Chapter 3

CVA -file: An Index Structure for

High-Dimensional Datasets

We present the CVA-file indexing technique in this chapter. It is a new version of VA-file

by applying a novel method of dimensionality reduction to VA-file.

3.1 Introduction

Constructing efficient indexing mechanisms for high dimensional data is a challenging
topic because of the dimensionality curse. Some of recent researches conclude that it is
inherently impossible to construct efficient indexing mechanisms under the assumption
that data points are uniformly distributed and dimensions are not correlated{9, 111.
However, it is very unlikely that data points in real data sets are uniformly distributed

and dimensions are independent of each other, We consider some real feature vector

22

datasets of UCI Machine Learning Repository ! In Figure 3.1, the histogram of coordinate
is illustrated (the coordinates are normalized between {0,1)). The histogram is constructed
from the coordinates of all data. The vertical axis shows the percentages of number of
coordinates within intervals, The intervals are assumed the same length, We can find that
the length of intervals becomes shorter as the dimensionality is higher. In the other word,
there are only small percentage of dimensions which have significant values in high dimen-
sionality. For example, in 64-dimensional image color histogram feature vectors, about
78.56% of coordinates are in (0.0, 0.05). Moreover, in high dimensionality, it is likely that
the distribution of coordinate follows the Zipf’s law[41]. We abstract this kind of data as

blow:

Entryl— 0, X,0,0,0,0,0,0,0,0,0,0,0,0, X,0,0,0,0,0,0,0,0,0, ...,0,0, X, 0

Entry2— 0,0,0,0, X,0,0,0,0,0,0,0,0,X,0,0,0,0,0,0,0,0,0,0,..., X,0,0,0

The notation 0 denotes that a coordinate is near Q (e.g. 0.0003, 0.002). While the notation
X denotes that a coordinate is relatively larger than 0 (e.g. 0.15,0.3), The data space can
be imagined as Figure 3.2. We assume a data point ¥ has coordinates v.z, v.y, ©.2z,... in
T, Y, 2,... axis. The most of data points are in one subspace consisting of several original
axes. Thatis, v.z = 0, or, v.x = v.y = 0. Although the high dimensional space is sparse

as many researchers said [1, 9], in many real datasets the data concentrates in its subspaces

as shown in Figure 3.2.

Yhtp:/fwww.ics.ucl.edu/ ~mlearn/MLRepository.htmi

23

Dala disiiibuilon
B0% Y T T

T0% [

60% [

50% I

40%

777

W

A%

Dimengionality Parcantage

%

20%

10% F
, N N o e
a4

Q.15 a2 035 0.4 0.45
Coordinate value

7

2
[=3
o

Figure 3.1: Percentage of Dimensions According to Coordinate

V.x £ 0.0 and V.z = 0.0

N
N
<
N
I
[)
L]

.0 and V.z = 0.0

i
<
i
o

i

V.x = 0.0 and V.y = 0.0
Figure 3.2; Data Distribution in High Dimensionality

Observation 1 For many high dimensional datasets, a large portion of coordinates have

relatively very small values in the scope ranging over all coordinates.

By exploiting the non-uniformity and the correlation property of real data sets, we can
have room for avoiding the dimensionality curse. Such kinds of research works include
the projected clustering called PROCLUS[2]. This clustering algorithm finds subspaces in
original dimensionality. One cluster corresponds to one subspace composed of a small set

of dimensions. The sets of dimensions selected for each subspace need not be identical,

24

That is, dimensions are reduced /ocally for each cluster. This technique is also useful for
constructing indexing mechanism.

For dealing with data of higher dimensionality, a commonly used approach is the di-
mensionality reduction, The FastMap technique proposed in [18] projects data points in
a low dimensional space. In [35], another technique applying the FastMap to L, distance
space is proposed. The Karhunen Loeve Transform (KLT)[22] is a transform by estimating
the correlation matrix for the given data set, and derives the unique decorrelating transform
for it. These techniques reduce the dimensionality globally. Therefore, all data points are
represented in a common {reduced) subspace. The LDR[14] is another related work. Tt
finds local correlations in the data and performs dimensionality reduction on the locally
correlated clusters of data individually. The convex polyhedra technique(4) is another local
dimensionality reduction scheme. It decomposes a data space into convex polyhedra. The
dimensionality of each data point is reduced according to which polyhedron includes it.

In this thesis, we propose a more flexible dimensionality reduction in which the dimen-
sionality is reduced in a datawise way. Its method is very simple, it reduces the coordinates
whose values are smaller than a critical value. Therefore each data point is identified by
remaining coordinates having significant values. In a data space, every data point is treated
as a point in a subspace,which may not be identical for each data point. Moreover, the
number of dimensions of each subspacemay also not be identical. From the Observation 1,
our technique has the advantage that the loss of information caused by the dimensionality

reduction is decreased,.

25

The proposed technique is widely applicable to a class of indexing mechanisms. By
applying it to VA-file[38], a new index structure called CVA-file is developed. The size of

data points in index files is significantly reduced for skewed data.

3.2 The CVA-file technique

There are many spatial tree structures [7, 8, 26] proposed. In all these structures, tree
nodes are accessed in a random way which is very ineffective. Because most accesses can
be omitted during the pruning process, the effectiveness of an index is yet remarkable in
low dimensionality. However, when dimensionality becomes higher, the data space can
not be divided clearly into tree nodes. As a result, most of nodes are overlapping each
other and the pruning power is lost. The spatial index becomes less effective than linear
scanning[8&, 38]. Recently, a non-tree index structure VA-file[38] was proposed. Because
it does not use hierarchical tree structure, it is not hindered by the problem of overlapping,

In the following, we explain the idea of CVA-file as well as its original version VA-file.

3.2.1 VA-file

VA-file[38] is an index structure which accelerates the sequential scan by the use of data
compression, The k-NN search process in the VA-file scheme is divided into two phases in
which two files are accessed respectively. One file is a bit compressed, quantized version
of the data points, and the other is their original data file. Both files are unsorted, but the

positions of the data points in the two files are identical. In the first phase the quantized

26

data is loaded into main memory. If the lower bound of the coming data point exceeds k-th
largest upper bound of candidates, it is filtered since at least & better candidates already
exist, Otherwise it is inserted into a candidate set. Intitively, better approximation causes
a tight bounds from the query point, and has only a few candidates delivered to the second
phase. In the second phase, the candidates are refined by calculating the exact distance
from the query point. The refinement is processed in an increasing order of the lower
bound of candidates. The process is terminated when the lower bound exceeds the k-the
distance in the answer set. Because random accesses occur in the second phase, the better
approximation is disable. On the other hand, the number of page accesses in the second

phase is proportion to the size of the approximation file.

3.2.2 VA-filein KLT domain

For evaluating the effectiveness of CVA-file, we compare it with a well-known global di-
mensionality reduction, called KLT (Karhunen Loeve Transform) [22]. After the transfor-
mation by using KLT, the data set becomes well scattered on several eigen vectors corre-
sponding to the largest eigen values. Principal components of the original data vectors are
preserved in these dimensions. It is also possible to combine VA-file with KLT by quan-
tizing on the principal dimensions created as mentioned above. Then k-NN is processed
as follows. In the first phase, filtering is performed on the KLT domain, and page accesses
decreases because of the smaller VA-file. The exact distances between the query point and

candidates are calculated in original domain in the second phase,

27

3.2.3 CVA-file

As a solution to the tradeoff between tightness of bounds and size of index file, we try
to decrease the size of index files by using dimensionality reduction without losing the

tightness of bounds. We introduce the two ways of datawise dimensionality reduction.

Dimensionality Reduction Based on Convex Polyhedra

A D-dimensional unit supercube is covered by m(0 < m < D — 1)-dimensional hyper-
planes(surfaces). For example, a cube is covered by 6 squares. It is also covered by 8 lines
and 12 points. The number of dimensions for a point can be considered as 0. In general,
for a d-dimensional supercube, the number of m-dimensional hyperplanes covering it is
aém (d—dm)'

The Pyramid Technique[10] uses (D — 1)-dimensional hyperplanes as bases as shown
in Figure 3.4(a). A hypecube is decomposed into 2D pyramids. Therefore D-dimensional
points can be mapped into a 1-dimensional space. The classical Bt-tree index structure
can be used for similarity search. Figure 3.3 illustrates the range query ¢ of length o in
pyramids of a unit space. In this figure, if the center of the query g is placed in one of
the white triangle areas, the search procedure can be localized to the triangle. That is,
we can omit to check data points stored in other triangles. If data points are uniformly
distributed, the probability that a query is localized to a single triangle is proportional to

the total amount of the areas of triangles. However, this amount rapidly decreases as the

dimensionality becomes higher. Actually, the amount of the triangles is (1 — 2a)*/(2d),

28

and this amount becomes almost 0 when d is large, even if o is very smail.

Figure 3.3: Range Query in Pyramid-tree

This is called curse of dimensionality. But pyramid technique can be extended, thatis, a
convex polyhedron has mmi-dimensional hyperplanes as bases in Figure 3.4(b). The Pyrarnid
Technique partitions a unit supercube into 2D pyramids of equal size, while convex poly-
hedra technique partitions it into 2°=™ - (_” } convex polyhedra of equal size. Thus, we
call our technique the Convex Polyhedra Technique. Of course, this technique is identical

to the Pyramid Technique when m = D — 1.

th I X{ I
| l
I I
| |
(S I
| |
| gy
base | X3 |
(plang) . I i VL -
N A y
e s
o /
- ¢]
41 X1
2-d Face Convex Polyhedra 1-d& face Convex Polyhedra
{m = 2 Pyramid) (m = 1)
{a) (b}

Figure 3.4: Convex Polyhedra

For a D-dimensional data set, the data space is partitioned into convex polyhedra based
on m{m < D)-dimensional faces, A data point has two groups of coordinates. They have

29

m and D — m coordinates respectively. We assume that the latter coordinates, that is,
which are nearer to base than the others are, are reduced, for example, if a data point has

coordinates (1, 22, 3) = (0.02,0.3,0.06), the coordinates x; (0.02), £3(0.06) are reduced.

Dimensionality Reduction Based on a Critical Value

For a I>-dimensional normalized data set (the range of coordinate value is normalized to
[0,1} in advance), a critical value e (< 1.0) is determined. For each data point, the dimen-
sions are divided into two groups as mentioned above. One contains dimensions whose
coordinate values are larger than the critical value e, and the other contains the remaining
dimensions. Though this thesis, dimensions of the former part is called effective dimensions
set. The latter is called non-effective dimensions set. For example, if parameter e = 0.1 is
given, then dimensions of a data point (x;, 22, 23, 24, 25) = (0.01,0.25,0.05,0.2,0.1) are
divided into two groups {x2,z4) and (=1, x3, x5}, where xo, x4 are effective dimensions and
x1, T3, Ts are non-effective dimensions with respect to the data point. Intuitively, the effec-
tive(or non-effective) dimensions might be different for different data points, i.e. though
dimension z; is an effective dimension for this data point, ; might be a non-effective
dimension to another data point.

Comparing to the dimensionality reduction based on convex polyhedra, this technique
of dimensionality reduction is more flexible and less lossy in distance information,

Now we apply the dimensionality reduction based on critical value to VA-file, Assume
that by (2 = 1,2,..., D) bits are used for approximating data points for each dimension,

CVA-file is constructed by appending the entries of data points one by one. The entry of a

30

data point v is as follows.

I. Add a D-bit (D is the number of dimensions for dataset) header to the entry. All

header bits are initialized to 0.

2. For each dimension, if its coordinate value is larger than the critical value e, then
append the approximation of this coordinate value, and set the corresponding bit of

the header to 1. For an effective dimension x;, its approximation is |z; x 2%].

Figure 3.5 shows the structures of VA-file and CVA-file. In CVA-file of Figure 3.5(b),
header fields “dim. inf,” preserve the information of effective dimensions for each data
point, and the “VA-data” fields preserve approximation of coordinate values of the effective
dimensions. Although the header fields are overheads, the length for storing one data point
in CVA-file is much shorter than that in VA-file due to omittance of some coordinates,
Hence, the size of CVA-file is smaller than VA-file because data approximation of many
non-effective dimensions are omitted.

As an example, let d = 4, e = 0.2, by = 3, b3 = 2, andv = (0.1, 0.3, 0.6, 0.2).
Then the index entry for » is (0110,010, 10);. Because the second and third dimensions
are the effective dimensions, the header becomes “0110” by setting the corresponding bits,
the approximation of coordinate values, 0.3 (— 0.3 x 8| == 2), falls into the third partition
of the 8(= 2%2) partitions counted from “000”, and so forth.

Algorithm 1 shows algorithm creating an index file in CVA-file method. In a D-
dimensional dataset (0, a data point is denoted by w;, its coordinates are presented with
v;.xq and approximation is r;.xg.

31

Input:

Dataset: O

Number of dimension: D

Number of bits for each dimension z4(1 < d < D): by
Create CVA-file(©, d, by,...,bp)

begin
foreach dimension z4(d =1 : D)
{calculate length of dimension I;{1 < d < D)}

_ 1
fo= 35
endforeach

foreach data pointv; € O
header « dBits, data «—
{D bits header is prepared, and cva data is initialized}
foreach dimension a4(d = 1: D)
if(v.24 > €}
header(i] « 1b {set I in corresponding bit of the header}
Pz = | M2
data «— data U .z
{append quantized number to the end of data)}
endif
endforeach
writefile(cva- file, header U data)
{write this entry to the cva file}
endforeach
end

Algorithm 1: Create the CVA-file which consists of approximations of all data points.

L yA-data AL VA-data
“ zln

4
- T T T-TC-

(a) VA-file Structure

| dim. inf. | VA-data L dim, inf. | VA-data N
[~ T I~ i i
01i0...10 —| | 1010...01 1 [...
(]] [
L+___________! f T I) j T

(b) cVA-file Struckture

Figure 3.5: CVA-file Structure

32

Table 3.1: Notations and Basic Definitions
e critical value of coordinate
D number of dimensions
N number of data points
i range over data point, i € {1,..., N}
U; i-th data point
b number of bits per approximation
Iy length of region in z4(1 € d < D) dimension
q a query
L bounds: I; < Ly(g, ;) < w
;. 9;'s coordinate of z dimension
by bits per approximation in dimension ity
7. region No. where v; falls in dimension z
n number of data points in result set
Ly distance function L (g, v;)
{;.2,ux | contribution to [;,u; for dimension z

3.2.4 Estimating Bounds in CVA-file

Assume the critical value of coordinate to be e, let N be the number of data points, and
D be the number of dimensions. We use ¢ € {1,..., N} to range over data points, and
the dimensions are divided into effective dimension set X;, and non-effective dimension
set X/, w; denotes an individual data point, and »;.24 is a coordinate of 23 dimension. b
is the number of bits required in each approximation, and b, indicates number of the bits
assigned to dimension z4. All notations are summarized in Table 3.1.

Figure 3.6 illustrates the notation. Assume that data point »; is in the 3rd region of
dimension x4, The region number is counted from 0 so we have r;.zq = 2. The r;.zg can
be calculated by the equation r;.xq = L”Tfij The notation v;.z4 is the z4's coordinate., I

is the length of a region(shaded) in dimension z,. Intuitively the equation fy = 5,,‘—5— holds.

33

Xd

L' 2=
La 7%,

Figure 3.6: Notation.

15 4

cell Eor w

Vi

Figure 3.7: Lower Bound and Upper Bound in VA-file

Let us consider a query ¢ and a distance function L, for some p. An approximation of

v; determines a lower bound {; and an upper bound u; such that;
I: < Lp(g,) < u

This is sketched in Figure 3.7. The lower bound [; is simply the shortest distance from
the query to a point in that cell. Analogously, the upper bound 1; is the longest distance to
a point in that cell. Formally, {; and u; are derived as follows. The bounds /; and u; are total
of all effective dimensional bounds ;.24 u;.x4{zz € X) and non-effective dimensional
bounds ;.24 1;.x4(zq € X'} as shown in Figure 3.8:

Liwg upzg(x € X) are the lower and the upper bounds of effective dimensions? respec-

tively. They are computed like in VA-file as Figure 3.9

34

=i

11' = E l,—.:rd"’—l- Z li.xf (31)

JEN; TaEX]
1
P
Uy = E up Ta” E U Tg" (3.2)
TNy 2g€X]

Figure 3.8: Lower and upper bound.

q.2¢ — Ig (rixa + 1) (riza < ro.aa)

liica =<0 (rig = r4.24)

1y Timy — V424 (ri.2q > 14.24)
q.xq — Iy riaa (ri.tg < 1q.24)
Ui Za = § Max(q.2q — la ri.a, Io (rixa + 1) ~ q2g) (riza = r4.24)
Iy(rexg+ 1) —qaq (rita > 74.2q)

Figure 3.9: Lower and upper bound for effective dimension(z4 € X;).

As with data points, a query g consists of components ¢.z,;, and these fall into regions
numbered r4.24. For effective dimensions, the components ri.zq (z4inX;) of v; are stored
in CVA-file. For non-effective dimensions, r;.zq; (x4inX]) are not stored in CVA-file, they
are needed to be estimated.

We consider dimension z; in Figure 3.10(A). According to a critical value, a data point
o1 has coordinate of x; in shaded portion, its coordinate of x; is omitted, i.e. z; is a non-
effective dimension with respect to data point 0;. On the other hand, z; is an effective
dimension for data point 0o, because it has coordinate of x; over critical value. The con-
verse idea can estimate the range of coordinate of non-effective dimension, that is, if the
coordinate of z; of a data point is omitted, its range of & is in the shaded portion as shown

in Figure 3.10(A).

35

Figure 3.10: Lower Bound and Upper Bound of Non-effective Dimension

0] (q.azd < B)
L,;.Id - .
grqe—e (otherwise)

e = mazx(e — q.2¢, q.xa) (q.z4<e)
B q.%q (otherwise)

Figure 3.11: Lower and upper bound for non-effective dimension(z, € X)).

Assume that data point ¢ have non-effective dimension x; as shown in Figure 3.10(B).
Let us calculate the lower and upper bound between query point ¢ and o. The x,’s lower
and upper bounds of o are the distances from g to the shaded portion. Consequently, we

should consider two cases according to dimension x;’s location of ¢ as shown in Figure

3.11.

3.2.5 CVA-file Algorithm

CVA-file algorithm has two phases(filtering and refinement) as VA-file does. In the first
phase, the approximations of data points are scanned linearly. The lower and upper bounds
are calculated in accordance with Equation 3.1. Because some dimensions are reduced, the
approximations for those dimensions have to be estimated in the way shown in Figure 3.10.

Then the candidates are obtained by filtering out the most of data points. The second phase

36

visits data points in the original data file based on the result of the first phase. Thereby the
final answer set are obtained. Note, these candidates are then visited in increasing order
of their lower bounds of the distance to the query point ¢. The CVA-file method stops
when the next lower bound exceeds k-th nearest distance obtained so far, The algorithm is

descried in pseudo code in Algorithm 2.

3.3 Performance Evaluation

In order to demonstrate that CVA-file method is an effective alternative of VA-file of skewed
datasets where search is meaningful[l1]. We evaluated the performance on synthetic as
well as real datasets. The VA-file, SR-tree and a simple sequential scan search structures
were evaluated. The synthetic dataset is generated under the assumption of Zipf’s dis-
tributed of data points. We selected color histogram provided online at the UCI KDD
Archive web site? as the real dataset.

CVA-file method distinguishes non-effective dimensions by checking the correspond-
ing bits in a header. A little more CPU time is needed in this checking process. However,
the comparing time of coordiantes between query point and approximations are decreased
due to omitted coordinates. As a result, there seems little significant difference in CPU
times between CVA-file and VA-file as shown in Figure3.12, We evaluated the perfor-
mance based on the number of page accesses,

Let N be the size of the D-dimensional data set, and b;(1 < d £ D) be the number of

*http:f/corel digitalriver.com/

37

Input:
query point g,
number of nearest neighbor k
approximation file cva- file
data file data- file
Output:
k-nearest neighbors ans.
Global variables:
QueueSortOnUpper Bound|-|, QueneSortOnLower Bound|].
CVA /-NN Search(g, k, cva-file, data-file)

begin
foreach approximation o; in cva- file
{Phase I: candidates are obtain by calculate bound}
li,u; «—getBound(ey, ¢) {using Eq. 3.1}
if I; < QueueSortOnUpper Boundlk]
QueveSortOnUpper Bound|k| — u;
sortQueve(GrueueSortOnll pper Bound)

InsertQueue(QueueSortOnLower Bound, 1;, 1)
endif
endforeach
foreach answer ansli](: = 1 : k)
{initialize the answer variable ans}
ansfi].dst — oo
endforeach
li, 1 — popQueue(QueueSortOnLower Bound)
while ; < ans.dst[k]
{Phase II: determine the final answer by calculating exact distance to query}
v; +— readfile(data- file, 1)
ans|k].dst «— dist{v;.q)
sortOnDst(ans)
li, 1 — popQueue(QueueSortOnLower Bound)
endwhile
end

Algorithm 2: &-NN search with CVA-file index structure. It consists of two phases(filtering
and refinement),

38

Time of NN-search(seconds)

64

T T y
GCVAile usertime —{—

5ok VAdfile user ime —i—

4.0
0 r
20}

1o

0.0

o] 16 24 ag 40 48 56 64
Number of Dimenstons

Figure 3.12: Comparison of CPU time.

bits of one dimension of an index entry. Let b be average of b;. Then the size of VA-file is
bdN. While, in CVA-file, the number of bits b, are assigned to each dimension. Let 7 be
the average number of effective dimensions and let the average of &, be I, then the size of

CVA-file is (¥ + d) N, This is smaller than the size of VA-file when

(mb' + d)N/bdN = (7l + d) /bd

In the simplest case in which we assign to each dimension the same number of bits as in

VA-file, namely & = b, the above expression is simplified to

(b + d)N/BAN = (@b + d) /bd

=mfd -+ 1/b

Since b is about 7 or 8 [38], that is, L /b == 0, the size of CVA-file is smaller than VA-file at

the rate of m/d. Since the number of page accesses in the phase one is in proportion to the

39

size of VA-file and CVA-file, CVA-file index mechanism vastly cuts down the number of
page accesses in phase one, This compensates excess page accesses in phase two because
of less tight bounds than VA-file.

Average number of effective dimensions m is determined by parameter e. When ¢
becomes smaller, the number of effective dimensions m is needed to be stored in index
file. When e is set to be the length of grid, the quality of bounds can be considered the
same as VA-file, the number of page accesses in the first phase is saved. Consequently,
no matter how far scatter the datasets are scattered, CVA-file method is never worse than

VA-file method as described in [16].

3.3.1 Real Dataset

We evaluated the performance on the real dataset of color images available from the Corel
Database Color Database (http:/corel.digitalriver.com/) and color histograms provided on-
line at the UCI KDD Archive web site (http://kdd. ics.uciedu/databases/CorelFeatures).
The size of the dataset is 70,000. 4,8,16,...,64-dimensional data peoints are extracted
from the dataset, The distance function is based on the Lp metric (Euclidean distance). and
page size of index files is 8K B.

As mentioned above, VA-file method scans the index of all data points to filter ont
candidates in the first phase in which data are accessed in the sequential way. This con-
tributes to gain the performance because the cost of sequential access is significantly lower

than that of random access which is used in the second phase. A factor of 5, that means

40

Table 3.2: Number of Page Accesses in Phase 2
Number of Dimensions | 4 | 8 | 16(32 | 40|48 |56 | 64
Number of Page Access | 14 | 18 | 21 (22|19 23|23 | 26

that random access is as five times slower as sequential access, is assumed in VA-file [38].
Having no hint on this factor, yet to compare with VA-file and KLT[22] approaches fairly,
we evaluated the performance in other ways.

Because the factor of costs between random accesses and sequential accesses is not
stable, we considered two extreme situations.

Firstly, we controlled CVA-file to have the same number of page accesses in phase
two (as shown in Table 3.2) for all three index structures (CVA-file, VA-file and KLT)
by tuning the parameter e, and compared numbers of sequentially accessed pages in the
first phase. As shown in Figure 3.13, CVA-file outperforms VA-file and KLT, The effec-
tiveness becomes significant as the dimensionality increases. For example, in the case of
64-dimensions, CVA-file needs a bit more than 200 page accesses, while KLT needs more
than 350 and VA-file needs even more. Meanwhile, Figure 3,14 shows the number of ef-
fective dimensions corresponding to the previous figure,

Secondly, as shown in Table 3.2, the number of page accesses in the second phase are
small (26 of less page accesses for 10-NN query). This tells us that the comparison of
total number of page accesses within two phase is meaningful, even if the factor 5 or 10
as mentioned above is taken into consideration. Figure 3.15 shows total number of page

accesses among SR-tree, VA-file and CVA-file in 10-NN query in various dimensionality,

41

[=2])
o
(=]

[41]
o
o

-
[=]
o

ha
[=]
E=]

Number of Page Accesses
— []
[=] o
(=] o=

=]

Number of Dimensions

Figure 3.13: Comparison of number of page accesses of the first phase in case of having
the same number of paper access in the second phase as shown in Table 3.2,

Number of Effective Dimensions

) a8 16 24 32 40 48 55 64
Mumber of Dimenslons

Figure 3.14: The Effectiveness of Dimensionality Reduction

42

v T
SRiIes = =3¢ -

GOQ | YMIe g "
KT - o
500 | VPAHs —i— -

Number of Page Actesses
o
(=1
«

0 B 16 24 az 40 48 56 64
Number of Dimensions

Figure 3.15: Comparison on four index structure(factor = 10)

For each dimensionality, the number of bits assigned to each dimension for VA-file is cho-
sen to 8 bits for 24 or less dimensionality and 7 bits for 32 or more dimensionality, These
decisions are made according to [38)] which concludes that this choice gives them the best
approximation file,

Our experiments measured the number of the most effective dimensions of CVA-file
structure, The average of the number of effective dimensions is shown in Figure 3.16.
The results indicates that there is a slight increase of the number of effective dimensions
in high dimensionality, Comparing to VA-file which is linear to dimensionality of the
dataset, our approach reduces the dimensionality to the number of effective dimensions,
which is significantly smaller than the original dimensionality. Furthermore, the effect of
the reduction becomes more remarkable as the dimensionality becomes higher.

Figure 3.15 shows the number of page accesses in various dimensions. We can observe
that CVA-file always outperforms VA-files, and it outperforms SR-tree and KL.T for high-
dimensional dataset. The margin increases as the number of dimensionality increases, For

the case of 64-dimension, CVA-file cuts down 2/3 of page accesses from SR-tree {[26]),

43

Number of Effective Dimensions
[#x]
[+

0 B 18 24 32 40 48 56 64
Mumber of Dimenstons

Figure 3.16: The Effect of Dimensionality Reduction (total factor = 1)

1/2 of pages accesses from VA-file, and 2/3 of pages accesses from VA-file in KLT domain,

3.3.2 Synthetic Dataset

As the dimensionality becomes high, the coordinates distribution has the tendency of Zipf’s
power as seen in Section 3.1. For creating dataset based on Zipf distribution, we use random
data for the coordinates which range over n partitions: [0.0, 1), [p1, P2}, s [Pa—1, 1.0). The

number of coordinates for each partition follows

PIX > 2] <z

where x is a lower bound of partition, and £ is a coefficient of Zipf distribution. The
bigger k& becomes, the more the number of coordinates having value nearly 0 becomes, We
assume k& = 2.5 and the coordinates percentage is shown Figure 3.17.

The number of dimensionality ranges over 8,16, ...,64. The coordinates range over

[0,1). We have seen in Section3.1, the length of partitions becomes smaller when dimen-

44

I

N

NN

0 a1l az al a4 as as az

Coordinate Percentage

i

 J

Coordinate value

Figure 3.17: Coordinate distribution following the Zipf’s power

sionality becomes higher. Thus the length of partition is assumed as follows.

0.01 dim = 8,16,24,32
length =

0.005 dim = 40,48,56,64

The number of synthetic data is 100,000 for all dimensional datasets. We assume that
CVA-file, VA-file/KLT domain and VA-file have the same number of page accesses in the
second phase. The number of page accesses in the first phase is shown in Figure 3,18, The

number of effective dimensions in CVA-file and KLT domain are shown in Figure 3,19,

3.4 Conclusions

We observed that Zipf distribution also observed in high dimensional real data. That is,
there are few dimensions whose coordinate values are large, and the most of coordinate

values are nearly zero. We proposed a data-wise dimensionality reduction technique, in

45

VAflD ...
TOOF KT e %' ,4

VAR ——h— ,-;l_/’
600}

Number of Page Accesses
o
L=
[=}

o 8 16 24 a2 40 48 56 &4
Number of Dimensions

Figure 3.18: Number of page accesses in the first phase(synthetic data)

£ B tn
& @ &

- N3
@ [5) BN
T T T

Number of Effective Dimensions
[4+]
5]

24 32 40 48 58 64
Number of Dimensions

o
o
mpk
-
[=]

Figure 3.19: Number of effective dimensions(synthetic data)

46

which less of information loss is needed by dimensionality reduction. An application of our
technique to VA-file implements another index file CVA-file. The performance evaluation
shows significant improvements on the /O cost of queries over original VA-file and VA-file
in KLT domain for several real datasets.

In the next chapter, we present a new dimensionality reduction technique, called Data-
wise Dimensionality Reduction(DDR), for time series data. This is to verify that tech-
nique of dimensionality reduction datawise can be applied to various high dimensionality
datasets. We show how DDR can be indexed nsing a multidimensional index structure.

Such an index can significantly reduce the I/O accesses for similarity searching in time

series dataset.

47

