẋ(t, τ))dτ (7.1)

The first order variation is described as:

δJ∗ = [
∂φ

∂τ
]τ=TdT + [φx(t, τ)− λ∗(t, τ)]τ=Tdx(t, τ)

+

Z t+T

t

[(Hx) · δx+Huδu+ δλ∗T (f − ẋ)]dτ (7.2)

The refreshed TPBVP is set newly. Then it satisfies transversality condition, state
equations, and co-state equations. The terminal time T is fixed on the refreshed TPBVP.
Then, the variation is described as:

δJ∗ =

Z t+T

t

Huδudτ (7.3)

We can define Hu as the gradient here. If the trajectory satisfies Euler-Lagrange equa-
tions, the gradient must be 0. If the trajectory perturb from the optimal solution, it cause
the generation of gradient. In Continuation Method, the gradient of the initial trajectory
equals 0, then it perturbs T+dT, causes a bit gradient, and it is recovered.

7.2.3 Sampling Interval

The movement of performance index interval along real-time is executed each sampling
interval. Although the time length of the performance index interval is extended, it is
little and changes smoothly. This enables the time length re-scaled along the extension.
In [7] [8], the number of the sampling interval arrays is fixed. In this case the sampling
interval is growing longer along real-time, and it must be considered how to get re-scaled

90

　　　 　　　

Figure 7.1: Differential changes in the terminal time
　　　

initial state value, co-state value, and input value. In this thesis, the time length of the
each array is fixed. The valid number of these arrays is growing along real-time on the
performance index interval. This aims for practical use. It can replace the initial array of
x,λ, u on performance index interval as the next step array of x,λ, u on real-time directly.
The results of ”7.3.Simulation” confirm that this is feasible. Therefore the algorithm
proposed here is:

1. t=0, T=0 , trivial solution

2. Increase the number of the interval arrays like as Ti+1 = Ti + dτ = Ti + dT

3. Rescale trajectory array of input variable on τ axis

4. Integrate the state equation along τ axis

5. Integrate the inhour co-state equation along τ axis

6. Calculate the gradient Hu

7. If the gradient sufficiently closed to 0, then go to (10)

8. Update the trajectory of input variable on axis
unew = u+ α ∗Hu , then 1-Dimension search

9. Go to (4)

10. The initial array of input variable on τ axis replaces the next step array of input
variable on t axis.

11. Integrate the state equation and co-state equation using the input on (10)

12. Go to (2)

At (3), various ways of rescaling could be considered. One of those is to use the input
variable trajectory one step ago and rescale it like as Fig.7.2. Anyway somewhat gradient
is invoked by rescaled input variable trajectory, however, such gradient could be expected
small quantity from the viewpoint of Continuation Method.

　　　 　　　

Figure 7.2: scaling for input variable
　　　

7.3 Simulation

7.3.1 Example

A simple example is arranged here[11]. The state equation is described as:

d

dt

∙
x1(t)
x2(t)

¸
=

∙
(1− x21(t)− x22(t)) · x1(t)− x2(t) + u(t)

x1(t)

¸
(7.4)

The state variables are x1,x2, and input variable is u. Performance index is described
as:

J = 2 · (x21(tf) + x22(tf)) +
Z tf

t0

(x21(t) + x
2
2(t) + u

2(t)+)dt (7.5)

This example is same example as [4]. The evaluated interval is moving and extended
along real-time in Receding Horizon Control procedure, and then it is described as:

J = 2 · (x21(t, T) + x22(t, T)) +
Z t+T

t

(x21(t, τ) + x
2
2(t, τ) + u

2(t, τ))dt (7.6)

Fig.7.3 red dashed line shows the result by past Gradient Method (Steepest Descent
Method). Blue solid line shows the result of proposed method. The trajectories of state
variables and input variables are almost matched each other. Fig.7.3.6,Fig.7.3.7 error
values transition described as Equation(7.7) endorse this fact. The each error is closed to
0 sufficiently.

92

Table 7.1: Simulation Data

- RHGM Gradient Method

Simulation Time 5.0 s 5.0 s

dt 10.0 ms 50.0ms

Continuation Terminal Time Ti+1 = Ti + 10.0ms -

Maximum of Terminal Time 0.5s -

Maximum number of iteration in a step 40 30

Initial Condition x [0.0, 2.0] [0.0, 2.0]

Reference xf [0.0, 0.0] [0.0, 0.0]

error(t) = λ∗(t, T)− φx[x(t, T)] (7.7)

Mathematica3.0 on Windows OS executes this calculation.

　　　 　　　

Fig7.3.1　 x1(dashed line: gradient
method, solid line: RHGM)

　　　

　　　 　　　

Fig7.3.2　 x2(dashed line: gradient
method, solid line: RHGM)

　　　

　　　 　　　

Fig7.3.3　 u1(dashed line: gradient
method, solid line: RHGM)

　　　

　　　 　　　

Fig7.3.4　 λ1(dashed line: gradient
method, solid line: RHGM)

　　　

　　　 　　　

Fig7.3.5　 λ2(dashed line: gradient
method, solid line: RHGM)

　　　

　　　 　　　

Fig7.3.6　 Error1(RHGM)

　　　

94

　　　 　　　

Fig7.3.7　 Error2(RHGM)

　　　

7.3.2 Nonlinear Two Link System

Nonlinear 2-link system can also be solved by proposed method. The state equation is
described as:

d

dt

⎡⎢⎢⎣
θ1(t)
θ2(t)

θ̇1(t)

θ̇2(t)

⎤⎥⎥⎦ =
⎡⎣ θ̇1(t)

θ̇2(t)

M−1(Θ) · (u(t)− (Θ, Θ̇)−G(Θ))

⎤⎦Θ = ∙θ1(t)
θ2(t)

¸
(7.8)

The equation involves nonlinearity of vertical two link system. M denotes inertial
matrix, V denotes coriolis term, G denotes gravity term. Performance index is defined as:

J = (xf − x(t, T))T · Sf · (xf − x(t, T)) +Z t

t+T

(uT (t, τ) ·R · u(t, τ) + xT (t, τ) ·Q · x(t, τ))dτ (7.9)

Fig.7.6 shows the result of this simulation. Table7.2 describes calculation parameters
and physical parameters of the links. Fig.7.2.11-14 shows the error of the transversality
condition (Equation(7.7)). These errors are under 0.02, then it provides the result that
the trajectory have been able to chase the optimal solution.

　　　 　　　

Figure 7.4: Nonlinear Two link system
　　　

96

　　　 　　　

Figure 7.5: Experiment System
　　　

Table 7.2: Simulation Data

Simulation Time 4.0 s

dt 5.0 ms

Continuation Terminal Time Ti+1 = Ti + dt

Maximum of Terminal Time 0.5 s

MMaximum number of iteration in a step 40

Initial Condition [−1.57, 0.0, 0.0, 0.0]T

Reference Condition [−1.57, 1.57, 0.0, 0.0]T

Sf diag[1.0,1.0,0.1,0.1]

R diag[1.0,1.0]

Q diag[1.0,1.0,1.0,1.0]

m1 0.5kg

m2 0.5kg

l1 0.3m

l1c 0.2m

l2 0.3m

l2c 0.2m

　　　 　　　

Fig7.6.1　 θ1(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.2　 θ2(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.3　 θ̇1(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.4　 θ̇2(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.5　 uθ1(Nonlinear Two link
System (vertical))

　　　

　　　 　　　

Fig7.6.6　 uθ1(Nonlinear Two link
System (vertical))

　　　

98

　　　 　　　

Fig7.6.7　 λ1(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.8　 λ2(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.9　 λ3(Nonlinear Two link System
(vertical))

　　　

　　　 　　　

Fig7.6.10　 λ4(Nonlinear Two link
System (vertical))

　　　

　　　 　　　

Fig7.6.11　 Error1(Nonlinear Two link
System (vertical))

　　　 　　　

Fig7.6.12　 Error2(Nonlinear Two link
System (vertical))

　　　 　　　

Fig7.6.13　 Error3(Nonlinear Two link
System (vertical))

　　　 　　　

Fig7.6.14　 Error4(Nonlinear Two link
System (vertical))

　　　 　　　

Fig7.6.15　 Stick Figure(Nonlinear Two
link System (vertical))

　　　

100

7.4 Practical Installation into Real-Time System

One of the advantages in this method is successive gradient that is slight transition.
Because a real-time system has a restricted time scheduling and capacity, its search algo-
rithm is preferably simple and less numerous iterations.
A reduced search algorithm is involved in a RT-Linux 1.1 system. Version1.1 is pretty

old version. Because of considering load to real-time OS, simple searching described below
is adopted.

1. Calculate gradient Hu

2. unew = uold + const ·Hu
3. Integrate state equation using unew

4. Transversality condition

5. Integrate inhour co-state equation

6. If the index cost < const, then Exit, Else if Go to (1)

The algorithm written by GNU C is also installed on RT-Linux ver.1.1. 50ms sam-
pling interval execution has already been confirmed. The maximum limit of the iteration
number of search is 10 in this case. The terminal time T is extended from 0.0s to 1.0s
by each 50ms step. CPU: Celeron333MHz, Memory 32MB. The real-time task involves
D/A conversion and pulse count from encoders. More performance is expected if we use
cutting edge devices near future.

Table 7.3: Experiment Spec and Data

Device Spec

Servo Motor Maxon RE-35(90W) + Planetary Gear 260:1

Servo Amp Titech Robot Driver

Encoder Hewlett Packerd HED-5500 512pulse× 4
Real-time OS RT-Linux ver.1.1

Real-time interval 50ms

Initial Condition [−1.57, 0.0, 0.0, 0.0]T

Reference Condition [0.0, 0.0, 0.0, 0.0]T

Sf diag[1.0,1.0,0.1,0.1]

R diag[1.0,1.0]

Q diag[1.0,1.0,1.0,1.0]

m1 0.5kg

m2 0.5kg

l1 0.3m

l1c 0.2m

l2 0.3m

l2c 0.2m

　　　 　　　 　　　

Figure 7.7: Experiment Device)
　　　

102

　　　 　　　

Fig7.8.1　 θ1(from counter)(Experiment)

　　　

　　　 　　　

Fig7.8.2　 θ2(from counter)(Experiment)

　　　

　　　 　　　

Fig7.8.3　 θ̇1(from counter)(Experiment)

　　　

　　　 　　　

Fig7.8.4　 θ̇2(from counter)(Experiment)

　　　

　　　 　　　

Fig7.8.5　 θ1reference(Experiment)

　　　

　　　 　　　

Fig7.8.6　 θ2reference(Experiment)

　　　

　　　 　　　

Fig7.8.7　 θ̇1reference(Experiment)

　　　

　　　 　　　

Fig7.8.8　 θ̇2reference(Experiment)

　　　

　　　 　　　

Fig7.8.9　 u1(Experiment)

　　　

　　　 　　　

Fig7.8.10　 u2(Experiment)

　　　

　　　 　　　

Fig7.8.11　 Stick Figure(Experiment)

　　　

104

106

7.5 Singular Point

As mentioned in 4.4, singular point problem is one of the important problems in
robotics. Kinematic problem is described in 4.4, however, dynamical problem of singular
point is more difficult.

ẋ = J · Θ̇ (7.10)

ẍ = J̇ · Θ̇+ J · Θ̈ (7.11)

Θ̈ = J+ · (ẍ− J̇ · Θ̇) + (I − J+J) · k (7.12)

J+ ∈ Rn×m denotes pseudo inverse of Jacobian. ”I” denotes identity matrix. k denotes
arbitrary constant vector. Nonlinear dynamics is described as:

Θ̈(t) =M−1(Θ(t)) · (u(t)− V (Θ(t), ˙Θ(t))−G(Θ(t))) (7.13)

Θ̈ can be substituted for Equation(7.12). Although we can treat Jacobian in nonlinear
dynamics above, the measure goes to be impractical generally. Receding Horizon Control
can treat this problem without Jacobian problem. The target position in Casrtesian
coordination is translated to joint angle coordination at terminal condition.

xf = γ(Θ) (7.14)

J = (x− xf)T · Sf · (x− xf) +
Z t+T

t

L[x∗(t, τ), u∗((t, τ))]dτ (7.15)

Simulation result of kinematic three links manipulator is shown in Fig.7.9. The terminal
position at the tip of the manipulator is [0.9, 0.0]T . This is one of the singular points.
Simulation result of nonlinear dynamics two links manipulator is shown in Fig.7.6. One of
advantages in Receding Horizon Control is that it can treat singular point problem with
ease.

Table 7.4: Simulation Data for Kinematic Three Links

Simulation Time 2.5s

dt 5.0ms

Continuation Terminal Time Ti+1 = Ti + dt

Maximum of Terminal Time 0.5 s

MMaximum number of iteration in a step 40

Initial Condition [−1.57, 0.0, 0.0, 0.0, 0.0, 0.0]T

Reference Condition [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]T

Sf diag[200,100]

R diag[1.0,1.0,1.0]

Q diag[1.0, 1.0, 1.0, 0.1, 0.1, 0.1]

l1 0.3m

l2 0.3m

l3 0.3m

terminal condition φ [x− xref , z − zref]T

108

　　　 　　　

Fig7.9.1　 θ1(Kinematic Three Links)

　　　 　　　

Fig7.9.2　 θ2(Kinematic Three Links)

　　　 　　　

Fig7.9.3　 θ3(Kinematic Three Links)

　　　 　　　

Fig7.9.4　 θ̇1(Kinematic Three Links)

　　　 　　　

Fig7.9.5　 θ̇2(Kinematic Three Links)

　　　 　　　

Fig7.9.6　 θ̇3(Kinematic Three Links)

　　　 　　　

Fig7.9.7　 Error1(Kinematic Three
Links)

　　　 　　　

Fig7.9.8　 Error2(Kinematic Three
Links)

　　　 　　　

Fig7.9.9　 Error3(Kinematic Three
Links)

　　　 　　　

Fig7.9.10　 Error4(Kinematic Three
Links)

　　　 　　　

Fig7.9.11　 Error5(Kinematic Three
Links)

　　　 　　　

Fig7.9.12　 Error6(Kinematic Three
Links)

　　　 　　　

Fig7.9.13　 Stick Figure(Kinematic
Three Links)

110

7.6 Conclusion

The method proposed in this thesis consists of a minimum configuration of Euler-
Lagrange equation, making the algorithm comparatively simple. The advantage of this
simplicity is apparent when the method is applied to cases marked by complicated state
equations or large-scaled models. A disadvantage is that the gradient method requires long
calculation periods-a problem that can be eliminated using the continuation method. If
the gradient method is installed at the moving horizon interval, the algorithm load can be
reduced. In such cases, the algorithm is only required to eliminate a slight gradient invoked
by a perturbation from the optimal trajectory in the preceding step. It is important to
note that this is only one of many Receding Horizon Control algorithms, therefore its use
should be considered situation-dependent.

112

Chapter 8

Conclusion and Recommendation

8.1 Overall Perspective

The thesis discusses application of Receding Horizon Control on real-time system and
proposes an algorithm of Receding Horizon Control.
This study settled on the subject matter of legged robot as an application. Any type

of legged robot has instability associated with Zero Moment Point balance. This kind
of control has been technical difficulty for formulation. Formulation as an optimization
problem with equal constraint and Receding Horizon Control make this problem enable
its formulation. The variable of Zero Moment Point is described as an input variable, and
then it can be obtained as one of the optimized solutions. We can confirm the effectiveness
of Receding Horizon Control through this formulation.
Constraint has an important role in formulation of Receding Horizon Control, espe-

cially at real-time control scheme for mechanical object. Conditions like as Zero Moment
Point could be included in formulation. However inequality constraint is used to de-
scribe a condition such as lower bound or upper bound requires somewhat ingenuity to
involve in formulation. We can look at the Receding Horizon Control formulation with
swing leg constraint through the viewpoint. This problem also involves state variable
constraint without input variable. Then slack variable method is also introduced to solve
the problem.
These two applications use a Receding Horizon Control algorithm that Ohtsuka devel-

oped. Through reconstructing this algorithm many times, some demands were emerged.
Such demands made Receding Horizon Gradient Method. Essence of homotopy theory
and continuation method is well utilized in Receding Horizon Gradient Method. The
proposed method involves mere components where are in Euler-Lagrange equation, then
the algorithm goes to be quite simple. This brings out advantage when it is applied into
a case which state equation is complicate or large scaled model. However, this algorithm
is mere a one of Receding Horizon Control algorithms, its use may depend on the situa-
tion. The best algorithm is described in the bible of ”rule of nature” and quest for better
algorithm should be continued.
For the reason above mentioned, real-time optimal robot motion is benefit of Receding

Horizon Control. Real-time optimization technique discussed here can be applied to
various industrial problem such as aerospace, railway, automobile, and so on.
In this thesis, I will use the example of legged robots to discuss the application of

113

Receding Horizon Control on real-time systems and to propose a Receding Horizon Control
algorithm. All types of legged robots have instability issues associated with Zero Moment
Point balance that present significant technical difficulties for formulation. Here I view
formulation as an optimization problem with equal constraint, which allows for the use of
Receding Horizon Control to address the formulation problem. The Zero Moment Point
variable, described as an input variable, can be obtained as one optimized solution, and
the effectiveness of Receding Horizon Control can be confirmed using this formulation.
Constraint plays an important role in Receding Horizon Control formulation, especially

in real-time control schemes for mechanical objects. While Zero Moment Point and sim-
ilar conditions can be included in such formulations, an inequality constraint is used to
describe conditions (e.g., lower or upper bounds) that require a considerable amount of
ingenuity to make such a combination successful. This is one way of viewing an Receding
Horizon Control formulation with a swing leg constraint. This problem also involves a
state variable constraint without an input variable, which can be solved by introducing a
slack variable method.
These two applications use the Receding Horizon Control algorithm developed by Oht-

suka. Repeated algorithm reconstruction resulted in a number of emerging demands. Such
demands required the use of a Receding Horizon Gradient method that entailed features
of homotopy theory and continuation methodology. The method proposed in this thesis
consists of a minimum configuration of Euler-Lagrange equation, making the algorithm
comparatively simple. This is advantageous when applied to complicated state equations
or large-scaled models. However, the algorithm is only one of many Receding Horizon
Control algorithms, meaning that its use is situation-dependent. The search for a better
algorithm should be continued.

8.2 Recommendations for Future Research

Industrial applications of Receding Horizon Control have not yet attracted a great deal
of research interest. However, various industrial applications should be tested in the same
manner that this thesis looked at legged robots as control objects. Several different types
of Receding Horizon Control algorithms have recently been proposed, each with its own
specific advantages and disadvantages. Individual uses in individual cases need to be
considered in order to determine optimal algorithms for specific applications.
The new method proposed in Chapter7 can be applied into large scaled numerical model

like as LSS(Large Space Structure) or hyper-redundant manipulator.
Receding Horizon Control provides benefit to nonholonomic dynamics and constraint.

The optimal solution can be obtained from nonholonomic dynamics which ordinal optimal
regulator could not control.
Conceivable extension of nonlinear optimal feedback control is differential game. It is

well known that robust control problem can be formulated as differential game.
The best algorithm is described in the bible of ”rule of nature” and quest for better

algorithm should be continued.

114

Appendix A

Transition Matrix

Linear differential equation:

ẋ(t) = A(t) · x(t) (A.1)

A(t) denotes n× n square matrix. We can make a equation below using the A(t).

Ẋ(t) = A(t) ·X(t) (A.2)

The solution which X(t0) is regular is called as fundamental matrix. The transition
matrix of Equation(A.1) is described as:

Φ(t, τ) = X(t) ·X−1(τ) (A.3)

X(t), X(τ) are fundamental matrixes which equal to a regular matrix X0 at t = t0.
Transition matrix Φ(t, τ) equals to the solution of Equation(A.2) at t = τ with X(τ) = I.
We can get solutionn of a differential equation below using transition matrix.

ẋ(t) = A(t) · x(t) + f(t) (A.4)

x(t) = Φ(t, t0) · x(t0) +
Z t

t0

Φ(t, τ) · f(τ)dτ (A.5)

If matrix A(t) is constant, then t0 can be take as 0, and we have

Φ(t, t0) , Φ(t, 0) , Φ(t) , eAt ,
∞X
k=0

Ak

k!
· tk (A.6)

x(t) = eA(t−t0) · x(t0) (A.7)

117

Bibliography

[1] L.S. Pontryagin and V.G.Boltyanskii,The Mathematical Theory of Optimal Pro-
cesses,1961

[2] A.K.Wu and A.Miele Sequential Conjugate Gradient Restoration Algorithm for Opti-
mal Control Problems with Nondifferential Constraints and General Boundary Con-
ditions, Part1, Optimal Control Applications and Methods, vol.1-1,1980

[3] S.Gonzalez and S.Rodriguez, Modified Quasi-liniearization Algorithm for Optimal
Control Problems with Nondifferential Constraints and General Boundary Condi-
tions, Journal off Optimization Theory and Applications, vol.50-1,1986

[4] Carl.B.Boyer,The History of the Calculus and its Conceptual Development,Dover
Publications Inc.,1949

[5] W.M.Priestley,Calculus:An Histrical ApproachSpringer-Verlag,1979

[6] Robert H. Goddard,A Method of Reaching Extreme Altitudes,Smithsonian Miscel-
laneous Publication No. 2540,1920

[7] Ohtsuka,T.,Fujii,H., Stabilized Continuation Method for solving Optimal Control
Problems, Journal of Guidance, Control, and Dynamics. 17-5, p.p.950-957,1994

[8] Ohtsuka,T.,Fujii,H., Real-Time Optimization Algorithm for Nonlinear Receding
Horizon Control, Automatica, 33-6,p.p.1147-1154, 1997

[9] Ohtsuka,T.,Control of Distributed Parameter Systems and Nonlinear Systems in
AeroSpace Engineering, Doctor thesis, Tokyo Metropolitan Institute of Technology,
Department of AeroSpace Engineering,1994

[10] John J.Craig, Introduction to Robotics -Mechanics and Control-, Addison-
Wesley,1986

[11] H.Kano, Theory and Optimization of System , corona, p.217, 1987, (Japanese Lan-
guage)

[12] Kabamba,P.T.,Longman,R.W., and Jian-Guo,.,A Homotopy Approach to the Feed-
back Stabilization of Linear Systems, Journal of Guidance, Control, and Dynamics,
vol.10, No.5, p.p.422-432,1987

[13] Abraham Silbershatz, Peter B.Galvin, GregGagne, Operating System Concepts,John
Wiley & Sons Inc.,2003

119

[14] Y.A.Thomas,Linear Quadratic Optimal Estimation and Control with Receding Hori-
zon,Electric Letters,11-1, pp.19-21,1975

[15] C.C.Chen,L.Shaw, On Receding Horizon Feedback Control, Automatica, 18-
3,pp.349-352,1982

[16] Vukobratovic,M.,Juricic,D.,Contributions to the synthesis of biped gait. IEEE Trans
on Biomedical Engineering,BME-16:1-6,1969

[17] Vukobratovic,M.,Frank,M.A.A.,Juricic,D.,On the Stability of Biped Locomo-
tion,IEEE Trans on Biomedical Engineering,BME-17,No.1,pp.25-36,1970

[18] Hirai,K.,Hirose,M.,Haikawa,Y.,Takenaka,T.,The Development of Honda humanoid
Robot,Proc.IEEE Int.Conf.Robotics and Automation,pp.1321-1326,1998

[19] D.Q.Mayne,H.Michalska, Receding Horizon Control of Nonlinear Systems,IEEE
Trans, AC-35-7, pp.814-824, 1990

[20] Mayne,D.Q.,Michalska,H.,Robust Receding Horizon Control of Constrained Nonlin-
ear Systems,IEEE Trans. on AC,Vol.38, No.11, pp.1623-1633, 1993

[21] Eaton,J.W.and Rawlings,J.B.,Feedback Control of Chemical Processes Using On-
Line Optimization Techniques, Computers and Chemical Engineering,Vol.14, No.4-
5,pp.469-479,1990

[22] Kazuhisa Mitobe・Atsushi Masuyama・Tatsuo Shibata・Mitsuhiro Yamano・Yasuo
Nasu,A ZMP Manipulation Method for Walking Robots and its Application to An-
gular Momentum Control,Journal of Robot Society of Japan Vol.20, No.5, pp.53-
58,2002

[23] Bryson Jr,A.E., Ho, Y.C., Applied Optimal Control, Hemisphere, 1975

[24] Bryson Jr,A.E.,Ho, Dynamic Optimization, Addison-Wesley, 1999

[25] S.E.Dreyfus,Dynamic Programming and the Calculus of Variations, Academic
Press,1966

[26] J.L.Speyer andA.E.Bryson Optimal Programming Problems with a Bounded State
Space,AIAA journal, vol.6, p.p.1488-1492,1968

[27] J.Prims, V.Nevisic, J.Doyle, On Receding Horizon Extensions and Control Lyapunov
Functions, ACC Procedings 1998

[28] Takeuchi ,H., Real Time Optimization for Robot Control using Receding Horizon
Control with Equal Constraint, Journal of Robotic Systems, Vol. 20, No. 1, 2003

120

Biographical Information

Publications

Papers published in Journals

1. H.Takeuchi and T.Ohtsuka, Receding Horizon Control Applied to Optimization for
Mechanical Link Systems -Analysis using the Continuation Method-, Journal of
Robotics Society of Japan, Vol.17, No.3, pp.92-97,1999
(竹内、大塚、Receding Horizon Controlを用いた機械的リンク系の最適化計算　－

連続変形法を用いた数値解に関する検討－、日本ロボット学会論文、vol.17, No.3,
p.p.402-407,1999)

2. H.Takeuchi, Numerical analysis for attitudes of multi-legged robot - concept of leg
functions distribution -, Japan Society of Computational Engineering and Science,
transaction of JSCES, vol.2 ,p.p.1-6, 2000
(竹内、多脚式ロボットの脚姿勢の定量的解析 - 脚機能分担化の概念-、日本計算工

学会論文、vol.2、論文番号 20000005, p.p.47-52, 2000)

3. H.Takeuchi, Real Time Optimal Control for Legged Robot - Autonomous Gener-
ation of ZMP reference using Receding Horizon Control with Equal Constraint - ,
Japan Society of Computational Engineering and Science, transaction of JSCES,
vol.3 ,p.p.1-6, 2001
(竹内、脚式ロボットのリアルタイム最適制御 － 等式拘束条件付 Receding Hori-
zon Controlによる目標 ZMP軌道の生成、日本計算工学会論文、vol.3、論文番号

20010001 , p.p.1-6, 2001)

4. H.Takeuchi, Real Time Optimization and Control of Legged Robot - Formulization
with Inequality State Constraint for Swing Leg - , Japan Society of Computational
Engineering and Science, transaction of JSCES, vol.4 ,p.p.1-6, 2002
(竹内、脚式ロボットのリアルタイム最適化と制御 -不等式状態量拘束条件を伴う遊

脚の定式化　-、日本計算工学会論文、vol.4、論文番号 20020003, p.p.131-137, 2002)

5. H.Takeuchi, Nonlinear Receding Horizon Gradient Method, Japan Society of Com-
putational Engineering and Science, transaction of JSCES, vol.5, p.p.181-187, 2004

121

(竹内、非線形 Receding Horizon 勾配法、日本計算工学会論文、vol.5、論文番号

20020003, 2004)

6. Hiroki Takeuchi, Real Time Optimization for Robot Control using Receding Horizon
Control with Equal Constraint, Journal of Robotic Systems, Vol. 20, No. 1, p.p.3-
13, 2003

7. Hiroki Takeuchi, Real Time Optimization and Control of Legged Robot - Formuliza-
tion with Inequality State Constraint for - , Journal of Robotic Systems, Vol. 21,
No. 4, p.p.153-166, 2004

International Conference Proceedings

1. Hiroki Takeuchi, Development of MEL HORSE, 3rd France-Japan Congress and 1st
Europe-Asia Congress on Mechatronics Proceedings, p.p.348-353, 1996

2. Hiroki Takeuchi, Development of MEL HORSE, 2nd ECPD International Confer-
ence on Advanced Robotics, Intelligent Automation and Active Systems Proceed-
ings, p.p.289-293, 1996

3. Hiroki TAKEUCHI, Development of MEL HORSE, 3rdEuropean Conference Peace
and Development Conference on Advanced Robotics, Intelligent Automation and
Active Systems Proceedings,1997

4. Hiroki Takeuchi, Development of Leg-Functions coordinated Robot ”MEL HORSE”,
IEEE International Conference on Advanced Robotics, Proceedings, p.p.59-64, 1997

5. Hiroki Takeuchi, Development of MEL HORSE, 1st International Symposium on
Mobile, Climbing and Walking Robots, p.p.21-26, 1998

6. Hiroki Takeuchi, Development of MEL HORSE, IEEE International Conference on
Robotics and Automation, p.p.1057-1062, 1999

7. Hiroki Takeuchi, Development of MEL HORSE, IEEE International Conference on
Intelligent Robots and Systems 2000 Proceedings, p.p.2018-2024,2000

122

8. Hiroki Takeuchi, Development of MEL HORSE, IEEE International Conference on
Robotics and Automation 2001 Proceedings, p.p.3165-3171, 2001

9. Hiroki Takeuchi, Slack Variable Method for State Variable Constraint, IEEE Inter-
national Conference on Robotics and Automation 2003 Proceedings, p.p.2350-2355,
2003

10. Hiroki Takeuchi, Nonlinear Receding Horizon Gradient Method, IEEE CCA2004
Proceedings, p.p.1615-1620, 2004

Domestic Conference Proceedings

1. 竹内，歩行ロボットの最適歩行問題，日本機械学会ロボティクス・メカトロニクス

講演会’98，1998/06/01
(H.Takeuchi,Optimal Walk Problem for Legged Robot,Japan Society of Mechanical
Engineers Robotics and Mechatronics Conference, 1998)

2. 竹内，MEL HORSEの開発，機械技術研究所研究発表会，1998/06/01
(H.Takeuchi, Development of MEL HORSE, Mechanical Engineering Laboratory
meeting for announcing the results,1998)

3. 竹内，MELHORSEの開発，第 16回日本ロボット学会学術講演会，1998/09/01
(H.Takeuchi,Development of MEL HORSE, Robotics Society of Japan Annual Con-
ference,1998)

4. 竹内，2足歩行ロボットの最適歩行問題，竹内裕喜，第 16回日本ロボット学会学術

講演会，1998/09/01
(H.Takeuchi,Optimal Walk Problem for Biped Robot, Robotics Society of Japan
Annual Conference,1998)

5. 竹内，磯部，上田，FEMによるマニピュレータの並列制御，第 4回計算工学会講演

会，1999/05/01
(D.Isobe,and T.Ueda,and H.Takeuchi, Parallel Control Method for Manipulators
by Using FEM, Japan Society of Computational Engineering and Science Annual
Conference,1999)

6. 竹内，歩行ロボットの最適歩行問題，日本機械学会ロボティクスメカトロニクス講

演会，1999/06/01
(H.Takeuchi,Optimal Walk Problem for Legged Robot,Japan Society of Mechanical
Engineers Robotics and Mechatronics Conference, 1999)

7. 竹内，2 足歩行ロボットの最適歩行問題，第 17 回日本ロボット学会学術講演会，

1999/09/01
(H.Takeuchi,Optimal Walk Problem for Biped Robot, Robotics Society of Japan
Annual Conference,1999)

8. 竹内，MEL HORSEの開発，第 17回日本ロボット学会学術講演会,1999/09/01
(H.Takeuchi,Development of MEL HORSE, Robotics Society of Japan Annual Con-
ference,1999)

9. 竹内，脚式ロボットの最適運動問題，日本機械学会ロボティクスメカトロニクス講

演会，2000/05/01
(H.Takeuchi,Optimal Motion Problem of Legged Robot,Japan Society of Mechanical
Engineers Robotics and Mechatronics Conference, 2000)

10. 磯部、上田，竹内, 超冗長マニピュレータの関節トルク算出法，日本計算工学会講

演会，2000/05/01
(D.Isobe,and T.Ueda,and H.Takeuchi, A Numerical Scheme for Calculating Joint
Torque of Hyper-Redundant Manipulators, Japan Society of Computational Engi-
neering and Science Annual Conference,2000)

11. 竹内 ，多脚式ロボットの脚姿勢の定量的解析 -脚機能分担化の概念-，竹内裕喜，日

本計算工学会講演会，2000/05/01
(H.Takeuchi, Numerical analysis for attitudes of multi-legged robot - concept of leg
functions distribution -, Japan Society of Computational Engineering and Science
Annual Conference,2000)

12. 竹内 ，MEL HORSEの開発，第 18回日本ロボット学会学術講演会,2000/09/01
(H.Takeuchi,Development of MEL HORSE, Robotics Society of Japan Annual Con-
ference,2000)

13. 竹内 ，2足歩行ロボットの最適歩行問題，第 18回日本ロボット学会学術講演会，

2000/09/01
(H.Takeuchi,Optimal Walk Problem for Biped Robot, Robotics Society of Japan
Annual Conference,2000)

14. 竹内 ，脚式ロボットのリアルタイム最適制御　，日本計算工学会第 6回講演会，東

京　法政大学,2001/06/01
(H.Takeuchi,Real-Time Optimization for Legged Robot,Japan Society for Compu-
tational Engineering and Science Annual Conference,2001)

15. 竹内 ，脚式ロボットの最適化問題，日本機械学会ロボティクスメカトロニクス講演

会，高松市,2001/06/10

124

(H.Takeuchi,Optimization for Legged Robot,Japan Society of Mechanical Engineers
Robotics and Mechatronics Conference, 2001)

16. 竹内 ，MEL HORSEの開発，日本ロボット学会学術講演会，東京、2001/09/15
(H.Takeuchi,Development of MEL Horse, Robotics Society of Japan Annual Con-
ference,2001)

17. 2足歩行ロボットの最適歩行問題，竹内 裕喜，日本ロボット学会学術講演会，東京、

2001/09/15
(H.Takeuchi,Optimal Walk Problem for Biped Robot, Robotics Society of Japan
Annual Conference,2001)

18. 竹内 ，脚式ロボットの最適化問題，計測自動制御学会，東京工業大学長津田キャン

パス、2002/03/28
(H.Takeuchi,Optimization for Legged Robot,Society of Instrument and Control En-
gineers Committee Conference(at Tokyo Institute of Technology),2002)

19. 竹内 ，脚式ロボットのリアルタイム最適化と制御 -不等式状態量拘束条件を伴う遊

脚の定式化-，日本計算工学会，東京都千代田区、2002/05/20
(H.Takeuchi,Optimization and Control for Legged Robot -Formulation for Swing
Leg Condition with Inequality State Constraint-,Japan Society for Computational
Engineering and Science Annual Conference,2002)

20. ，竹内，脚式ロボットの最適化と制御,日本機械学会ロボティクスメカトロ二クス講

演会，島根県松江市,2002/06/09
(H.Takeuchi,Optimization and Control for Legged Robot,Japan Society of Mechan-
ical Engineers Robotics and Mechatronics Conference, 2002)

21. 竹内 ，4脚式ロボットの最適化と制御，日本ロボット学会学術講演会，大阪大学、

2002/10/14
(H.Takeuchi,Optimization and Control for Quadraped Robot, Robotics Society of
Japan Annual Conference,2002)

22. 竹内，2足歩行ロボットのリアルタイム最適化と制御，日本ロボット学会学術講演

会，大阪大学、2002/10/14
(H.Takeuchi,Real-Time Optimization and Control for Biped Robot, Robotics Soci-
ety of Japan Annual Conference,2002)

23. 竹内，脚式ロボットの運動最適化問題，日本計算工学会講演会，tokyo、2003/05/21
(H.Takeuchi,Optimization for Legged Robot,Japan Society for Computational En-
gineering and Science Annual Conference,2003)

24. 竹内，脚式ロボットの最適化問題，日本機械学会ロボティクスメカトロニクス講演

会，北海道　函館市,2003/05/25
(H.Takeuchi,Optimization for Legged Robot,Japan Society of Mechanical Engineers
Robotics and Mechatronics Conference, 2003)

25. 竹内，脚式ロボットの運動最適化問題，計測自動制御学会部門大会，神戸市,2003/05/28
(H.Takeuchi,Optimization for Legged Robot,Society of Instrument and Control En-
gineers Conference in Kobe,2003)

26. 竹内，非線形 Receding Horizon 勾配法,日本計算工学会講演会，tokyo,2004/05
(H.Takeuchi,Nonlinear Receding Horizon Gradient Method, Japan Society for Com-
putational Engineering and Science Annual Conference, 2004)

126

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

