Chapter 2

Approximate Retrieval of
High-dimensional data with 7,; Metric

by Spatial Indexing

This chapter describes a method of approximate retrieval in Ly metric space.

2.1 Introduction

Currently, multimedia data retrieval systems are mostly similarity-based. The cornmon
method is to extract the features (usually in the form of a vector) from each data in the
database and then to map features into points in a multidimensional feature space. The
distance between two feature points is frequently used as a measure of similarity between

the two corresponding multimedia data. Once the distance or similarity function is defined



for the multidimensional featore space, an approximate retrieval can be used to retrieve the
data that satisfy the criteria specified in a given query.

Many approaches of the similarity search assume that A suitable distance function is
known a priori. Euclidean distance is usually used for measurement[17]. However, it is
not trivial to define a distance function that best mimics human visual perception regarding
multimedia object similarity measurements. We propose a technique of approximation
retrieval in L; metric space.

We denote the sets of natural numbers and real numbers by N and R, respectively, Let
S be a finite set of objects {0y, 0,,...,0,} and D : § x § — A be a function which
gives the distance between objects, We call (S, D) an object space. A query is given as a
pair (@, h) of an object @ € S and a natural number h. The answer Ans(Q, h) to a query

(Q, 1) is the set of objects within distance h from (), that is,

Ans(Q,h) = {0; € S| D(Q,0:} < h}.

The above setting of approximate retrieval as Ans(Q, h) is very natural and general.
When (8, D) is a Euclidean space, most spatial indexing structures are almost directly
used to realize approximate retrieval. In many cases, however, uniess objects are inherently
geometrical like map information, object space is not Euclidean.

Here, we assume (.S, D) can be considered as a metric space based on discrete Ly (or,



Manhattan) distance, that is,
n
S (;_ Nn 8..11(]_ D(O,;, OJ) = Z |Osk) — O;_k)ll
k=1

where o,!"’ and O§k) are the k-th coordinates of objects O; and O;, respectively. Most of
the difference measures might be captured as a discrete L, distance. For example, a natural
definition of distance between objects consisting of several attribute values may be the sum
of the symmetric differences between each attribute values. This definition can be applied
to many sort of objects, such as, documents, digital images, and game boards.

We adopt R-tree [7, 23] as a spatial indexing/access method. As Chakrabarti pointed
out [13], R-tree can efficiently be used only for relatively low-dimensional objects. There-
fore, we have to map high-dimensional objects into a lower dimensionality. We can use
the FastMap method [18] by Faloutsos and Lin to project objects in Euclidean space into
a lower dimensional space. Since FastMap is based on orthogonal projection in Euclidean
space, we have to embed objects into a Euclidean space. However, L distance cannot be
embedded into any Euclidean space, in general. As we will see in Section 2.2, if we take
the square root of L, distance as the distance, the objects can be embedded into a Euclidean

space, In other words, if we define

D3(X,Y) = /D(X,Y),

(S,D%‘) can be embedded into a Euclidean space. If we appropriately map objects to



vertices of unit ng-cube, then the Euclidean distance between vertices coincides with the
square root of the L, distance between objects.

Here, we briefly explain the FastMap method. Consider a set of objects {O1, O, . .., Om}
in a Euclidean space, where d(0;, O;) gives the Euclidean distance between objects O; and
O;. Let take arbitrarily a pair (O,, Op} of objects, which is called a pivor. The first coordi-

nate X; of an object O; is given by

(4(Oa) 0:))* + (d(Oa, O3))* — (d(Os, O))*

X = E =
i= 0ol 24(0., O)

where [ is the image of O; by the orthogonal projection to the straight line 0,0, (Fig. 2.1).
Here, we should note that distances between objects are enough to calculate the coordinate
X; and any coordinates of objects are not necessary. Let O} be the image of O; by the
orthogonal projection to the hyper-plane that is orthogonal to the straight line 0,04, The

distance between O; and O is given by

(d(0}, 07))* = (d(0s, 0))" — (Xi — X;)".

Thus, we can repeatedly apply the above projection to get the second and other coordinates
of objects. One of the most important issues in applying FastMap may be how to select
pivots. Intuitively, the better pivot should provide the more selectivity in retrieval. Details
are discussed by Faloutsos and Lin [18].

Let p be an orthogonal projection to R¥0 which is obtained by FastMap, where (S, D) is
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Figure 2.1: Orthogonal projection to pivot line

the original object space and D7 is used as the distance function in applying FastMap. We
call R* the index space. Since p is an orthogonal projection, the distance between images
of objects in the index space is not larger than the square root of the distance between

objects, that is, d(p(Q;), p(0O;)) < D3(0;, 0;). For a query (@, h), we have
{Oi € 8 1d(p(Q),p(0:) < Vh} 2 Ans(Q, h).

Therefore, we can retrieve all the necessary objects even after reducing dimension by
FastMap. Such a retrieval is easily realized by using spatial access method like R-tree.
The result from the method may include irrelevant objecis to the query, which is caused by
FastMap projection. To get exact answer, screening might be needed.

From the experiments of our method, we observed that the image of the query range in
the index space R*®, which is naturally considered as a kO-sphere with radius h3, is too

large to get all the necessary objects. Precisely, we can prove
{05 € 8| 1PM(Q) — p*HO)| < Mhforallk=1,...,ko} D Ans(Q,h),

where p*{0) is the k-th coordinate of the image of O in the index space and Ak is a
constant which is usually much smaller than 1. Thus, the query range of kg-box, which
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is smaller than the ko-sphere, is enough to retrieve the correct answer. This phenomenon,
which is derived from the combination of our object embedding into unit fp-cube and
FastMap, will be theoretically explained as the contraction of query range by FastMap in

Section 2.3.

2.2 Embedding L; distance into Euclidean space

Theorem 1 For any object space (S, D), (S, D3%) can be embedded into Euclidean space.

Proof Without loss of generality, we assume that S = {O,...,0,,} C N™ Foreach
k=1,...,n, we use a bit vector of length b, where by = max{OEk} |i=1,...,m}and
map the k-th coordinate value v to up, (v) = 1"0%", which is a bit vector such that the first
v bits are 1 and other bits are (). Here we identify bit vectors and bit strings. For each object
0;, we map O; to a bit vector w(Q;) = wuy, (O, (O} -+ -2y, (O). Clearly, for any
ke {0,...,n}and any v,v' € {0,..., 0}, (d(up (v), 2, ())))* = |[v - o/|. Therefore,
d(u(0:),w(0;)) = D%(0;, 0;). Thus, we can embed (S, D) into unit ng-cube, where

ng=by+ -+ ba n

For example, consider points 3(0,0), A(0, 1), B(0, 2}, and C(1,1) in z-y plane as in
Fig. 2.2. Distances between these points based on Ly metric are D(0, A) = D(A,B) =
D(A,C) = land D(O, B) = D(0,C) = D(B,C) = 2. Aslong as using [ as the metric,
A should be on the straight line OB and O, B, and C should make a regular triangle no
matter what embedding is used. The height of regular triangle O BC is the square root
of 3, which contradicts to D{A, C') = 1. Thus, there is no Euclidean space where these
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Figure 2.2: Embedding L; distance into unit ng-cube

four points are embedded keeping the metric as it is. The maximum values of z and y
coordinates are 1 and 2, respectively. Therefore, we map each point to a bit vector of
length ng = 1 4- 2 = 3. We can regard the first bit as representing if the & coordinate is
equal to 1, the second as if the y coordinate is greater than or equal to 1, and the third as if
the y coordinate is equal to 2. Clearly Euclidean distances between bit vectors are equal to
respective L) distances between points in z-y plane,

From Theorem 1, we can apply FastMap to (S, D%), which is embedded in Euclidean
space of ng-dimension. Here we should note that only distances between objects are suffi-
cient for applying FastMap and actual values of coordinate in the Euclidean space are not
necessary. Thus, the dimension ng of the Euclidean space, which may be quite larger than

that of the original object space, does not the matter when we use FastMap.

2.3 Contraction of Query Range by FastMap

From Theorem 1, we can assume that every object is a vertex of a unit ng-cube and the
value of each coordinate is O or 1, As shown in Figure 2,.3(A), let B, be the vector between
two objects used as the first pivot for FastMap. Let € be a unit vector of any coordinate in
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‘R™, Then the length of the image of & by orthogonal projection to the first pivot is given

by

Since every component of F; is either —1, 0, or 1, the inner product €' B is also —1,

0, or 1. Therefore,

& B <L

\B] T A

Let define ), as the right side of the above inequation. Consider two objects O and Oy
such that D{O;, Oz} = h and a vector ¥ between O; and O,. Clearly, exactly h components
of 7 are —1 or 1 and all the other components are 0. Therefore, the length of the image of
7 is less than or equal to A)y. Since |By| is usually larger than 1, M is relatively small. For
the second and other projections by FastMap, similar phenomena can be derived.

Because the pivots(ﬁo, 15'1, ooy P;,) are not perpendicular to each other, from the second
pivot £y, the pivots should be projected on the hyperplane consisting of previous pivots.
Assume Hj is the hyperplane perpendicular to B, 131’ is projection of P, on the hyperplane
Hy. Analogically, H, is the hyperplane perpendicular to ﬁ{ (Note; not Py) in hyperplane
Hy, and 15'2’ is projection of B, on the hyperplane H,. As a result, the pivots B, f:"i', }3'5,
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Figure 2.3:_Contraction in index space. (A) shows a unit length of vector contracted in

first pivot B, (B) shows the second pivot )2 projected on the hyperplane Hy which are
perpendicular to B

are perpendicular to each other, They can be calculated as follows. Firstly, the image of P

by orthogonal projection to B is

P-B B BB 5
1By 1B |Bl?

By = 8(1,0) A

B3(1,0) is a sign coefficient. Its length is the length of projection of B, to Fy. Tts sign is plus

if the image of }31 has the same directory with 15'0, is minus for otherwise.

ﬁfzﬁl-—ﬁ(l,{))ﬁg

The projection of second pivot can be calculated by By and 13{.

162’ = 132-—,6(2,1)13'{——,6(2,0)150

= P~ B2, 1)B — (B(2,0) — A(2, )AL, 005
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In generally, assume G(k, 1) is coefficient of P, projecting to }_’;" .

where the coefficient y(k, 1) of pivot is defined as.
k—1
vk, 8) = Bk, 1)~ Y Bl D)Y( D)
i=I+1

Finally, as for the length of the image of a unit vector € by the k-th orthogonal projection

of FastMap, we have the following upper bound Ak.

& Bl 1+ T i)l _

BT B a

Theorem 2 For any query ((, h) and any FastMap p,

{Of €S | |p(k)(Q) - p(k)(ol)i Shhforallk=1,... :kﬂ} = ATLS(Q,h)
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Figure 2.4: Contraction of Query Range by FastMap

The answer Ans(Q, i) to a query (@, h) is given as a set of objects within a ng-sphere
whose center and radius are ) and hi, respectively, where D= is used as a Euclidean
distance, which we call a query range. Since a mapping p obtained by FastMap is an
orthogonal projection into Euclidean space, the image of a query range by pis a ko-sphere
of the same radius A7 in the index space, On the other hand, Theorem 2 says that all the
objects in Ans(Q, h) are projected by p into a k0-box whose center and radius of the k-
th coordinate are p(@) and Ay, respectively. Here we should note that the constant Ay is
usually much smaller than 1, and therefore, the ko-box has a smaller volume than the ko-
sphere for relatively small . Let Ag = max{A; | 1 £ k < ko}. Then, the volume Vp
of the kp-box is less than or equal to (22gh)*. On the other hand, the volume Vs of the
ko-sphere is Cj, h1% where C, is a constant determined by r and C, > 1 forany r < 12.
Therefore, Vy < Vg whenever 2}, < 1 and kg < 12. Although this estimation is very
rough, in many cases we may expect the contraction of query range by FastMap, which is
illustrated in Fig. 2.4. Since the square root of h is used as the radius of kg-sphere query
range while Ayh is used for ko-box, as low as possible dimension should be selected to get

much effect of contraction of query range by FastMap.,
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2.4 Experimental Results

— Approximate Retrieval of Japanese Chess Boards

In this section, we give a brief summary of the experiments in applying our indexing
method to retrieval of Japanese chess (Shogi) boards analogous to given one from 40,412
boards drawn by 500 play records.

Shogi uses 40 pieces of 8 sorts and reverse side of 6 sorts of pieces. A Shogi board
consists of §x 9 = 81 positions, each of which may be possessed by one of (8-+6)x 2 = 28
sorts of pieces, and two sets of captured pieces, which is a subset of 38 (all but 2 Kings)

pieces.

2.4.1 Distance between boards

For each position, we define the difference between two boards O; and O; depending on
what pieces are each on the position. When two positions are the same, that is, they have the
same piece or both of them have no piece, the difference is 0. When one has a piece and the
other has no, the difference is 1. Otherwise, they have different pieces and the difference
is defined as 2. For captured pieces, the difference is the sum of the symmetric difference
of the numbers of pieces of each sort. We define the distance .D(0;, O;} as the sum of
differences for all positions and captured pieces. Note that the largest possible distance
between boards is 80 because all 40 pieces should be put on some position or included in

captured pieces,
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By using 28 bits for each of 81 positions and 38 bits for each of two sets of captured
pieces, we can put Shogi boards in a unit hyper-cube of 28 x 81 + 38 x 2 = 2,344 di-

mensions, where the distance D(0;, O;) is given by [ metric. Thus, we can regard Shogi

pieces as object space.

24.2 FastMap projection and R-tree spatial indexing

FastMap projection was applied to 40,412 Shogi boards to reduce the dimension of boards
and efficiently utilize R-tree spatial indexing. Selection of pivot for each step of FastMap
was done by randomly choosing 500 candidates and selecting one that maximizes the vari-
ance of coordinate values. As for the dimension &y of the index space, we adopted 5, 7, and

10. We used off-line packed R-trees [25] based on Hilbert space filling curves [12, 20].

2.4.3 Effect of contraction of query range by FastMap

After projecting boards by FastMap for each ky = 5, 7, or 10, we measured the maximum
lengths of the image of a unit vector in unit hyper-cube on each coordinate in index space,
which are between 0.12 and 0.21. On the other hand, Theoretical bounds derived from The-
orem 2 are between 0.12 and 0.25. The gap between actual measurements and theoretical
bounds seems to suggest that there are no worst combinations within current Shogi boards.
Since the maximum possible distance between boards is 80, the lower bound of A, is given

by



Table 2.1: Elapsed time of retrieval

ko h=0 h=2 h=4 h=6 h=28
5 (.0098 (0.0301 0.2351 0.8642 1.8316
7 0.0097 0.0452 0.2326 (.8384 1.8104
10 0.0134 0.0682 (.2549 0.8720 1.8983
none | 1.9303 2.3000 2.4301 24517 2.5608

foreach 1 < k& < ky. From this, we observe that query ranges are contracted into relatively

small kg-box by FastMap projection,

2.4.4 Approximate retrieval of boards

Finally, we made experiments of retrieval of boards analogous to given one by using R-tree
index. For boards given as the centers of gqueries, we randomly selected 700 boards from
40,412 boards. For the radius of queries we gave h =0, 2, 4, 6, 8. Retrievals in case i =
0 are exact ones. The averages of elapsed time for retrievals are summarized in Table 2.1,
where the column “none” represents the average time of retrieval without indexing. From
Table 2.1, our indexing are efficient for small radius. Within 5, 7, and 10, the best for the
dimension kg of index space is 7 for all radiuses.

As mentioned in Section 2.4, the lower dimension is desired for contraction of query
range. For example, let Ag = max{M | 1 € k £ ko} = 0.25, which is consistent with
our experiments. The volume Vi(ko) of ko-cube with radius Aok and the volume Vs (ko)
of kg-sphere with radius hi are given by Va(ks) = (ZAORY® and Vi(ky) = Croh3®,
respectively, where Cs = &2 = 5.26, 7 = 3&n® = 4.72, and Cyy = n° = 2.55.

These volumes are summarized in Table 2.2. From this, Vg is larger than Vg for all cases
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Table 2.2: Hyper-box vs. Hyper-sphere as Query Range

VB VS
KO h=21h=4| h=6 h=8|h=2 | h=4| h=6| h=8
5 1 32 243 1024 298 168 464 052
7 1 128 | 2187 16384 53.4 604 { 2497 | 6835
10 1 1024 | 59049 | 1048576 81.6 | 2611 | 19829 | 83558

of h = 8 and a case of b = 6 and kg = 10, which may in part explain the tradeoff between
the dimension of index space and elapsed time of retrieval.
The tradeoff also may be explained by a nature of R-trees. In other words, higher

dimension of index space gives more precise image but more difficulty in spatial indexing

by R-tree.

2,5 Concluding Remarks

We have proposed a method for approximate retrieval by using spatial indexing/access
method like R-tree, where dissimilarities between objects are measured by L, distance. As
Theorem 1, we proved that objects with L, distance can be embedded into a Euclidean
space preserving the square root of L; distance as distance. In Theorem 2, we pointed
out that contraction of query range by FastMap can be expected when our embedding is
used. Although the experiments on approximate retrieval of Japanese chess boards seem
to suggest that our method can be successfully applied to many other cases, we should run
experiments in other natural applications of our method to analyze its applicability.

In the next chapter, we introduce the CVA-file technique which is a compact version
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of VA-file. The distance function except Euclidean distance is also available. CVA-file is
a novel technique of dimensionality reduction, It can break the “curse of dimensionality”

arisen in indexing high dimensional datasets.
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