4 Theorems on Double Eigenvalues and Their Compu-
tations

[t is well-known that three-term recurrence relations with two parameters often arise
in solving the zeros of special functions and the eigenvalue problems (EVP) of differential
cquations. One class of recurrence relations, which we define and focus on in this section,
covers those obtained from solving (A) the zeros of J,(z) (where J,(z) denotes the Bessel
function of the first kind of order v); (B) the zeros of zJ.(2) + HJ,(2}; (C) and @ the EVP
of the Mathieu differential equation; and (¢) the EVP of the spheroidal wave equation.

[t is shown that two types of eigenvalue problems for infinite complex symmetric tridi-
agonal matrices defined in this section are each equivalent to a two-parameter problem of
recurrence relations of a certain class. Applying Theorem A and Theorem B to such matrix
elgenvalue problems turns out to give a good method for obtaining approximate eigenvalues
with good accuracy. This topic will appear in Section 4.2.

Furthermore, based on the newly proved theorem guaranteeing the necessary and suffi-
cient condition for eigenvalues’ being double, we propose an algorithm for the computation
of double eigenvalues by a combination of Newton’s method and Theorem A or B. This will

be discussed in Section 4.3.

4.1 Setting of the Problem

"T'he recent study shows that one of the effective ways for solving certain problems of
special functions is to reformulate given infinite three-term recurrence relations, usually
derived by the expansion of the related function by orthogonal basis, as eigenvalue problems
for infinite matrices.

Ioxamples are the computations of:

(A} the zeros of J,(z) (13],[15],

(B) the zeros of 2J}(z)+ H J,(z) (with H constant and “’ " representing the partial

derivative with respect to z) {7],
(C) and ® the eigenvalues of the Mathieu differential equation [13],[21],

(© the eigenvalues of the spheroidal wave equation [22].

Although the three-term recurrence relations obtained from these problems are different in

their forms, they had given the author the feeling that they have much in common. Besides,
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Theorem A and Theorem B are applicable to all those reformulated matrix eigenvalue prob-
lems, which show the methods for obtaining approximated eigenvalues with good accuracy.
In this section, considering the fact that these 4 problems have been handled individually,
a class of three-term recurrence relations is set up which covers all these cases and apply
3 powerful theorems, or Theorem A, Theorem B, and Theorem C. Also note that the class
defined here is the subset of the one which Theorem A or Theorem B may apply. That’s
why the computation of the zeros of the Coulomb wave function Fr(n, p) is not in the above
bist although it may be applied by Theorem A

Hypothesis] Consider the three-term recurrence relations with two complex parareters

o and A of the following type:

) diys + fayr = A,
| St diye + frmpens = A (b =2,3,...),
where
dn = Qn+by-pns#£0Mm=12..),
fn = Cn',u'?éo (HZQ,S,-..),
and an, bn, and ¢, are constants independent of p and A, and of the forms

ar, = an®[1+o(1)] (n — o0), a #0, a > 0;
ool Sconst= B (n=1,2,...); 0# ¢, = C[1 + 0o(1)] (n — 00),

and assume that {y} (k = 1,2,...) is the minimal solution of (4.1.1) and not the trivial
solution, or y = (g1, 2,...]7 # 0. Given these settings, the author tackles the solution of the

following two problems:
e Problem 1: Solve A satisfying (4.1.1), given a parameter p # 0

o Problem II : Solve p # 0 satisfying (4.1.1), given a parameter .

4.2 Reformulation into the Eigenvalue Problem for Infinite Com-

plex Symmetric Tridiagonal Matrices

In this section, the author focuses on the reformulation of the two-parameter problem of
three-term recurrence relations (4.1.1) into eigenvalue problem for an infinite matrix, and
also on the proposition of the method for computing approximate solutions of Problem I

(and IT). First, let the behavior of the solution of (4.1.1) be analyzed, applying Theorem C.
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4.2.1 Analysis of the Behavior of {y,} Using Theorem C

First of all, consider the three-term recurrence relations having the same coefficients a:
(4.1.1), or
(421) { diwt + fowz = dwy,

frwp—y + dpwp + frmwes = Adwg (B=2,3,..)),

It has to be shown that (4.2.1) satisfies all the conditions on Theorem C. Transforming
(4.2.1) into the form of (2.3) gives

(4-2'2) Wn 1 +ﬁnwn + 6nwn~1 =0 (n = 2: 3: = ')»
where
- dn — A oy
P = = Zn®[1 +o(1)] = 1 +0(1)] (n=2,3,... = co),
fn+1 Clb
0 £ = =1 oft) = oL +o(D)] (0 =23, o0),
n+1

with p == a/(cp) #O,P=a € R §=1#0,0 =0€ R, and 2P = 2o > 0 = (. Since the
conditions {2.4) are satisfied, Theorem C may apply. Therefore, it is guaranteed that (4.2.1}

has two solutions {w,,} and {w, 2} with the behaviors

(4.2.3) Skl o @ opany g o1)], S22 o e 4oo(1)) — 0 (n — 0o).
Wt Clt Wn,2 a

Now, taking into account the condition in Hypothesis that “ {y,} is the minimal solution

of {4.1.1)", one is given the behavior of {y,} in (4.1.1) as:

(4.2.4) Yntd T2 %p-a] 4 6(1)] = 0 (n — o).
Un wn,i.’ a

4.2.2  Applying Theorem A and B to Problem I and II

Let (4.1.1) be reformulated as eigenvalue problems for an infinite matrix fiest. The
definitions of d, fey1, 9k (6 = 1,2,...) and g, ) appearing in the theorems are all retained
in Hypothesis. Here comes the theorem proving the equivalence between Problem I and
the eigenvalue problem stated below:

[Theorem 4.2.1] Let complex p # 0 be given. Then, the problem of finding A in (4.1.1) is

€quivalent to finding an eigenvalue A of the next transformation

r -

di fz 0
d
(4.2.5) roo | B2 . D(T) — &,
fs ds
L. 0 .

D(T) = {[?)1,’1}2, .. .]T . [dﬂ)l,dg'ljg, < .]T S £2}
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Moreover, letting an eigenvector of T corresponding to A be 0 £ye? or
(4.2.6) Ty = Ay,

one finds that y is a non-zero scalar multiple of

(4.2.7) y = [y, T € D(T) C

‘Proof] To begin with, “Problem I = the eigenvalue problem of (4.2.6)" shall be proved.
(4.2.6) is easily obtained by rewriting (4.1.1) into matrix form. Then, what is to be

proved is only 0 # y € D(T). From the condition in Hypothesis, y # 0. Next, y € D(T) or
ldyyi |+ Jdoysl® + - -+ < o0

needs to be proved. For this, it suffices to show

dn-}- 1 .2' - l

n Un

R = nlinoxosup < 1,

from [0, Theorem 8.25]. Recalling the behavior of 3,1 /4, by (4.2.4), one obtains B — 0 < 1,
leading y € D(T).

Next, the proof for the converse, or “the eigenvalue problem of (4.2.6) = Problem I
should be in order.

Letting the eigenvalue of T defined in (4.2.5) be A and an eigenvector of T corresponding
to Abe 0# y= [, 0. .J7 € D(T) C £, one is given §, — 0 (n — o) (since, otherwise,
y & &% is easily derived). With the expansion of T3 = Ay, the three-term relations with the
saumne coefficients as (4.1.1) are given, which has two independent solutions. However, it is
clear that only the minimal solution {w, 2} of (4.1.1) satisfies wa2(= .} — 0 (n — oc).
Namely, one can write y as y = ty (¢ # 0). §

In succession, now the reformulation of the problem II is done:

[Theorem 4.2.2] Let complex A be given. Then, the problem of finding p # 0 in (4.1.1) is

equivalent to finding an eigenvalue 1/p of the next transformation

P d, fz 0 |
7
(4.2.8) A = & 2 {3 L 2 — 0% where
fa ds
L 0 o

= ,\"%“&’“ (i=1,2,...) = 0 (i - 00),

G
\//\—a,v_l\//\—ai

o,

(1=2,8,...) =0 (i — o0}

T
i
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Moreover, letting an eigenvector of A corresponding to 1/u be 0 # x € €2, or

1
(4.2.9) Ax = —x,
7
one finds that x is a non-zero scalar multiple of
(4.2.10) x = {21, 22, . |7 = [VA = a1y, /A — agys, .. .|T € £,

(Proof] To begin with, let’s prove “Problem II = the eigenvalue problem of (4.2.9)”.
first the case of A # a; (1 =1,2,...). From the three-term relations (4.1.1), (4.2.6)

o +bip op 0 |
Copp ax+byp  cap
capt a3+ bap
0 .

is derived. With p 5 0, one can also obtain

by ¢ 0
2 by o 1
{(4.2.11) y = —-diag(A-a;,A—ay,...)-y
Cs b3 - #
L 0 wd

by the transformation of the matrix equation, where diag(sy, 82,...) denotes an infi
agonal matrix having s, s, ... as its diagonal components. Also, operating diag(1/+v/
I/V/A = ay,...) from the left on both sides of (4.2.11), one can get (4.2.9). From
sumptions A # a;(¢ = 1,2,...) and y # 0, x # 0 is obvious. Therefore, what is lef
proved is x € #2. This is true because nlg{)lo SUP |Znt1/2n] < 1 is easily assured.

On the other hand, take the case where A\ = a;, holds for some natural number k. -

up the k —~ 1,k k + 1th lines of (4.1.1) gives

(4.2.12) See1Wr—z Fdieryi1 + fryr = Ay,
(4.2.13) Jete-1 + deye + feriYerr = Aui, and
{(4.2.14) Fev1¥ + dir1¥rer + ferolrgz = AYr+1-

Since A = ay, (4.2.13) is rewritten as
CrYrk—1 + OxYr + Cry1¥Ure1 = 0.
Supposing b;, # 0, one gets

Gk, G
Yr bkyk—l b B41
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Substituting this into (4.2.12) and (4.2.14) yields

2
¢ Ck
(4.2.15) Je—opez + {ak_l + (bk~—1 - b—f) #} Yr—1 ™ "%:ifkyk-{-l = MYk,
2

) Ck C
{4.2.16) “'b“k“karlykml + {ak+1 + (bk+1 - ‘"gf"l") #} Yer1 + fesoUhez = Ayl

If one regards the first to k — 2th relation of (4.1.1), together with (4.2.15), (4.2.16), and the
relations later than the & + 2th lines again of (4.1.1) as newly defined three-term relations,
one can take the same procedure as the last case where A # a; (i = 1,2, .. ). If there still
exists another [ which satisfies axy = X = a; (I # k), you redo the same process. Note that

this is finished in a finite number of times, considering the behavior of a, (n = 1,2, .. ).
On the contrary, suppose b = 0. By (4.2.13), 41 = _Esf_fykmi is derived. Computing

(4.212) X fra1— (4.2.14) X fr, with yeyg = —=Z—ye_; gives
Cr+1

(4.2.17) fre1Ciatk-a + {(ak+1012c +ak-16k41) + (brsrch + bkmlci-{-l)ﬂf} Yi-1

2 9
—fhroCha1CrYt2 = My + ) VUk-1,

which is composed of yg.2, yx-1, and yy.o terms. By regarding the first to k- 2th, (4.2.17),
and the equations later than the & + 2th of (4.1.1) as new three-term relations, one only has
to apply the same procedure as A # a; (i = 1,2,...) case.

The proof for “the eigenvalue problem of (4.2.9) = Problem II”.

Take first the case where 0 is an eigenvalue of A. Then, assuming the corresponding
eigenvector to be u = [uy,uy,...JT € £2 gives the equation Au = 0. u = 0. Expanding this

gives

biuy + cous = 0,

(4.2.18) Crtk-1 + brug + Crrrurr = 0(k=23,.. ).

Under this setting, we shall show that the solutions {u;} (i = 1,2,...) can’t be the

solutions of (4.1.1). (4.1.1) is transformed into

ay + by — X
‘l—m——"yﬁ"czyz = 0,

G+ bgp — A
(4.2.19) Crlfr—1 + —k”‘“—;g—*yk + erayrir = 0(k=2,3,...).
One will find that A = a; for & = 1,2,... have to hold, in order for the coefficients of
u; in (4.2.18) and the counterparts of y; in (4.2.19) to be the same. This, however, turns
out to be impossible since ax —+ oo (k — 00). This means that if 0 is an eigenvalue of

A, the solution {u;} (¢ = 1,2,...) can’t be a solution of (4.1.1). Thus, you may have the
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eigenvalue of A defined in the form of 1/y, and successively, let x € #2 be an eigenvector of A
corresponding to 1/p. Defining also Z; (i = 1,2,...) by x = W a1, VX = agi,, . ] e ¢
gives directly Z, -~ 0 {n — 00), since lﬂ| — 00 (n — o0). Expanding Ax = (1/u)%
vields three-term relations with the same coefficients as (4.1.1) which have two solutions in
{4.2.3). However, the only minimal solution, {w, .}, satisfies Wna(= o) = 0 (n — o0).
Therefore, one can write x = &x (£ # 0). g

Thus, Problem T'and I1 were successfully reformulated as the problems for the computa-
tions of eigenvalues for infinite matrices. In the following Theorem 4.2.3 and Theorem 4.2.4,
the benefits by the application of Theorem A and Theorem B into (4.2.6) and (4.2.9), are

nnvelled.

[Theorem 4.2.3] Given p # 0, assume that A # 0 is a simple eigenvalue of (4.2.5), y¥y # 0,
and T7! exists. Then, for each n, if one properly takes A,, one of the eigenvalues of T,, and
T, is the nth principal submatrix of T, one has A, — . Furthermore, the following error

estimate is valid:

(4.2.90) A=A = HYIEL 4 6(1)] < 0 (- 00)),

Yy

[Proof] It suffices to prove that the problem (4.2.6) may be applied by Theorem B. Then,
one only has to show fr1¥n+1/¥n — 0 (n — 00). In fact, fui1¥ns1/yn — 0 (n — co) since
Ynit/Yn — 0 {n — 00) is guaranteed by (4.2.4). The substitution of each component of T,y
into (2.2) gives (4.2.20).

[Lemma 4.2.1] The condition “T~! exists” in Theorem 4.2.3 can virtually be rid.

[Proof] Let it be proved by showing that (T + oI)~! exists with « taken appropriately.
Namely, let us show that one always can choose « such that none of the Gershgorin Discs
for T -+ al includes the origin. With the facts that the center of each Gershgorin Disc d.
behaves as dy, = an +bo - p (0 = 1,2,...), 8, = an®(1 + o(1)] — 00 (n — oo), and that
the radius of each disc is bounded, it is enabled that all of the discs of T + oI with « thus
taken are situated over the real axis of the complex plane (or below, depending on a). More

concretely, « shall be taken as

a = sup {(1 —sign(Img?Ed,-) - Img(a)) |Img(dz-)|} +¢e +2C,

1i=1,2,..
where £ > 0,C is the upper bound of |c,| (or |ea] < C). §

[Theorem 4.2.4] Given )\, assume that 1/ is a simple eigenvalue of (4.2.8) and x"x # 0.
Then, for each n, if one properly takes 1/u,, one of the eigenvalues of A,, and A, is the

nth principal submatrix of A, one has tn — p. Furthermore, the following error estimate is
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valid:

2
oy & ngn
(4.2.21) o i = =~ I o1 0 (n — c0)).

X X

[Proof] What is required to show is that Tnt1/Tn are bounded for sufficiently large n, in

order to guarantee that (4.2.9) may be applied by Theorem A. It has been proved that Ty # 0

for sufficiently large n, when

Tl
- -+ 0 (by (4.2.4)).

2 — (A~ an+l)y1?a+1
(A - an)ygt

Applying Theorem A gives

(L0) ~ () = Lo08ndniiny oy,

X X
Cntl . \/)\ _— U»nyn\/A — Qn+1¥nt1
_ VA= /A — i - [1+ o(1)].

This eventually turns (4.2.21). g

4.2.3  Acceleration of Approximate Eigenvalues (for b; = 0 (i=1,2,...) Case)

Consider the case where b; = 0 (1 = 1,2,...) are satisfied in Hypothesis, or all the
diagonal components of A vanish. Taking advantage of this fact, we show that one can
compute approximate eigenvalues for Problem IT with better rate of convergence. Such a
case subsumes (A) the zeros of J,(2), (B) the zeros of 2J(z) + HJ,(z), (C) and ® the
eigenvalues of the Mathieu equation of cesn,, sear, types.

In Theorem 4.2.2, the substitution of b; = 0 (i = 1,2,.. Jor d; = 0 {i = 1,2,...) into
(4.2.9) gives

o .
1 f2 0 fs

(4.2.22) Ax = —-x, A= : ,
1 fz 0O

| 0 R

where f; and x are the ones defined in (4.2.8), (4.2.10). Then,
Lemma 4.2.2] The eigenvalue problem of (4.2.22) is equivalent to the two eigenvalue prob-

lems for the compact matrices U, V defined below:

1
(4223) Ux; = /?Xl, where
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B fafs 0 zy
FEomLm fF
4200 U = fafs fa~ ~f4 ~2f4f5~ Pl = T3 e
fafs  FE+f3 Z5
0 - -
(122:)) Vxy = 7 X2, where
2
B f R 0 o
Bfe R fE 0 fef. .
oy v - | P St Sl PP = | e
fsfe 8+ 13 6
0
[Proof] A%x = ;%‘QX is easily derived from Ax = %Lx, where
0 o |0 f 0 3 0 hfa 0
N f2 0 fa Lo 0 fy 10 R 0 fafs
fs 0 fs 0 fafs 0 B0
0 |0 0 fsfq 0
Expanding A%x = ﬁgx and reformulating in matrix form from the set of odd- and even-

numbered relations give the new eigenvalue problem for U, V each. §

[Lemma 4.2.3] The following relation is valid using x; and x; defined in Lemma 4.2.2:
x’lrxl = ngQ.

iProof] Expanding (4.2.22) gives

1
L,

1
=T (k = 2,3, o )
M

fzﬂ?z
feZTi-1 + fee1Trat

Multiplying (—1)'2; on both sides of the {th equation (! = 1,2,...) and adding them up
derive

LHS =0, RHS

1
O R B

Therefore, 23 + 2% + 2 + - =z} + 22 4+ 2% + . Namely, xTx; = xIxp. §
[Lemma 4.2.4] Assume in the eigenvalue problems (4.2.23) and (4.2.25) that 1/u® are simple

eigenvalues and x] x; (= x3x2) # 0 holds. Then, the rate of convergence for approximate

eigenvalues of (4.2.25) is faster than those of (4.2.9), (4.2.23).
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[Proof] Let us skip the discussion that the rate of convergence for (4.2.9) is the slowes
among the three since it’s obvious by the formulas. Let the approximate eigenvalue by
the eigenvalue problem of U be f,, and likewise, the one of V be fi,. It suffices to shov

(= )/ (i = i) — 0. Applying Theorem A, one finds that each of the error estimate for

{.‘ln}: {#'jﬂn} 15

PO
- H f2nf2n+lx2nu—l$2n-i-1
o fon = = T ,
xl X]
3z -
. H f2n+if2n+2$2n$2n+2
K= Hn = "’“"é" ' T .
x2 x:g
The computation of (i — f,) /{1t — fin) leads
N T -~ ~
I_'_{‘:i.un o Xn X2 f2n+2$2n$2n+2 . f2n-+2$2n$2n+2 T T
Rl CRC I ‘ S (by x1 x; = xJ x4)
! Hn X)Xy f2n$2n—1~'1f2n+1 f2n.$2n—-l$2n+1
. (Cﬁniﬂ) . ( A— Aan ) . ( Yon Yont-2 y ()
Con A — A2n41 Yan—1 Yont .
- A— o Un-
(4.2.27) (L_W___IL < const by |an| — 00,and 4L (n— o00) by (4.2.4)).u
i-’\ ™ G2n41 Un

4.3 The Computation of Double Eigenvalues
4.3.1 The Theorems on Double Eigenvalues

[n this section, let us regard p and A in (4.1.1) not as parameters (as previously set)
but as variables and discuss the pairs (i, \) which satisfy dA/dg = 0 or dp/di = 0. It will
be soon proved that d\/dpu = 0 is equivalent to an eigenvalue of A being double (Likewise,
dp/dA = 0 is equivalent to an eigenvalue of T being double). This implies that Theorem
4.2.2, which only deals with the computation of simple eigenvalues of a matrix, may not solve
Problem II when a pair of (u, A) satisfies d\/dy = 0 (Again, likewise, Theorem 4.2.1 may
not solve Problem I for (u, A) satisfying dge/d)\ = 0. Therefore, an approach is indispensable
for computing such pairs. Let’s call such pairs (p1, A) satisfying dA/dp = 0 or dy/dA = 0
as double pairs. Before proceeding to the discussion, let us define a double eigenvalue of a
matrix in #2:

{Definition] Let an eigenvalue of matrix X be v, and its corresponding eigenvector of X
be u € £2. The eigenvalue v is double if and only if there exists a generalized eigenvector v

satisfying

(X -vDv = us#0, uved?

(4.3.1) and (X —vI)*v = (X —vIu=0.
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Then, let us proceed to the introduction of a new formula, obtained by (4.2.6) and (

[Lemmma 4.3.1] The following relation holds among A, #, and y, x defined in Theorex
and Theorem 4.2.2, respectively:

dX . 1
4.3.2) (w) (yTy) =~ (xTx),
( dp %
when {dA/dpl < oo is assumed.

[Proof] Differentiating (4.2.6) with respect to u gives

Ty +Ty = Ny+ )y,
Ny = (T - M)y +Ty.

Operating y” on both sides from the left yields

(gi) vy = yN(T - Ay + Ty
du

= y' Ty (T (r - Al)y" = 0 by Appendix 3.2).

If one notices that

A 0 ] by e 0 ]
Ty~ frody S S| by s y
fi dy cs by .
0 AT [ o AT

is equal to the LHS of (4.2.11), y"T'y is changed into

. 1
er’y — y7 . E~d1ag()\*"a1,/\“02v")y

i o
= L0 Ot} =
dA . | S
tly, — | (yTy) =~ (x"x). »
Consequently ( du) (¥'y) " (

[Theorem 4.3.1) When yTy # 0, the next 3 conditions are equivalent.:

(a) an eigenvalue 1/p of A in (4.2.8) is double; (b) gﬁ =0; (c) xTx = 0.
[Proof] (b} < (c) is obvious from Lemma 4.3.1. What remains to be proved is (o) <
Let us begin with (a) = (c) to prove (a) = (b). Since the eigenvalue 1/u of A is dot
there exists a generalized eigenvector v € #2 which satisfies

(4.3.3) (A — %LI)V = x#0, x,v€&/

and (A — }-I)Qv = (A — A)x =0,
u
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from its definition. Now the computation of xTx leads

; 1 1 1
xx = {(a- EI)V}T(A - ;L-I)v =vT(a - ;I)Qv (by the symmetry of A)

= V70 (by (A - ix)% —0)=0.

Let us move on to the proof of (b) = (a). With the supposition dA/dy = 0, it suffices to
show the existence of an eigenvector which corresponds to v € £2 in (4.3.3). Differentiating

(4.2.8) with respect to  gains

1 1
434 Alx+ 5x = —(A - ~1)¥.
(4.3.4) 2 ( p )
Since A is dependent only on A, one finds that
OSSN 0
Cdh dp o d) ’
when, it is led that
2 1 !
(4.3.5) x = —p*{A -~ EI)x

from (4.3.4). What only needs to be proved to show the existence of a generalized eigenvector
is 0 # x' € £%. (one can take (—u?x') as w in (4.3.1)).
First, x" # 0 is easily shown, for, the assumption x' = 0 directly leads to x = 0 from (4.3.5)

which contradicts x to be nonzero. Secondly, x’ € ¢2 shall be proved. The differentiation of

the both sides of x = [V/A — ayyn, VA — a2y, . . |7 with respect to y results in

T
1 ) — 1 dA) ,
fo= s | Yy /\—aly,—”(‘"‘"“ Y2 + A_(:"'29'21"'
) l? /\""a;(d‘u’) ' 12 }\—0‘,2 d'u’
T . dAa
(4.3.6) = [\/,\—aly;,\/)\m-agy'z,...] (31nceaﬁzo).Hence

I\/A — a1y 2 + \\/)\ — gy :

By differentjating the both sides of (4.1.1) with respect to y, one is given, defining yo = yh =
0,

<1

+oo= ‘(}\ —91)3!;2;4" l(A“az)ylzgi LAY

dA ;
(4.3.7) catn1 + fatinoy + bon + Al + Crsa¥nst + frt1¥hes = (EE) Un + My,
for n=1,2,.... Putting dA/dy = 0 and multiplying ¥, on both sides of (4.3.7) turn

’ ]
(X = @)4 = Crthn1¥n + Falino1¥ + Crt1¥aUnir + Fri1¥alnit + Oalnify + bufitiit.
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This helps to prove x' € 2, for,

:;::.:
i

(ca¥i92 + Savivh + by + bupyy?|
+ (ot + Foylth + csyhs + Savhys + bayeys + bopgif| + -
< el -l lwad + lesl - Yyl - 0]+ leal - lys) - o) + -
+ (Ul 1] Ywal + Lsl - lwod - lual 4+ sl - o) fwdl + -
+ {leal - 1AL ol + feal - [od - lual + feaf - ) - lya] + -
Ll Al (el UL Tl sl -+ 1l wal - fwdl + )
R L T T Y R A Y T R T I
Y A R A e Y R RN A LR
< suplel - {lunl - lyal + ol - lual + lwal - il -+ -}
+ 2suplal - ul - (Il - (sl + ool - Tl + lyal - wal + -}
+sup el - Al lal + ol - fusl + ol - fyal 43
+ Bl i+ lyel - fwal + ysl - {wgl 4+ -}
Bl L Ll )
This contributes to ljx'||* < oo since, if we define ¥, = sl byel, .. ), 2 = 4], 1), . ],

far instance, then
vi € €% and 3o € ¢ (by y' € €%, See Appendix 3.2 for details),

and by Cauchy-Schwarz’s ineguality,

ot el - — - 2 2 2
witlval 4 Il lh] -+ = G 32) S IS 13l = Vil + gl -+ - \/|y§| + s 4 < oo
and
[ [e.9] o
/
>l ]yi.n[ <00, > [l lgin] < oo, DIl lyil < oo,
2=t 4==1 i=1

in analogy. Therefore, x' € 2. g

Rernark 4.3.1] In (4.2.5), if T is a real matrix, the three conditions {a), {b}, (¢} in Theorem
4.3.1 are unconditionally equivalent.

{Proof] When T is real (symmetric), y is a real vector, obviously from (4.1.1) (or in the form
of a real vector multiplied by a complex scalar). Since y # 0, then y7y # 0. This is enough
to prove the proposition. g

‘Remark 4.3.2] One may delete the condition “1/u is assumed to be a simple eigenvalue”

in Theorern 4.2.4,
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Proof] By (4.3.2}, it is evident that if x"x # 0, then %3 # 0 holds, namely, 1/x has to be
a simple eigenvalue. Thus, xx # 0 is enough. §

Remark 4.3.3] The next relation also holds:

N o (d :
(4.3.8) po(yTy) = (H&f) (x"x) (assuming |du/d)| < 00).

Also, as Theorem 4.3.1 states, the conditions (a'),(V'),(¢') below are equivalent if x7x # 0:

[Proof] Let the proof be omitted since they are shown as were in Lemma 4.3.1 and Theorerm
431

4.3.2 The Algorithm for Computing Double Pairs

Now we are ready to propose the method for computing double pairs. First, the algorithm
is shown for double pairs satisfying dA/dp = 0. And the one for another type of double pairs

{or satisfying dp/dA = 0) follows.

*The Algorithm for Double Pairs (dA/dy = 0 Type) From Theorem 4.3.1, one finds
ihat the pairs of (u, A} satisfying dA\/du = 0 are gained by the computation of the zeros of
Fli, A) = xTx, if 4 and A are assumed to be real (Let me notify that this method applies
even to complex i and X if y7y # 0, given those variables). The algorithm is shown, by the
combination of the method in [13, Section 4] for approximate eigenvalues of infinite matrices
and Newton-Raphson method (Let’s say Newton method for short in the sequel).

Newton method is widely known as an iterative method for approximating zeros { of

F(t), given an initial value tg, by

tnpt = by — F{t)/F' () (n=0,1,...).
I this section, considering the parameter p to be a variable, we let the iteration
(4.3.9) prin = thn = [ty N/ [/ (g, A) (R =0,1,..)

be executed. From the appearance of (4.3.9), obviously one needs the values of f{g, A), f'{p, A)

(or the ratio of f(g,A) to f'(i, A)) for the iterations. The differentiation with respect to p

to

Fd) = Mx= (- ayd + (3~ ayg + (3 - asdyg + o
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turns out to

y . d dry . , d\ )
Fay A) = Eﬂif(“’ A) = {(@) i+ 200 — a)yiy } + {(5@) Ys -+ 2(A ~ Cl:e)y:z?!z} o

dA 2 a2 g g ! :
= (5;) lesdtude - F 200 —admyl + 00— ayy + )

dA .
= (“&;) (y"y) +2(() - a)inyy + (0~ ag)yayh + )

This means that the computations of {y.} and {¢/,}(= {dyn/du}) {n = 1,2,...) are required
for (4.3.9). {4.1.1) and (4.3.7) help to compute the values.
Substituting

1
Cnln-1+ bnyn + Chp1lngr = ;;(A - (Ln)yn (TL =1, 21 .- -)a

derived by (4.1.1), into (4.3.7) becomes

(43100 oy 4 (= A+ Farrth, = {( ?) Lo ak)} "
H L

(n = 1,2,...). Letting ¥v., = yv = yns1 = 0 and yy = 1 for sufficiently large n = N,
one can execute the computation of {y,} (n = 1,2,..., N — 1} by backward substitution
(using (4.1.1}), followed by the computation of {y,} (n = 1,2,..., N 1), again by backward
substitution (using {4.3.10)).

Also, (dA\/dy) appearing in (4.3.10) and f'(y, A) is computed by

dX Wl xF'x

4.3.11 Ao BX
( ) de  p ¥y

With the above settings, the algorithm for the computation of approximate double pairs

{11, A) for dA/dy = 0 is proposed:
[Algorithm 4.3.1]
(D Give an initial value yo (and set n = 0).

@ Compute the appropriate eigenvalue ), by the algorithm in [13, Section 4j for the given

Hn

@ Compute {y.}, {¥.} (n=1,2,...), by (4.1.1),(4.3.10),(4.3.11). Also, compute Sn, M)
and f'{tn, An).

@ Obtain the next approximate solution fin1 by the iteration

Hat1 = Mn — f(ﬂm Aﬂ)/f’(#m Aﬂ)
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® Exit if x"x is sufficiently small. Otherwise, letting n = n + 1, go back to 2.

The pros of Newton method, as well known, are the fast convergence, correspondence to
the complex zeros of complex functions, and ease of implementation. On the other hand, as
a con, the good choice of an initial value is necessary since otherwise, it might cause a great
change of the result.

One more remarkable point of this algorithm is that one can compute the approximate
double elgenvalues (g, A) with high precision. It is known empirically that the computation of
double eigenvalues of A (in (4.2.8)) results in the insufficiency of precision. By the algorithm
presented here, however, one can prevent such a phenomenon since eigenvalues are gained

by a well-conditioned matrix T(in {4.2.5)).

*The Algorithm for Double Pairs (du/dX = 0 Type) Similarly as the previous case
for d\/du = 0, the computation of the zeros of g{u, A) = yTy is equivalent to computing
double pairs for dp/dX = 0, but supposing x"x # 0 (from (4.3.8)). Of course this restriction
(or the condition x”x # 0) is not vital, since cormputed (g, A} for g(g, A} = 0 may be regarded
as double pairs after checking x"x 7 0 for such {g, A).

What is different from the previous case for dA/du = 0 is that it is nonsense to assume

1 and A are both real, for, with such an assumption, y’y # 0 since y is real. Then, the
algorithm to be incorporated is useful only when either p or A, or both is not real.

This time, let the iteration be
(4.3.12) Aast = An = g )60 M) (R =0,1,..).

As the former case, the computations of g(y, A} and ¢'(p, A} (or the ratio of g(su, A) to

¢' (11, \)) are necessary. The differentiation with respect to A to
g, N = Yy =yl vy
turns out to
, d C

This means that the computations of {.} and {¢/,}(= {dy./dA}) (n = 1,2,...) are I.‘eq1.lil‘€d
for the iterations. By differentiating the both sides of (4.1.1) with respect to A, one is given,

defining yo = yp = 0,

d
(4.3.13) (8%) (CnUnw1 + bntn + Cng1¥nt1) + futfo i + Gty + frt1¥pr = Yn + M

forn=12.. .
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Substituting
1
Cnln—1 + bnT n + cﬂ+1y!z,+1 = ﬂ()\ - a'n)yn (n == 11 21 O ')!
derived by {4.1.1), into (4.3.13) rewrites (4.3.13) as

y i d# dA 1
(4.314) fufoy 4 (d = N+ fastthsy = (;ﬁ) {(a;;) -0 ak)} o (1= 1,2,...),

Letiing ¥y, = Yy = ynv+1 = 0 and yy = 1 for sufficiently large n = V, one can execute the
computation {y.} (n = 1,2,..., N — 1) by backward substitution (using (4.1.1)), followed
by the computation of {y,} (n = 1,2,...,N — 1), again by backward substitution (using
(4.3.14)).

Also, (dp/dX) appearing in (4.3.14) is computed by

dg ¥y

(1.3.15) 5=k

With the above settings, the algorithm for the computation of approximate double pairs

{10, A) for dp/dX = 0 is again proposed:
[Algorithm 4.3.2]
(D’ Give an initial value Ag (and set n = 0).
(@' Compute the appropriate eigenvalue p, by the algorithm in [21] for.the given A,

@ Compute {y}, {,}(n=1,2,...), by (4.1.1),(4.3.14),(4.3.15). Also, compute g{p, M)
and g'{ftn, An)-

@’ Obtain the next approximate solution A,,; by the iteration
Ansl = Ap = Q‘(,Un, )\n)/g"(ﬂm )\n)

&' Exit if yTy is sufficiently small. Otherwise, letting n = n -+ 1, go back to @'

Similarly, even in computing double eigenvalues of T (in (4.2.5)), one can prevent the in-
sufficiency of precision since the computations of eigenvalues are performed by well-conditioned

matrix A (in (4.2.8)).
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4.4 Applications of Double Eigenvalue Computation

Three examples are chosen as the applications of Section 4.3. The first example is on
proof that there exist no complex pairs of zero (z,v) which satisfy J/(z) = dJ,(2)/dz =
with the aid of Theorem 4.4.1 (Section 4.4.1), the second on the computation of double ro
of 2J,(z)+ HJ,(z) = 0 by Algorithm 4.3.1 (Section 4.4.2), and the third on the computat
of double eigenvalues of the Mathieu differential equations, for both types of d\/dg = 0 ¢
dg/dA = 0 (Section 4.4.3).

4.4.1 Example 1 : the Computation on Double Zeros of J,(z)

In this section, it is proved, using Theorem 4.4.1, that there are no pairs of complex ze
{z,17) of J,{z) = 0 such that dv/dz = 0.
J,(z), the Bessel function of the first kind, is known as one of the independent solutic

of the Bessel differential equation of order v
2 2) + zf'(2) + (22 = ) f(2) = 0.

Also, three-term relations on the Bessel functions are widely known:

_2(v+1)

J,,(Z) J,,+1(Z) + J,,+g(z) = 0.

By these relations, [13] proved that the problem of computing the zeros of J,(z), giver
{“inverse problem” of solving J,(2) = 0 for given v, so to speak) is equivalent to the one

the computations of the eigenvalues of the following matrix:

(4.4.1) Ty = vy, where
= 2/2 0 |
T - z2/2 =2 z/2 DT 2,
zf2 -3
0 T -
0£y = [y ) = Da(2), hral2),. . JT €8,
D(T) = {[wy,wy,.. " [~1w,—2ws,.. " € &}

Fig. 4.4.1is the 2-v curve created by the algorithm in [13] for the matrix eigenvalue proble

of (4.4.1).
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From this figure, it is conjectured that given z # 0, there are no v satisfying dv/dz # 0
When © > —1, this is easily proved from the matrix theory. However, the proof in this
section covers the case for the general complex v and z # 0.

One obtains the next relation if one applies Lemma 4.4.1 to this problem:

o dis T 1/ p
2 (a) (y y) = ; (x x),
wherey = [J,1(2), Joia(2),.. )T € &%

x = V4 T (2), Vi + 2J,0(2), . |7 €

Since y € £ .y"r'y; < o0 is obvious. Then, it suffices to show xTx # 0 to show dv/dz # 0.

Let k7 x he transformed as follows:

S s D) (4 2) a2
(o D20 () + 0+ 8M2(2) + ) + {0+ 2J(2) + (0 + 24 (2) + )

L . A . ,
k;(t]‘f(z) —' Jlfwl(z)*]vfrl(z)) + ”;lm(‘]lffl(z) - Jr/(z)'jufﬂ(z)) (by [Zgapa'gel'%z”
2

A

T2 (un(2) = Joa(2)) by Julz) = 0)

= =2 T {2 JU(2) /2 (since 2J), , = J, — 40 by [2])
# 0 (J,(z) £ 0and J, (2} # 0 when J,(z) = 0)

As was conjectured, that all the complex z # 0 and v satisfying J,(z) = 0 have dv/dz # 0

is proved.

4.4.2 Example 2 : the Computation on Double Zeros of 2./ {z) + H.J.(z)

[t is known that the pairs of zero (2, 1) of 2J/(z) + HJ,(2) (in this example, let the value

of /{ be fixed to be H = 1.) are distributed as in Fig. 4.4.2[7}:
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Fig. 4.4.2: (z,v) satisfying zJ,(2) +1- J(2) =0
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What this figure reads in contrast with Fig. 4.4.1 is that it is guessed that double pairs f
di/dz = 0 type exist. Algorithm 4.3.1 was used, for the computation of such double pair.
and locating them was successfully performed. The closest 20 points to the origin have bee
shown with those 10 significant digits in Table 4.4.1. N's represent that the correspondin
points are the Nth closest to the origin (if we regard two symmetrical points with respec

to r-axis as identical).

Table 4.4.1: First 20 double roots (z,v) (H = 1)

L N % z ; v H N I z ! %

L p £ 1051328528 - - | -1.450962327 -+ || 11 | + 11.17415387 .. | -11.21881075 . . .
200 - 2118898212 ... 1 -2.343017207 ... 12 1 £ 12.17470605 - - - | -12.21570577 - -

31+ 3.143427582 -+ | -3.298656842 - .. 13 | & 13.17512233 ... | -13.21301815 - ..
L] 4155369454 - - | -4.274002258 ... || 14 | + 14.17543695 --- | -14.21066546 - - -
5 | £ 5162139588 ... | -5.258106611 - - - 10 | £ 15.17567424 - - | -15.20858602 . .-
6 o 6.166349121 - -- | -6.246908153 ..+ || 16 | + 16.17585191 ... | -16.20673270 - ..
Tl 7169132116 - | -7.238539584 - - - 17 | 4 1717598304 - | -17.20506883 . ..
8 | 4 8171052876 .- | -8.232017074 -+ || 18 | + 18.17607749 . .. | -18.20356539 - -
9 | 4+ 9.172420411 --- | -9.226770626 --- || 19 | + 19.17614279 --. | -19.20219915 - - -
101k 10.17341643 - | ~10.22244598 --- | | 20 | & 20.17618473 --- | -20.20095122 - . -

4.4.3  FExample 3 : the Computation on Double Eigenvalues of Mathieu Differ-

ential Equation

*Computation of Double Pairs (d\/dg = 0 Type) We shall first plot, in Fig. 4.4.3,
the real pairs of points (g,A) such that the solution of the Mathieu differential equation

(362m type)
w"(z) + (A — 2gcos 22)w(z) = 0

is - or 27- periodic.
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This plotting sugeests that there are points where dA/dg = 0 hold. In this section, let

the author elaborate on the algorithm for computing such points.

Analogous to (4.3.9), the iteration to be executed in Mathieu’s case is

Iig) (it = On “f(Qnu’\)/f’(qn%)\) (TLIO,].,...),

where f{g, A) = x"x with 2 (i = 1,2,...), each component of x, defined as (3.2.17). From
(-t.L.3), the computations of f(g,A) and f'(g, A) (or the ratio of f{q, \) and f'(g,A)) are
indispensable for this iteration.

Differentiating the both sides of

. 1
F@ ) = x"x=raB} +reBy + o= o(raB} + 4B + ) (by (32.30))
with respect to ¢ gives
, d 1 /dAh , 1 /dAx ,
f ((j,/\) - d‘(;f(q,/\) == -—'2“ (EE) B%"I-T‘ngBQ—E (“&"“(‘]“) Bg+7'4B4B4 -

LAy, , ,
= 75 (5{;) (y"y) + (1 BaBy + 4 BaBy + - ).

They inply that the computations of {Bs,.} and {B5,} (n = 1,2,...) are required for the

iteration of (4.4.3). The three-term relations
{111) q182n-2 + TZnB2n -+ qBQn-}—Z =0 (TL = 13 2} e )

{the same as (3.2.7). Let By = 0.} turn out to be

. ; dA
(4.‘1.;’))&’271_2 “+ qBZn—? - (a?j") BZn + TZnB‘;n + BZn+2 + Q‘Bén+2 =0 (n Gl ]-a 2: .- )

after the differentiation with respect to g (where Bj = 0).

Let us follow [4] for computing {By,}, {B}.}. In [4], the both sides of (4.4.4) are dif- i
ferentiated with respect to A (where ¢ and )\ are regarded as independent variables) for
computing eigenvalue A by Newton-Raphson method. Let’s call the resulting relations (R).
Next, putting By, = Byy = Bonyg = 0, Byy = 1 for sufficiently large n = N, one obtains
{ Do} (= 1,2,..., N — 1) successively from the backward direction by (4.4.4), followed by
the computation of {Bj,} (n = 1,2,... N — 1) by (R). In this paper, we adopt this way
for the computations of {Ban}, { B}, } by (4.4.4) and (4.4.5). Note that the value of {d\/dg)
appearing in (4.4.5) and therefore f'(q, ) is obtained by (3.2.40):

T

(4.4.6) Q _ _g XX

With everything set, the algorithm for computing double pairs (¢, \) is proposed:
[Algorithm 4.4.1]
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<1> Give an initial value go (n = 0).

<2> For given ¢,, compute certain approximate eigenvalue \,, by the algorithm in {13
Chapter 4].

<3> For ¢, and A, gained in <2>, compute {By}, {B),} (n = 1,2,...) by (4.4.4) t
(4.4.6}. Also, compute f{qn, An), F/(gn, M),

<4> Compute the next approximate solution g..; by Newton-Raphson method:
Gne1 = G flqn, A} (G An)

<5> Exit if x"x is sufficiently small. Otherwise, go back to <2> after setting n = n + 1.

The con of this method is, as already stated, that the choice of an initial value might
influence the output greatly. Then, in order to solve this problem, the discussion is in order
for the selection of initial values, considering the characteristics of ¢~ graph.

4, Chapter 3,(24b)&Fig.1] showed, with experiments, that a group of ¢-X curves {ax} (k =
1,2,. ..} (ax corresponds to the curve with ¢ and A real which is kth closest to the origin)

nave the following relation:

(4.4.7) an(h) ~ (—:;)2@" (% - h) (where h? = 4q)

This of course is true of the double pairs (¢, A) on those curves too. Then, once a double
pair is gained, one can utilize the previous value for the selection of the initial value for the
next double pair. The algorithm for computing the first M double eigenvalues closest to the

origin is given next:

[Algorithm 4.4.2]
<a> N =1; Give an initial value go.

<b> Exitif N > M. Otherwise, execute the following three:

a) Execute <2> to <5> of Algorithm 4.4.1. (for the double eigenvalue of ay curve.

Name the g-value §).
b} Decide the initial value for the next double eigenvalue by go = (ﬂﬁ-l)zfi-

c) N=N+1; Goback to <b>.
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Lastlv, let us show the results of experiments for the program we implemented for
gorithm 4.3 and 4.4.2. Table 4.4.2 is for the list of the first 30 double pairs closest to ¢
origin with the display of 10 significant digits (Note that if (g, A) in the table is a double pa
sois (g, AY). Table 4.4.3 tabulates the initial value and the convergence of ¢, only for t
computations of the double pairs closest to 15, 16, and 17th to the origin, by Algorithmn 4.4.
Only the first 12 digits are displayed after rounding. n represents the number of iteratio
by Newton method (n = 0 represents that the corresponding ¢, are the initial values to |
used by Newton method). In each case (or N = 15,16, 17), at the stage each initial value
determined, as many as three digits (roughly speaking) are already in agreement with tl
true value g. This helps the approximate values converge only at around n = 4. Also, in Fi
+-bdl Figo 4.4.3 overlapped with the zeros of f(q, A} = xTx is provided, in order to visuali

the behavior of the zeros of f{g, A) and how f(q, A} and az (k = 1,2, ...) intersect.

Table 4.4.2. The first 30 double pairs (¢, A)

0 R B S |3 B N
1] LI 14606106 -+ | 17.41358458 - . . 16 | 1208.542746 ... | 1575.832363 - -
2 0 3LA4A8TBISTO - | 42.39762508 - - 17 | 1367.118729 - - | 1769.643863 - ..
30 6012377598 .- | 7878937721 - - 18 | 1514.307842 --- | 1974.690807 - -
4 1 9710095598 - | 1264898649 . .. 19 | 1680.110082 ... | 2190.973195 - -
5| 142.5125993 ... | 185.4563602 - - 20 | 1854.525445 - .. | 2418.491029 . ..
6 | 196.4363376 --. | 255.6705920 - - 21 | 2037.553929 - | 2657.244308 - --
; 71 208.9220170 - | 337.1250126 - - 22 1 2229195531 --- | 2007.233033 - -.
8 | 329.9970023 - - | 429.8166325 ... 23 | 2429.450251 --- | 3168.457205 - -
9 U 4006747517 - | 533.7443161 - -- 24 | 2638.318087 .. | 3440.916823 - ..
10+ 497.9613680 - - | 648.9076487 ... 25 | 2855.799037 - | 3724.611887 - ..
1T 594.8594513 --- | 775.3064854 - .. 26 | 3081.893101 - .- | 4019.542399 . ..
' 12 5 700.37005637 --- 1 912.9407786 - .. 27 1 3316.600278 .- | 4325.708357 - -
| 13| 814.4935803 --- | 1061.810514 .- 28 | 3509.920668 - .- | 4643.109763 - .-
14 1 937.2301783 --- | 1221.915690 - .. 29 | 3811.853970 -.- | 4971.746616 . ..
‘ 15 | 1068.579896 --- | 1393.256306 . - 30 1 4072.400483 ... | H311.618916 . -.

Table 4.4.3. The intermediate result of Algorithm 4.4.2 (Only N = 15,

16, 17 cases are shown)

Ninl e ANnl e INTel e ]
|15 ] 0 | 1066.35966961 || 16 | 0 | 1206.32652339 | 17 | 0 | 135490605474
E 1 | 1068.18352388 1| 1208.19445836 1| 1356.81189137
Ji 2 | 1068.56512348 2 | 1208.53285101 2 | 1357.11204100
3 | 1068.57987488 3 1 1208.54273814 31 1357.11872624
4 | 1068.57989615 4 | 1208.54274635 4 | 1357.11872949
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*Computation of Double Pairs (dg/d\ = 0 Type) In the previous case,
graph was created, for real ¢ and real A. Next, let the new graph be plotted, this
real A and pure imaginary ¢. Since the real part of ¢ is zero (constant}, the grap

displayed in 2-dimensions (in Fig. 4.4.5).
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[t is observed in Fig. 4.4.5 that there should exist pairs of A (real) and ¢ (pure imaginary)
such that dg/dA = 0, at the points marked “x”. Then let the computation of such pairs
be attempted by using Algorithm 4.3.2. The detailed procedure, however, is omitted in this
case since no further discussion is required but to apply Algorithm 4.3.2, and the procedure
is very analogous to the former case where Algorithm 4.3.1 was used to compute double pairs
for dA/dg = 0 type.

The first 10 double pairs satisfying dg/dA = ( closest to the origin with the display of 10
digits (Note that if (g, A) in the table is a double pair, so is (~¢, X)) are listed in Table 4.4.4.

Table 4.4.4. The first 10 double pairs (g, A)

N q A

1 |4 6.9289547568 --- | 11.19047359 - - -
2 |4 30.09677283 - .- | 50.47501615 - - -
3 | 69.59879327 --- | 117.8689241 - - -
4 |4 1254354113 -+ | 213.3725686 - - -
5 i ¢ 197.6066786 - - | 336.9860439 - - -
6 - 286.1126087 ... | 488.7093844 - - -
7 1 390.9532062 - - - | 668.5426056 - - -
8 | ¢ 512.1284733 - | 876.4857154 - - -
9 | i 649.6384116 --- | 1112.538718 - ..
10 | 4- 803.4830180 --- | 1376.701616 - - -

In the former (dA/dg = 0) case, Algorithm 4.4.2 was used, to determine initial values
for Newton’s method based on the property (4.4.7). It is naturally conjectured that (4.4.7})
applies for real A and pure imaginary ¢ as well. The fact is that Table 4.4.4 was thus created,
incorporating the method for selecting initial values used in Algorithm 4.4.2. Table 4.4.5
describes the initial values chosen and how fast the approximate values converged, only for
the 5th, 6th, and 7th closest double pairs to the origin. Only the first 12 digits are displayed
after rounding. n represents the number of iterations by Newton method {n = 0 represents
the corresponding A, are the initial values). In each case (or N = 5,6,7), at the stage of
determining the initial value, about two digits are already in agreement with the true value
A. Since the given initial values are already very close to the true values, the approximate

values converge only at around n =4 or n = 5.
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Table 4.4.5. The intermediate result (only the cases N = 5,6, 7 are shown)

:chﬁl n l An ” N ] n [ An H N I 1 l An l
! 510 333.394638496 || 6 | 0 | 485.250903273 || 7 | O | 665.187773314
1 | 335.859145525 1 | 487.942276449 1 | 665.011914901
336.895370234 2 | 488.679867317 2 | 667921219915
31 336.985593670 3 | 488.709346955 3 1| 668.527491472
4 | 336.986043939 4 | 488.709384476 4 | 668.542597529
— 5 | 668.5426050652

4.5 Summary of Section 4

In this section, we set a class of three-term recurrence relations and showed that Theorem
A and Theorem B may apply to the eigenvalue problem for the infinite complex symmetric
tridiagonal matrices obtained by the set of the relations. Furthermore, we proposed the
method for computing double pairs by the newly proved theorems concerning the eigenvalue
problem and Newton method. Three examples were demonstrated and the solutions for
double pairs were achieved.

The following two future problems may be listed. One of themn is to find more properties
on the three-term relations defined in this section, and further widen the coverage of applica-
tions. The other is to generalize this research with the conjecture that what was obtained in
Section 4.3 should be true of the wider class of relations set in this section. Another possible
future plan is how to locate the double pairs (and determine the initial value for Newton
method) when we deal with two complex variables g and A where difficulty of visualization
might also occur. This is opposite to the case of the two variables both being real, where

locating them is relatively easier.

86



