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ABSTRACT

INDEX METHOD BASED ON DIMENSIONAL
REDUCTION

High-dimensional data, such as documents, digital images, and audio clips, can be con-
sidered as spatial objects. The distances in a feature space between two objects measure
their dissimilarities, and, the spatial indexing/access method R-tree [23] and its family on
the space can be applied to the problem of the approximate retrieval. However, how to
define the distance function is an important problem in high dimensional datasets. Though
Euclidean distance {L5) is commonly used, in some cases the metric other than L, is more
appropriate for describing the feature of the data. However, except for Ls distance func-
tion, spatial index method R-tree and its family are not applicable, because they are based
on Buclidean space. In this dissertation, we propose a way to map L, metric to a Euclidean
space, then R-tree is applied to the Euclidean space.

In many applications of dimensional datasets, such as, content-based retrieval, similar-
ity search and data mining for time series, the space in which objects embedded has usually
high dimensionality (llundreds - thousands). Most dimensional index structures proposed
so far do not practical beyond 10-15 dimensional spaces because of so-called *dimension-
ality curse’. The effectiveness of R-tree is based on pruning most of branches at every
level of a tree. Although the random access used in the R-tree scheme is less effective than
the sequential access, its defect is compensated by discarding unnecessary data. However,

when the number of dimensions becomes higher, the overlapping between branches of a



tree increases rapidly, and most of branches are needed to be accessed. As aresult, A sim-
ple sequential scan through the entire dataset to answer the query is often faster than using a
tree dimensional index structure. To break the curse of dimensionality, The 2-step retrieval
method VA-file [38] was proposed. In this scheme, a compressed data is scanned linearly in
the first phase and a small set of candidates are extracted. In the second phase the answer
is picked out with relatively fewer accesses to original data file, VA-file is based on the
effectiveness of the sequential access, and it has extremely good performance in uniformly
distributed data. However, by observing the real high dimensional datasets, we found that
their coordinates histograms have tendency of Zipf's distribution, In this dissertation, a
Compact VA-file (CVA-file) is proposed to make VA-file adapted to various kinds of real
dataset.

Because of the sparseness of high dimensional space, data mining for high dimensional
datasets is a challenging work. Because it is difficult to analyses the order of scattering
of data in a high dimensional space, visualization in which data are mapped into 2 or 3-
dimensional space, is an efficient method. Most visualization methods proposed so far use
a fixed target space where end-user can see the distribution of data from only one view-
point, In these scheme, It frequently happens that since many distinct clusters are mapped
into one large area, user cannot distinguish each cluster though the visual image. More-
over, Methods based on Principal Component Analysis(PCA) consume a large amount of
computation time. However, for large dimensional datasets, the linear time complexity is

disable. We develop an interactive visualization method by using a novel mapping method
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called HyperMap. By tuning parameters, the order of scattering of data in target space can
be changed. End-user can extract clusters in the step-by-step fashion. Furthermore, Hyper-

Map algorithm has the linear time complexity. Its effectiveness is confirmed by synthetic

and real dataset.
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