Chapter 6

Conclusion and Future Work

We conclude this dissertation with a summary of our contributions and directions for future

work.

6.1 Summary

For managing large high dimensional datasets, we proposed several dimensionality reduc-

tion techniques and several index structures.

¢ Dimensionality Reduction in L; Metric Space: Using spatial access methods (SAMSs)
is an efficient technique of similarity search. It is no trivial to define a distance
function that best reflects human perception regarding similarity measurements, Un-
like most state-of-the-art technique of indexing high dimensional data which the Eu-
clidean distance is adopted, We attempted to index high dimensional data with L,
distance function, because in some cases, the distance function L, is adapted well
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to distinguishing those objects. For scaling index structure, the technique of dimen-
sionality reduction was adapted in the L; metric space. We found an interesting

theorem that L, distance range from a query point can be accurately reflected into

the Euclidean space L, metric embedded.

High-Dimensional Index Structure: The index mechanisms based on tree structure
are decline when the dimension of data become beyond 5 ~ 10, because the most
of nodes in tree are needed to scanned, that is, the power of pruning lost. The se-
quential scanning is advantageous for high dimensional dataset due to its efficient
sequential I/O accesses. VA-file method makes the best use of advantages of sequen-
tial scanning, a two steps retrieval technique was proposed. However, VA-file has
the same drawback like sequential scanning, the number of I/O access is proportion
to the number of dimensions. Form the observation that the coordinates of high di-
mensional data is skewed, we proposed a novel method of dimensionality reduction,
which operates reduce dimensions data by data. The distance information lost by
dimensionality reduction reaches minimum. We apply the datawise dimensionality

reduction to VA-file, a new version CVA-file is developed.

Time Series Databases Techniques: Similarity search in time series databases is
a difficult problem due to the typically high dimensionality of the raw data. The
most promising solution involves performing dimensionality reduction on the data,
then indexing the reduced data with a dimensional index structure. We proposed a

dimensionality reduction technique aggregating before and behind data to an approx-
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imation. the reduced representation closely approximates the original signal, A new
time series index structure called DDR is proposed. It has significantly decreased /'O

access than existing index structure.

o Parametric Visualization: Clustering high dimensional reduction is a challenge
work, because high dimensional space has high degree of freedom, data points could
-be so scattered that every distance between them might yield no significant differ-
ence. An interactive clustering tool is desirable. Furthermore, for large datasets, the
computation complexity over linear is always not available. We developed a clus-
tering tool that end-user can change the viewpoints by tuning parameter. The kernel
algorithm is called HyperMap that is a generalization of FastMap. It preserves the

linear computation complexity of FastMap.

6.2 Future Works

Thete are several interesting directions of future work based on the work described in this

thesis.

o sequence data: In this thesis, we proposed datawise dimensionality reduction and
indexing techniques. These can be applied to sequence data as well, Examples of
sequence data includes gene/protein sequences and stream data. Developing new
search and mining techniques for such types of data based on adaptive representations

is an interesting direction of research.
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o visual data mining: In proposed parametric visualization, how to determine the num-

ber of pivot objects for each hyperaxis is a future work.

o using HyperMap for indexing high dimensionality dataset: We developed a paramet-
ric visualization using mapping high dimensional data to lower display space. We

are considering how to index the target space mapped by HyperMap.

e non-linear dimensionality reduction: Classical linear dimensionality reduction meth-
ods such as PCA have limitation in high dimensional datasets. We think that non-
linear dimensional reduction methods are promise techniques for indexing and visu-

alization for high dimensional datasets.
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