Chapter 5

HyperMap: Parametric Linear
Visualization for High-Dimensional Data

Clustering

In this chapter, we develop a clustering tool called parametric visualization, The current
state of the art technique of visualization has fixation target space to visualize. In this

chapter, we propose a dynamic target space changed by tuning parameters.

5.1 Introduction

Visualizing data clusteting in a high dimensionality space is difficult due to the nature of
data scatter and the way of seeing data in such a high dimensional space. The data scatter

is explained below. When dimensionality becomes high, accordingly, the data embed in
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such a high dimensionality space becomes much more sparse[11, 9]. The distance between
objects increase while the dimensionality increases. An example is shown in Figure 5.1.
Assume the radius of the circle is 1. When the space is a 2-dimensional space, the distance
between A and B is /2 — 1 = 0.414, and the distance between B and O is 1. The ratio
between the two line segments is considerably small. When the dimensionality reaches
100, the distance between A and B becomes +/100 — 1 = 9. In other words, the line
segment between A and B becomes 9 times of the line segment between B and O, because
the circle becomes smaller in a high dimensionality space and the volume exclusive of the
circle becomes larger exponentially,

In order to visualize data in a 2 or 3- dimensional space, dimensionality reduction needs
to be performed, Principle Component Analysis (PCA) is the classical method. Because
most datasets have high dimensionality (or inherent dimensionality), PCA[24] is impos-~
sible to select “good” dimensions in which the variance of coordinates are much bigger
than the others. Many visualization algorithms are proposed including eigenvector-based
techniques, such as, MDS [37], LLE [33], and Isomap {36]. The data scatter in the target
space created by those algorithm is fixation. User analyzes the data scatter from the only
one representation in target space. There are no rooms for users to change their viewpoints.
Because information is significantly lost when mapping to a 2 or 3- dimensional space, it
is difficult that all the clusters are picked up in only one scatter in target space.

The aforementioned approaches do not offer an interactive way for users to interpret

data clustering. The challenge issues are: why and how such clusters are found? If a user
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Figure 5.1: The higher dimensionality, the “smaller” circle is

i

changes his/her view point(s), is it possible for him/her to find different clusters or will the
existing clusters disappear depending on the user’s viewpoint changes? If a user’s view-
point will affect the ways of exploring clusters, how do we allow users to interactively
change their viewpoints and see the clusters in linear time. These issues have not well stud-
ied for high-dimensional data clustering, In this paper, we focus ourselves on visualizing
high-dimensional data in a 3/2-dimensional or even 1-dimensional space. We introduce
a parametric approach allowing users to interactively change their viewpoints and see the
changes on-line.!

Our parametric approach is developed on top of a new novel mapping algorithm called
HyperMap we propose in this paper. HyperMap is a generalization of FastMap [18]. In
FastMap, 2 objects (called pivots) are extracted at one time to determine a axis to be re-
duced. The dimensionality reduction is done one-dimension by one-dimension. There are
two drawbacks with FastMap. First, évery pivot is crucial for discrimination of data in tar-
get space, The quality of data clustering declines from the time that a bad pivot is selected.

Second, the target space is fixation, users can not observe the scatter of data in visual space

{Our online demo is available at http: / /www.dblab. is. tsukuba,ac. jp/“an/HyperMap/
HyperMapDemo ., htm.
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interactively. Different from FastMap, in HyperMap, an axis consists of & (> 2) pivots,
which determines a (k-1)-hyperaxis. The parametric approach developed on top of Hy-
perMap allows users to observe the data scatter in 2 or 3- dimensional space interactively.
By using HyperMap, our approach allows users to use the data scatters in linear time, and

reduce the impacts of selecting a bad pivot. The main contributions of this paper are given

below.

e We define a hyperaxis and coordinate value of hyperaxis. We break through the
limitation of Euclidean space that an axis is a line. In our approach, an axis can be a

line, a plane, or a hyperplane.

e We derive a formula for translating coordinate values from original space to destina-

tion space.

o We develop a novel interactive technique that allows users to change their view-
points by tuning tuning the weight associated with each hyperaxis. By changing
the weights, users can see the clusters from different viewpoints, interactively and

efficiently.

The rest of the paper is organized as follows. Section 5.2 outlines our parametric ap-
proach. We introduce HyperMap in Section 5.3, The analyses of HyperMap are given in

Section 5.4, We conclude the paper in Section 5.5,
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5.2 Visualizing Large High-Dimensional Data in a 3-Dimensional

Space

In data visualization, the most important issue is that the neighborhood of objects that are
close in the original high dimensionality space should be close in the reduced data s pace to
be visualized. At the same time, objects that are far away in the original high dimensionality
space should not be close in the reduced data space to be visualized,

We use an example to explain the interactive visualization shown in Figure 5.2. There
are three clusters. We assume that a pivot is the center of a cluster (Figure 5.2 (A)). For each
object, we can calculate three distances between the object and any of the pivots, denoted
as dy, dy and ds. We call these distances as ingredient of the object in a hyperaxis. The

coordinates value of the hyperaxis are obtained using Equation 5.1.
z=d + aydy + aada (5.1)

A user can interactively tune the weights oy, and ay to visualize the 3 clusters, For
instance, setting a; = 0.0, @ = ag = 0.5, the cluster C, is recognized as shown in Figure
5.2(B), because the coordinate values of the data points in ' are smaller than those of
the data points in other clusters Cy and Ca. In a similar fashion, by setting o = 0.0 and
oy = ag = 0.5, the cluster C; can be separated as shown in Figure 3.2(C).

1t is important to note that Equation (5.1) shows how to select one coordinate value to

visualize data, We need to determine other coordinate values accordingly. To the best of
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Figure 5.2: Motivation of HyperMap. There are 3 clusters in 2-dimensional space (A),
we can store three ingredients of one hyperaxis. By tuning weights in a hyperaxis, the 3
clusters are recognized one by one.

our knowledge, there is no reported study on selecting coordinate values, because of the
difficulties of the recursive calculation of projected distances, In this paper, we propose a

novel algorithm that recursively chooses pivot objects employing k-center technique [21].

5.3 HyperMap

5.3.1 FastMap

FastMap algorithm can be described in brief as follows,

1. Pick up 2 pivot objects p1, 2 to construct the first axis pyp.

2. All the data is projected into the axis pypa, the first coordinate in target space is
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gotten,

3. Project all data into the hyper plane H perpendicular to the axis pyp,.

4. In the hyper plane 7, steps 1,2,3 are repeated until all the axes of target space are

gotten.

FastMap argorithm is generalized by extending the number of pivot objects of the axis of
target space. Two problems arise. One is how to select pivot objects effectively. the other
is what is the coordinate (called hypercoordinate) in target space.

HyperMap is to map objects in a n-dimensional space into a (k-1)-dimensional hy-
perplan, that is determined by the corresponding (k-1)-hyperaxis using k n-dimensional
objects (called pivots), p1,ps,. .., Pk, for k < n. In the following, we use P1pz...pg to de-
note the complementary space that is orthogonal to the the hyperaxis. In addition, given an
object o in the n-dimensional space, we use 0|p,n,. », (or simply ¢') to denote the projection

of o0 onto a hyperaxis p;pa...p;. Notations and symbols are summarized in Table 5.1.

Definition 1 (hypercoordinate) Given an object o, weight W = (o, 0a,..., ) and
V = (v1,v2...,v) where each v; is a ingredient of a hyperaxis. The hypercoordinate of o

on a hyperaxis p1pa...py, denoted 0.z, is defined below.

k k
ox=W VT = Z oy U = Z a; - dist{olp,...pp, Pi) 5.2)

1=1 i=1

Here, 0|y,..p, is the projection of object o on the (k-1)-hyperaxis, v; is an ingredient indi-
cating the distance between olp,._p, and a pivot object p; (1 £ 1 < k). oy is a weight such
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| Symbol | Meaning
@) Dataset of objects {0;}
N number of objects in O
2% a sequence of weights (a1, az,...)
k number of pivots of a hyperaxis
PP Pk hyperaxis determined by py, pa, ..., Pk
P1Da-- Pk complementary space orthogonal to pips...px
Olpy...ny projected point of p on ppa... Py
dist(p,q) distance between p and g
dist(p, q) projected distance on the complementary space
D(o,p;...px) | the relative coordinate for o on hyperaxis
pl...pk(k = 1, v ,?’L)

Table 5.1: Notations
that

|ar| 4 Joa| + . 4 o = 1

The condition Y a; = 1 specifies that the distance between two hypercoordinates, x.0;
and x.0;, cannot be larger than the distance between Oilpips..pp AN Ofpipy...p, ID hyper-
axis pipz...pr. because a hypercoordinates are “extracted” from the corresponding hyper-

plane determined by the hyperaxis. Let o} and o} be 0ilpypy..p, A0¢ 0;lpyps.., I hyperaxis
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P1P2...pr. We show our proof below.

0;.T — 0;.7|

I

|evi (dist (o}, py) — dist(o}, p1)) +
O.’g(d?:st(o';-,pg) —_— d%St(O;,pg)) + ...

+on,(dist(0}, pr) — dist(d}, pr))|

IN

Igg,gddist(ﬂi,ﬁm) - d’ﬁS't(O;,pm)l

A

dist(o}, 0;)

It is also illustrated in Figure 5.3.

Figure 5.3: |dist(c], p)) — dist{o}, p1)| < dist(0}, of).

5.3.2 HyperMap Overview
HyperMap maps objects in a n-dimensional space into a hyperaxis pipa...px in four steps.
1. Step-1(Pivotselection): Determine a (k-1) hyperaxis by selecting k pivots (p1, pe, . .. , Pk

2. Step-2 (Computing ingredient): For each object 0, compute the distance dist(0lp,p,...px» i),

for all pivots p;, in the hyperaxis. Recall that olp,p,.., is the projection of object o
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on the hyperaxis.

3. Step-3 (Computing projected distance in the complementary space): Calculate
distances between all pairs of o; and o; on the complementary space pypa--Dx that is

orthogonal to the hyperaxis pips...pe.

4. Step-4 (Looping): In the hyperplane, steps 1-3 are repeated until all the axes of

target space are obtained,

5. Step-5 (Hypercoordinate calculation):

Compute the hypercoordinate on the hyperaxis of o for all data points using Equation

(5.2).

In the case when k = 2, there exists two pivots (p; and py). If one of the two distances
dist{o,p,) and dist(o, py) is taken as a hypercoordinate, the HypetMap will perform in a

similar manner like FastMap [18], which is a special case of HyperMap.

5.3.3 Pivot Selection

In order to select k pivots in linear time, for large high dimensional datasets, we employ the
k-center algorithm given in [21], which selects k repulsive representatives in linear time,

as shown in Algorithm 6. In brief, it takes two steps as follows.

1. Select an object o; € O, randomly. The first pivot p; is selected as the object that has

the max distance from o;, and is added into pivot set S, which is empty initially.
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2, Repeatedly find a pivot p; that satisfies the following inequation,

. . f
E}gg(glelg(dast(o, o))

until all & pivots are selected.

Input:

Output:

begin

end

Dataset O,
Distance function dist(:, ),
Number of pivots k,

A set of k objects S.
Select-pivot(O,dist(), k)

S0
Choose an object o; from O randomly.
Choose py such that for any o; € O,

Addp; to S
while |S| <  do

endwhile
return S

max,,co(dist(o;, 0;))

Choose next pivot object o' from Eq. (5.3),
Addd 1o S,

Algorithm 6: Pivot Selection

Like FastMap, the computation complexity of this algorithim is linear.

5.3.4 Computing Relative Coordinate

(5.3)

For indicating the location of projected point o' on hyperaxis pi1ps . . . pg, k— 1 real numbers

are needed. Consequently, in this paper, relative coordinate D(o,mpaps)(2 £ < k) is
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(dist(0, p1))? — (dist(o, p))? + (dist(p1,p:))® — 2 Sy D, pipa. .. p;) - D{opipa ... p5)

Dioypipz.. ;) =
2\/(611'3'?(201-17:'))2 - Y5 Dipeypipe . p5)?

@2<i<k) G4

I k

dist(o;,05) = \J (dist(oq,04))2 — Z(D(o;.mm...pg) — D(ej, p1p2..p1))? {5.5)
=32

proposed. In the following, we will expain how to calculate ingredient and distance in

complemently space by using relative coordinate,

Definition 2 (relative coordinate D(-,-)) Given a (k-1)-hyperaxis, pipa...pw for k > 1,
an object o’s relative coordinate is the distance between o|p,p,..p, and an (i-1)-hyperplane
pipo..pu for 1 < i < ko If the object o is on the same side of the last pivot object
Pit1, With respect to the hyperplane pipa...p;, its relative coordinate is positive, otherwise
negative. Let dist(0;, 0;) be a Euclidean distance between two objects o; and o;. The formal
definition, D(o|p1ps...p;, P1p2-..1:), is given in Equation (5.4), for 2 < i < k. Wheni = 2,
a I-hyperaxis is a line, pyp2, an object o’s relative coordinate is computed by Equation

(5.6), which is the same as FastMap. When ¢ = 1, D(o|p1,p1) = 0.

Figure 5.4 (A) illustrates D(-, -) in a (k-1)-hyperaxis, pips... p, whereas Figure 5.4 (B)
shows a 2-hyperaxis, pypaps. In Figure 5.4 (B), an object o's relative coordinate D (o, p112)
and D (o, pypeps) are illustrated. As a special case, D(o,p;) = 0 for an arbitrary data point
0, because the distance from o’s projection point to p; is zeto.

The basic idea of mapping is to use “cosine law” (Equation (5.6)), as illustrated in
Figure 5.5(A), using two pivots, p; and p,. An object o is projected onto 1-hyperaxis
determined by pip2 at 0|y, (simply o). o’s relative coordinate in the axis is computed by
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Figure 5.4; Definition of Relation Coordinate of Hyperaxis

D(o', pyp) below.

D0, pipa) = dist(py, o) = (dist(d,p1))? — (dist{d, p2))* -+ (dist{p1, ps))? (5.6)

2+ dist{py, p2)

The relative coordinate D {p, p1ps...px) can be computed using an inductive method, as

given in Appendix A.

Lemma 1 Given data point o, it has a projected point o on a hyperaxis pipa...ps. The

vertical distance h from o to the hyperaxis can be calculated below,
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Figure 5.5: 1-hyperaxis(line). (A)Relative coordinate can be simply calculated by using
“Cosine Law’, (B) shows projected distance dist(o;, 0;) between data point o; and o; in

the complementary space of hyperaxis p;p,.

k
h = dist(0,0) = || ((dist(0,p1))* = Y _ D*(0, p1pa...px)

i=2
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Proof:
As shown in Figure 5.6, from the definition of relative coordinate,
(dist(py, 0))*= (dist(py, olpips))* + (dist(olpipz, 0))*
= D¥o, pip2) + (dist(olpip2, 0))?

Olpips OlP1P2Ps is on the hyperplane p;pops

0 Olpsps L Olpsp; 0}p1p2ps
(dist(0lpipg, 0) Y= (dist{Olpipy, Olpipaps))? + (dist{o|pipaps, 0))?

= D*(0, p1paps) + (dist(olpipaps, 0))?

In generally, we have,
(dist(0lpips..p0) 0))* = D*(0, prpa...Pia) + (dist{0|pipz-. Pit1,0))?
As a result,
(dist(p1, 0))’= i D*(0, pape...p) + (dist(olprpa...pw, 0))?

= Sk, D0, pipa...ps) + (dist(d, 0))?

5.3.5 Computing Projected Distance in the Complementary Space

Given two objects, o; and o;, in a n-dimensional space, the distance between o; and o; in
the complementary space orthogonal to (k-1)-hyperaxis can be computed using Equation
(5.5). Figure 5.5(B) shows a 1-hyperaxis with dist(c;, 0;) between two objects, o; and 0;,

in the complementary space orthogonal to 1-hyperaxis p;ps.
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5.3.6 Hypercoordinate Calculation

According the Lemma 1. an ingredient o.v; of data point o can be obtained from relative

coordinate below.

ov? = (dist(pi,0))* ~ h? (5.8)
k
= (dist(p;, 0))* — (dist(p1,0))* + Y (D*(0,p1pz. .- )

i=2

5.3.7 Algorithm of HyperMap

The HyperMap algorithm is outlined in Algorithm 7, By replacing dist(-,-) with dist(-,),
the relative coordinates J2(-,-) in the complementary space can be computed with respect

to data point and pivot objects,



Global variables:
N x n X npivots array DI, |
{using to saving relative coordinate to
each pivots all layers for each data}
Number of pivots of each level npivot(1],
npivot(2],. .., npivot|n)]

Input:

Number of pivots n

Distance function dist(-,-)

Dataset O,
Output:

distance from data o to each pivot, w.r.t.
level, o.coor{leveldt|[pivot#]
HyperMap(n,dist(},0)

begin
if (n < 0)
return
Select-pivot(Q, dist(), npivot[n]){ Algorithm 6}
foreach data 0 in O do
foreach pivot p; (§ = 2 : npivot[n])
{Relative coordinates are calculated by Eq.(5.4)}
Dlo.#,n,j] « D(o,p1p2 ... p;)
{0.4 is No. of data o}
endforeach
{compute the distance from o to hyperaxis(Lemma 1)}
h  (dist(o,p1))*=
> (Dlopwz...pi))?

2<ignpivotin)
foreach pivot p; ( = 1 : npivotin])
o.coor[n][5] « +/(dist(p;,0))2 — h
endforeach
endforeach
{consider the projections of the objects on a
hyperplane perpendicular to the hyperplane,
the distance function dist'()
is given by Eq. (5.5)}
HyperMap(n — 1, dist’(), O)
end

Algorithm 7: HyperMap
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5.4 Empirical Results

Experiments were performed on a PC system of a single PentiumIIl 700 MHz CPU and
128MB main memory, running Debian GNU/Linux 2.2. With this system, we aimed at
evaluating of the feasibility of HyperMap.

Finding clusters with visualization is an effective technique[18, 6]. We mapped high
dimensional datasets to 1, 2, 3 dimensional spaces by HyperMap, and evaluated the quality
of clustering with synthetic and real datasets. The clusters were found by tuning the weight
V. As mentioned in the previous sections, it is very hard to find all clusters at once. Rather,

we tried to separate each cluster by tuning the weight W with several times.

5.4.1 Synthetic Data Generation

In order to generate datasets, we used a method similar to the one discussed in [40]. In
this method, anchor points of clusters are firstly determined. Then, how many points are
associated with each anchor point are determined, and finally cluster points are generated.

More detailedly, anchor points of clusters are obtained by generating k uniformly dis-
tributed points in d dimensional space of [0.0, 1.0]. All clusters have the same number of
points. The positions of data of each cluster follow the normal distribution, with the anchor
point as its mean, and variance x. In our experiments, we set the number of clusters to

k = 5, and the variance of all clusters to p = 0.2,
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5.4.2 Getting Accurate Results by Tuning Weight W

As shown in Figure 5.7, cluster 5 among 35 clusters is separated clearly, where the number

of pivots for all hyperaxis are set to 3. The weight W is shown in Table 5.2.

04 03 1 12 ! 15
Hyper Axis 1

Figure 5.7: HyperMap with Synthetic Dataset. The Cluster 5 is found with the W of Table
5.2,

Table 5.2: Weight Used in the Experiment of Figure 5.7

Hyperaxis 1 Hyperaxis 2
un Wy ws | W Wy Ws
0.411-0.09105]083]0.04]-0.13

Similarly, by setting the weight W as in Table 5.3, cluster 4 is separated from other 3

clusters as shown in Figure 5.8.

Table 5.3: Weight Used in the Experiment of Figure 5.8

Hyperaxis 1 Hyperaxis 2
wp | we | Ws wy | Wa Ws
0.931001-007]072]0.01]-027
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Figure 5.8: HyperMap with Synthetic Dataset. The Cluster 4 is found with W of Table 5.3.

5.4.3 Real dataset

We also applied HyperMap algorithm to a real dataset WINE?, There are 178 rows falling
into 3 clusters in the wine dataset. Each row has 13 attributes, and indicates a specific sam-
ple of wine. Setting the weight W as described in Table 5.4, cluster 3 is clearly separated

from others as shown in Figure 5.9.

Table 5.4: Weight Used in the Experiment of Figure 5.9
Hyperaxis 1 Hyperaxis 2

i Wa Wy | Uy Wa Wy

-0.421-0.04 ] 0.54 | 049 | -0.34 | 0.17

We tested 1-dimensional visualization with the WINE dataset. One hyperaxis, 5 pivots
are selected. Cluster 1 and 3 is separated as shown in Figure 5,10 by tuning parameter .
The value of W is adjusted in this case as shown in Table 5.5. In Figure 5.10(A), 6 (10.17

%) data points of Cluster 1 are migrated into other 2 clusters, In Figure 5,10(B), only 3

‘http://kdd. ies uei . edu/
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Figure 5.9; HyperMap with real dataset. The cluster 3 is separated at one W value

(6.25 %) data points of Cluster 3 fall into other 2 clusters.

Table 5.5: weight of Figure 5.10
Hyperaxis 1

uh Wa Ulg Uy Ws

A[021(001] 0020781002

B {0.85]0.01]-0.06;001]0.07

5.5 Conclusions

In this paper we proposed a novel approach called HyperMap for mapping high dimen-
sional data. In this technique, a new concept called hyperaxis is introduced. A hyperaxis
is a hyperplane passing through & data points chosen by employing k-center algorithm.
Especially, when k is 2, HyperMap is coincident with FastiMap.

By mapping data points to the target space spanned by the hyperaxes, hyper cocrdinates

are obtained. Experiments on real and synthesis datasets show the effectiveness of using
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Figure 5.10: HyperMap with Real Dataset, The Cluster 1 and 3 are separated with the W
value A and B of Table 5.5 respectively

such coordinates for classification and visualization. HyperMap is flexible because the
weights can be tuned by users.

As future work, we are clarifying the properties of weight, and are investigating to
discover a systematic method for determining the weights, Also, applying HyperMap to
high dimensional indexing is considered to be an interesting work. We are sure that itis a

good dimensionality reduction method for overcoming the curse of dimensionality.
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