Chapter 4

Grid-Based Indexing for Large Time

Series Databases

In this chapter, we extend the idea of datawise dimensionality reduction for indexing large

time series datasets.

4.1 Introduction

Examples of time series data includes stock prices, weather data, exchange rates, medical
information, ef al. Each time series is a sequence of real numbers, and each element of
which represents the value at a point in time, Similarity search in time series is useful in its
own right as a tool for exploratory data analysis. The problem, therefore, has attracted the
attention of many researchers. However, description of time series requires an enormous

amount of real numbers, real world datasets are typically at the gigabyte or terabyte level,

48

The most promising similarity search techniques perform dimensionality reduction fol-
lowed by the use of a SAM (Spatial Access Method) such as R-tree [23] and its many
variants[7, 26] in the transformed space. These techniques include Discrete Fourier Trans-
form (DFT) [3], Piecewise Aggregate Approximation (PAA)[29, 39] and Adaptive Piece-
wise Constant Approximation (APCA)[27]. They map each Fourier coefficient, aggregate
segment and adaptive aggregate segment onto one dimension of an index tree. The ef-
ficiency of the above-mentioned indexes depends on the fidelity of the approximation in
the reduced dimensionality space, The more accurate the approximation gets (i.e. the more
coefficients retained), the higher the dimensionality of the transformed space becomes. Un-
fortunately, recent work by Chakrabarti and Methrotra, and others snggests that the R-tree
and its variant multidimensional greater than 8 ~ 12. To overcome this difficulty, known as
the dimensionality curse, a compressed indexing structure VA-file[38] has been proposed.
Scanning a compressed index file generates a small set of candidates. The exact answer is
obtained through refinement checking to this small candidate set, which needs fewer ran-
dom accesses to data files. By taking into account that real datasets are always skewed, new
versions of VA-file such as CVA-file[4], VDR-file [5] and C#VA[16] have been proposed.
In these improvements, the technigques of dimensionality reduction and file compression
are efficiently integrated.

The main contributions of DDR are the introduction of a simple, but highly effective
compression technigque, called grid-based Datawise Dimensionality Reduction (DDR) and

the introduction of a technique which can index this representation, The basic idea of DDR

49

1

abedaat St -]
[
)

R
fom e Fm e P e e of
=
1

L]
P R, PRI
-

" a
A T S LT TP
H

i

vOvlv2 vivdvs

APl —— - P —————————

Segment 1 Segment.2

Figure 4.1: Subsequence which has near values v; is represented one segment.

is illustrated in Figure 4.1. In the figure, a time series data represented by a series of value
V1,2,, is plotted. Qur approach is to approximate the value by quantization, then group
“near” values together and represent them with a single approximate value. Each group is
called a segment, which will be defined precisely in the next section. In the figure, using a
certain threshold, v through us fall in a same rectangle so they are group together and are
represented by one value; the quantization of vy, Grouping 6 points together reduces the
size to 1/6 of the original data, and quantization reduces the size further.

The rest of this chapter is organized as follows. A review of related work on the sim-
ilarity search in time series immediately follows., In Section 4.2 we introduce necessary
definitions and notation as well as the overview of our approach, In Section 4.3 we in-
troduce the DDR representation and the two distance measures defined on it, Section 4.4
discusses the formal description of the construction and indexing of DDR representation,
Section 5.4 contains a comprehensive experimental comparison of DDR with some com-

peting techniques, Section 4.6 offers some conclusions,

50

4.1.1 Related Work

Besides the work mentioned above, recent work by Keogh and Yi is closely related to this
research.

DFT [3] based on the well known Fourier Transform(FT) is an efficient dimensionality
reduction. However, as the length of time series becomes longer, much more coefficients
are necessary to approximate the data, which increases the storage requirements,

In [39], Yi et al. proposed an approximation of a time series by dividing it into equal-
length segments. Each segment is represented by the mean value of the data points that fall
within it, and all the mean values together represent the original series. This representation
is called Piece-wise Aggregate Approximation (PAA).

Keogh et al. generalized PAA to APCA (Adaptive Piecewise Constant Approximation)
which allows a segment to have arbitrary length. They use a Wavelet-based heuristic ap-
proach for finding the piecewise polynomial representation of the time series. To describe
each segment, two numbers are used,

As shown in Figure 4.2, the main difference between DDR and other works is that
DDR introduces the concept of grid which has 2-dimensional lattice structure, The hori-
zontal axis cotresponds to the time dimension and is partitioned into varying sized ranges.
The vertical axis represents the quantized value of the data point. Grid-based representa-
tion takes into consideration the semantics of time series, hence enhances dimensionality
reduction while keeping the accuracy of representation. Moreover, it is easy to construct

the index structure using existing quantization approach such as CVA-file.

51

PAA A
N

(A)

ey
APCA I \
/ \
/ (B}
/
e’ T~
"
DDR 2T
’ A
\
A\
%
4 LS ©
a"/ ~9
&
bl N
segment

Figure 4.2: A comparison of the reconstruction of PAA, APCA and DDR.

4.2 Approach

4.2.1 Notation and Terminology

We begin by summarizing the symbols and terms. The data set of time series is O, and an
object v € O is a time series which is represented by a sequence of values vy, v2,..., Un.
All objects in © have the same length n, which is also referred to as dimensionality. Each
v; of v is called a data point.

The main problem we are to address is to find k-NN of a query ¢ from O. This also
implies that the length or dimensionality of g is also n.

Thegre are two types of similarity search for time series. One is whole matching and the

other is subsequence matching. The former is to compare the whole sequences of the same

52

length n, while the latter tries to find a part of the sequence which matches the query. In
this, we concentrate on whole matching.

The similarity between two time series is typically measured with Minkowski distance
function (also known as ;). More precisely, given two time series u = (uy,. .. ,%,) and

v = (v1,...,7%), the distance between u and v is usually defined by:

4.1)

Figure 4.4 illustrates the definition of the distance function for time series data.

In order o find similar series, it is important to avoid the being mislead by the possibility
that two time series may be similar, but at different scales, or at different offsets, For
instance, a series of data points distribute on a curve of function sin{z) + 1 must be similar
to the series on sin(x). However, by the distance function defined above, the former series
1s more similar to a series of data points all having value 1. A simple way is to normalize
the original series, that is, to map the data points to the range [0, 1), After normalization
the series on sin(x) -+ 1 match sin(x} completely, or, the distance between them becomes

ZEero.

4,2.2 Overview of our Approach

Our approach is based on the concept of grids. The hotizontal axis of a time series data
is divided into divisions where each data point is located. The vertical axis is also divided

for representing values of data points by quantization. Consequently, grids are obtained as

53

illustrated in Figure 4.2(C).

Since realistic data are always high dimensional, there will be too many grids to treat
efficiently. Reduction of dimensionality helps to reduce the number of grids, and our ap-
proach to do so is by introducing segment, which merges certain adjoining grids together.

We assume that values of realistic time series data tend to change gradually as shown
in Figure 4.3 (B), and rapidly changing patterns like the one shown in Figure 4.3 (A) are
rare, This seems true by simple visval inspection for most real world datasets[27]. In
other words, for a time series v = (v, s, ..., v,), there are many data points satisfying
Vg = Vipy = - v = U, Consecutive data points satisfying such condition is grouped
together into a segment, then the time series data can be represented as an array of segments.,
Note that the length of segments (the number of data points grouped together) are not fixed.

Within a segment, all values of data points can be mapped into a representative value
with some error tolerance. By this way, we can represent each segment by a single rep-
resentative value. This technique enables us to reduce the dimensionality of time series
data.

Furthermore, instead of the values of data points themselves, we construct index files on
their quantized approximation. Quantization as well as the grouping technique of segments
contribute to drastic reduction of the size of index files.

The search procedure in our approach is performed in two phases. In phase 1 (filtering
phase), the index file is scanned. The access method in this phase is sequential access which

is much more efficient than random access. After the filtering of this phase, a smaller set of

54

iy "

(&1 iB)

Figure 4.3: The realistic time series: (A) very rare case. (B) common case. (e.g., stock
price of one day, or medical diagram.)

candidates is obtained. Then in the following phase 2 (sefinement phase), a few pages are
accessed fo calculate exact distance from the query point ¢. It is highly desirable that the

nuinber of page accesses in phase 2 be as small as possible.

4.3 Data Representation

In this section we discuss how to determine grids. First, the normalized values are quan-
tized, then the lengths of segments are determined. To guarantee the admissibility when

DDR is implemented as an index, upper and lower bounds are also considered.

4.3.1 The DDR representation

We illustrate the representation of a given time series (1,2, ...,U,) by Lysing an example,
For clarity of presentation, the explanation is separated to two steps. In fact, as will be
shown in Algorithm 3, the index file is constructed more efficiently rather than in two steps
separately.

As the example, suppose the time series is given as below.

(v1, 09, - .., ug) = (0.18,0.24,0.30,0.62,0.9, 0.45,0.38, 0.32)

35

Figure 4.4: The distance function is the p-th root of the sum of the lengths of the vertical
lines to the p-th power,

this series is approximated in the following way.

1. quantization: The time series is quantized to 2° intervals in the vertical axe, where
b is the number of bits used for approximating v;. In the example, if we assumed that

b = 3, then by a; = |v; x 2°], the quantized time series of the example becomes

(a1, 09, ..., 08) = ((001)g, (001), (010),, (100}, (111)s, (011)4, (011)g, (010),)

2. reduction: If a value of a data point is close to that of its previous data point, then it
is omitted. We use a tolerance parameter e, Whether a data point is omitted or not is

determined by Equation 4.2.

omitted, <y —atxh<h+te
Qi1 = (4.2)

lwip1 X 28], otherwise

(7:"_:112:"'}”')

In the equation, k is the height of grids (= 1/2*) and o is the representative value

56

— - - — —— — —— —

DL’-(xl (A) (B)

{_ }_ Vi+l

. R I

* Vi tLVi

E_ 8 _ Vit E_ "l o .-
<) D)

Figure 4.5: Determination of Segments. (A) Since v;; has the same quantized value as
j, it is omitted (grouped in the same segment as ;). (B) Although quantized value of v;,
is greater than v;, it is also omitted because it is still in the error tolerance with respect to

v;. (C) This case is similar to the case (B). (D) w4, is out of the error tolerance, and thus
begins a new segment,

of the segment in which the quantized value] belongs. The representative value of each
segments is the quantized value of the first data point in the segment,

Figure 4.5 shows four cases for determining segments of quantized time series. For the
illustrative convenience, we assume that the previous quantized value «; is not omitted.

To illustrate how to reduce the dimensions, the range of error tolerance is added as
shown in Figure 4.6, The data points in a gray rectangle belong to a single segment, so
their values are omitted except the first one. In this example, ¢ is set to 2/2 = 1/16, and

after the reduction, the time series becomes

(@, @, ..y) = ((010), X, X, (100)z, (111)g, (011)y, X, X),

where “x” denotes the omission of the data points. By Equation 4.2, v; is out of range

[—e, e+ h} = [—~1/16,3/16] (ap is initialized to 0), so a; must be stored. o is omitted

57

Error Talerance

segment

Figure 4.6: Reduction of data points of v with DDR technique. The four gray rectangles
represent the ranges of error tolerance,

because v — vy X h = 0.24—0.125 is in the range [~1/16, 3/16). To determine whether vs
can be omitted, o; is used because v, has been omitted, v3 —a; xh = 0.3—0.125 = 0.1775
is also in the above range, thus cvg is also omitted. Similarly, v; — a; x h = 0.62 ~ 0.125
exceeds the range so oy must be stored. The rest is calculated in the similar way.

There are two advantages of representing DDR based on the grid partition. First, data
are stored in an index file effectively; second, unlike APCA technique, the omitted data
point is easily determined.

Because the segments are variable-length, it is not known how many and which of the
data points have been omitted, To record this information, an n-bit length bit pattern 3 is
associated to the approximation of a time series data. If «; is omitted, the corresponding
bit 5; is set to 0. Otherwise it is set to 1, The structure of an entry representing one time
series data is shown in Figure 4.7. In the case of the example above, the entry representing

the series data becomes

Omisslon info. quantized values

(10011100 ,010,100,111,011),

58

omission info. f ,- b-blt binaries
4 Ay

{n-bit binary) AN

) 'l 02 s Y in-1

0100]...101 | l"' | I
1 ' _f T

1

Figure 4,7: Representation of one time series. n-bit binary denotes which data points in v
is omitted or not. The following boxes indicate quantized value (ay) of data points (v;)

4.3.2 Distance Measures Defined for DDR

Consider a time series v, which we convert to DDR representation ¢, and a query time
series ¢. Instead of computing the exact distance D(q,v) between ¢ and v, we want to
estimate the bound between ¢ and « to exclude as many irrelevant series as possible. In
index files, since the quantized values of data points instead of exact values are stored,
we have to define distance measures between ¢ and o which approximates D(g,v). The
function has to avoid false dismissals, while maximizing the filtering effect. Functions
Dir(q,v) and Dyg(g,v) are defined so that they are lower and upper bounds of D{(q,u).
These functions are used in the filtering phase for selecting candidates.

Dyp(q,v) is defined as:

Dia(a,v) = 2| Y (dus{@v)) (4.3)
i=1

where dr,p (¢, ;) is lower bound value of two corresponding data points in ¢ and v.

Similarly, Dyg(q,v) is defined as:

n

Dyg(q,) = | D (dus(g:w)) (4.4)

i=1

59

where dyp (¢, v;) is upper bound value of two corresponding data points in g and .

To estimate the values of lower and upper bound, two cases are considered.

1. a; is stored. The quantized value of v; is available, because it is stored in an index

file, as shown in Figure 4.8, dpp (g, v:) and dygp(g, ;) can be calculated by

y

drp(g,v) = § o

H

4

@ — a;h

¢~ (a; + 1)h

a"i-h‘ = i
\

g > ((.Yi + l)h
aih < g < (o + 1) (4.5)

G < a;h

g > (o + Dh

dum (0, 0) = Y ma((es +)h— gy — k) b < i < (s + Db (46)

(as + V)h — g,

\

¢ < ogh

2. ay is omitted. The value of v; is estimated by «, the representative value of the

segment to which v; belongs. As mentioned above, representative value of a segment

is the gquantized value of the first data point in it. As shown in Figure 4.9, dzp (g, v:)

and dyg (g, v:) are defined as

60

| 5 | up a4
-aLVi , 1 |UB
Y y : LB

! \ R
0 (A) qi
i (B)

v UB

q —_f LB=0

a; (O

Figure 4.8: Lower bound and upper bound, (A) ¢; is larger than upper value of quantized
value o; of v;. (B) g; is smaller than lower value of quantized value a; of v;. (C) ¢; has the

same quantized value as o; of v;.

’

G—(ai+Dh—¢ ¢>{(ai+hte

ka2h~qi—e, g < oh—e
G — Ci-th 4 € g > (i +Dh+e

dun (@) = \ maz((} + Dht e~ g+ e —ofh), ath~e<a< (al+Dh+e

L(ai + Dh— g +e, g<ah-c
(4.8)

61

§ UB + UB

LY S——
(A) / (B} LB_I

o o

L
| R

f J e

qi LB=0
E— — — ‘—— m—
C

o ()]

Figure 4.9: Lower bound and upper bound. (A) ¢; is larger than upper value of quantized
value a! of v; with addition of error tolerance e. (B) ¢; is smaller than lower value of
quantized value v} of v; with subtraction of ervor tolerance ¢. (C) ¢; has the same quantized
value as o} of v; in error tolerance.

4.4 Indexing DDR

In this section, we formally describe the algorithms using in the construction and search
of DDR. Based on the analysis in Section 4.3, the procedure of the construction is given
in Algorithm 3. As shown in Figure 4.7, DDR has a flat structure. It is a sequence whose
entries correspond to the original series data one by one. Each entry contains a header of
n-bit, indicating the presence or omission of quantized values by setting or unsetting the
corresponding bit, respectively.

It is easy to see that the complexity of the algorithm is O(|O|), the size of the con-
structed index file is (1 4 70)n|©] bits, where 7 is the average reduction rate. The size of
the original data file is fn|O| bits, where f is the number of bits needed for representing

one data point (e.g. if value of data points are of type double, f is usually 8 x 8 = 64).

62

Considering that b is always less than 10, and r is about percent, and f is usually larger

than 4 bytes, the index file is reduced to smaller than 1/10 of the original data file.

Input: A list of series data O (where each elementw of O is a series of values v, va, .. ., Un,

and v; is a real number), the number of bits assigned for approximating each value b,
and tolerance «.

Output: the DDR of O

let = (010... Ba)2 be a n-bit pattern, aip be a b bit integer.
begin
foreach v = vy, vy,...,u, 0of O do
B —0, of —0;
fori=1,2,...ndo
ifo; ~aj_ xh>h+eora;_; X h—v; > cthen
{exactly the condition shown in Equation 4.2}
Bi = 1o — vy X 2], 0 o
else
{e is omitted}
Qg — Gy
endif
endfor
Append 7 and a to DDR
endforeach
end

Algorithm 3: Constructing DDR index file

Using this algorithm, we know that each entry of the DDR index can be found easily
from the beginning. In particular, the first entry has an n-bit header 3, followed by the
same number of quantized values as the number of none zero bits in 8, Each quantized
value o; has length of b bits. The second and the following entries are constructed one by
one in the same way. Although DDR is not suitable for random access that is necessary in
the refinement phase (Algorithm 5), it does not hurt overall performance of our algorithms,

since it is used only for scanning to generate candidates (Algorithm 4).

63

Input: A series data q as a query, ¢ = (q1,¢2, - - ., 0n).
Output: The list s of candidate identifiers of the k-NN to g.

let UpBound][i]’s be upper bound of candidates;

begin
id « 1;
UpBound[l], UpBoundf2),. .., UpBound[k] «~ co
foreach entry « in DDR do
Compute the upper bound Dyp and lower bound Dy g
between a and ¢ by Equation 4.3 and 4.4;
if |s| < k or Dyp(q,v) < UpBound|k) then
Insert the pair of id and Dyp to s,
keeping s in the asscending order of Dy p;
Insert Dyp into UpBound,
keeping it in assending order;
endif
id++;
endforeach
end

Algorithm 4: Filtering phase using DDR

In the refinement phase (Algorithm 5), the candidates in the list s output by Algorithm

4 are checked. By id, the original series data is identified and its distance to the query ¢

is computed. Each comparison necessitates a random access. There is no need to access

objects corresponding to all elements in s. Note that s is sorted in the ascending order of

the lower bound of its elements. When the remaining elements have greater bound than the

real distance of k-th answer found so far, the search terminates, because we guarantee that

no possible nearer objects will be found.

64

Input: s that is the output of Algorithm 4.
Output: The k-NN subset of ¢ from O.

ans=((id[1], dst[1]), (id[2], dst[2]}, ..., {id[n], dst[n]))
begin
dst[1],dst[2], ..., dst[n] «— oo
foreach time series data » in s do
if Dpp(q,v) > dst[k] then
return gns
endif
if D(q,v) < dstlk] then
Insert v into ans,

keeping it in assending order of dst;
endif

endforeach
end

Algorithm 5: Refinement phase

4.5 Experimental Evaluation

In this section we will demonstrate the superiority of DDR. The response time is counted
by the number of page accesses.

We performed all tests over a range of query lengths, In our experiments, 10-NN queries
are used for queries of length 256, 512, 1024, respectively. The query sequences are ex-
tracted from the datasets randomly. L, is used as distance function. We use a page size of
8KB in all our experiments,

For testing whole matching, we converted subsequences by sliding a “window’ of query
length n along v, Though this causes storage redundancy, it simplifies the notation and
algorithms, The dataset is a “relatively clean and uncomplicated” electrocardiogram taken
from the MIT Research Resource for Complex Physiologic Signals [30]. Totally, there are

100, 000 objects in the dataset. As mentioned earlier, data objects are normalized. That is,

65

any data point has a real value between 0 and 1.

In the figures displaying experiments, we used reduced dimensions and index dimen-
stions to stand for the dimensions omitted and stored, respectively, This indicates that the
sum of the two numbers is the dimensionality of the original data. Fixing the original

dimensionality, smaller number of index dimensions means higher possibility of reduction.

4.5.1 Experimental Result: Reduction of Dimensionality

Recall that the number of bits b assigned for approximation and the efficiency of the index
file is a trade-off. Using more bits enhances the accuracy of the index file (less false drops
in the filtering phase) but makes the index file grow rapidly. The increase comes not only
from the storage of more bits but also from the decreased possibility of omitting value.
More bits lead to more divisions of grids, but needless to say, larger index file increases the
cost of scanning. We investigated the relationship between reducing ratio of dimensionality
and b in Figure 4.10. We found that the effeciency becomes maximum(efficiency) when b
is assigned 4.

The ratio of dimensions being reduced determines the efficiency of DDR . A larger error
tolerance ¢ leads to more reduction of dimensions. The demerit is that the bounds become
looser, which results in less filtering efficiency. According to our experiments, the best
cfficiency appears when ¢ is assigned to 1/2. Figure 4.11 illustrates the reduction effect
with respect to dimensionality under the parameter value ¢ = h/2. In this figure, it can also

be seen that the reduction effect appears more significant for higher dimensional data.

66

700
600
500
400
300
200
100

Number of Reduced Dimension

Original Dim : 1024

3 4 5 6 7
Number of Bits

]

700
600
500
400
300
200
100

Figure 4.10: Average Dimensionality Reduced. The original dimensionality is 1024, and
the error tolerance is half of grid’s height. The number of dimensions is almost proportional

to b,

...
S
=

768

Number of Reduced Dimensionaity
o

Figure 4,11: Average dimensionality reduced corresponding to the case of €
b = 4. Reduction is more effective for higher dimensionality.

512

Origind Dimsnsion

@ Reduced Dimension

266 ==

256 512

Length of Que:

67

Ty

h/2 and

1000 T T T T 4
L]
@ Phase 1 ——
&
@ 750 F Phase2-+-)
2
o
o 8500 I -
‘G
2 2504 _
£ ~
5 -
0 i’---h.‘.____}_______}__u
3 4 5 6 7 B

Number of Bits

Figure 4.12: Total number of I/O page accesses. The query length is 1024, and the number

of page accesses of phase 1 is scaled to 1/10 of the original values (weight factor 10 has
been taken in tocount for comparing with that of phase 2),

In the filtering phase, scanning on a smaller index file leads to decreasing in I/O, On the
other hand, looser bound brings more false drops, which leads to more random accesses
in the refinement phase and increases the total response time. Figure 4.12 indicates the
numbers of page accesses in filtering phase and refinement phase respectively. Considering
the argument that random accesses are much more expensive than sequential accessed,
we adjust the cost by introducing a weight of 10. That is, one random page I/O in the
refinement phase is counted as equal to ten pages I/O in the filtering phase. Generally, it
can be seen that when b is 4, the total number of page accesses of the two phases is the

lowest.

4.5.2 Experimental Result: Comparison on number of page accesses

The comparisons with competing methods are illustrated here. Experiments are on a dataset
of electrocardiogram. As the targets to compare, we implemented three indexing ap-

proaches other than our DDR-index. They are DFT-index, PAA-index, and linear scan,

68

In DFT-index and PAA-index technique, we reduce dimensionality of the time series data
using DFT and PAA as described in Section 4.1.1. An index structure is built on the index
dimensions for each technique. We adopt the SR-tree as the index structure. The k-NN
search algorithm suggested by [34] is used. Two kinds of page accesses are considered:
the one in accessing the index structure for getting the candidates of answer, and the one in
accessing the full time series for refining the candidates.

Unlike other methods, our approach needs the refinement phase which makes random
page accesses, The number of in this plhase is shown in Table 4.1. To make the comparison
fair, the total number of our page accesses is not simply the sum of the numbers in the
two phases. Instead, we times the number of page accesses in the refinement phase by
10 before adding the number of filtering phase. Figure 4.13 illustrates the comparison for
three kinds of queries lengths 1024,512 and 256. As can be seen from this figure, DDR
retrieves much less pages than other methods. The difference is too wide so we have to plot
in logarithm scale for comparing them in the same figure. Even taking the weight factor
10 into consideration, the small numbers ensure us that effects of the first phase are much
more significant. The length &’s of bit patterns quantizing coordinates are assighned to 6, 5

and 4 for original dimensionality 256, 512 and 1024, respectively.

Table 4.1: Number of Page Accesses in Phase 2
Dimension 256 | 512 | 1024
Number of page | 49 | 39 16

Though DDR approach costs more CPU computation time than the other 3 approaches

69

Linear Scan DET

1000k T
@
@
g 100k
<
&
@ 10K te
o i .
= -...._*‘ + Rt by mleents
2 Rl TSR T
5
2
100 100 1 | - L i
16 32 48 &4 80 96 16 a2 48 64 80 96
Number of Index Dimansion
PAA, DDR
1000k T T T T | 1000k T T T T
f%? A ""‘_1; 1024 X~
256 ~ * -'X-‘
8 100k¥——WerHere= e .____>\+: 100k ¥ 256 - ¥]
< ——
& At
& 10k *a 10k F §
5 t ST *
3 - W - -
= 13 43 .
pa’
z
100 1 1 L L 100
16 az 48 64 80 96 16 32 48 64 80 96

Number of Index Dimension

Figure 4.13: Comparison on number of page accesses. Linear Scan and DDR are plotted
in the same form as DFT and PAA for comparison, In fact, no dimensionality reduction
happens in linear Scan, while the reduction in DDR is not fixed but depends on data,

70

0

5 | por =
Linear Scan

0T paa -

5 DFT el

30

20

Computation Time (Seconds)
)
[4;]

...........

.......

258 512 1024
Length of Query

Figure 4.14: Comparison on number of CPU cost. As a sample of DFT and PAA, their
index dimensions are 64.

as shown in Figure 4.14, DDR preserves the superiority as shown by the fact that the page

accesses in DDR is 1/5 ~ 1/70 of the other approaches.

4.6 Conclusions

we proposed an approach of dimensionality reduction for time series data, Combining
with the technique of quantization, a grid-based indexing is designed and implemented.
Experimental results are compared with some related works and confirm the efficiency
of our method, As the future work, though the parameter b and tolerance ¢ are tuned to
perform most effectively in the experiments, systematical determination is desirable.

So far in this thesis, we focussed on developing index structures and dimensionality
reduction technique to handle high dimensional data. In the next chapter, we address the

challenge of visualization of high dimensional datasets,

71

