3 Applied Problems with Proofs and Results

As stated in Section 1, the author proved that three problems listed below may be applied

oy either Theorem A or Theorem B, or both:

(g the computation of the zeros of Coulomb wave function Fp{(n, p) and its first derivative

(with an explicit and a closed error formula) [23},[25],
(y the inverse EVP of the Mathieu differential equation [21],
{©) the ordinary and inverse EVP of the spheroidal wave equation {22],

The solutions of each problem either have hardly been found* or have not been satisfac-
tory yet in the sense that they have some limitations (For the details, see each section).

since Theorem A and Theorem B have strong usefulness and unigueness as was explained
mn Section 2, the problemns (g - @ are solved with certain superiorities over other methods.
That the matrix method with Theorern A or Theorem B gives precise error estimates in
equatton form is one of them.

Fach section consists roughly of three parts. First, the main part, or the method for
obtaining approximate solutions (zeros or eigenvalues) by Theorem A or Theorem B is stated.
Secondly, newly found relations or properties specific to each problem are shown, most of
which were proved by matrix theory. And at the end of each problem, experimental results
close the section to show the validity of the used method, along with its relevant graphs,

also created by using the computed data by the method.

3.1 The Computation of the Zeros of Coulomb Wave Function

and Its First Derivative

In 1975, the author of [12] showed that the problem of computing the zeros of the regular
Coulomb wave functions and of their derivatives may be reformulated as the eigenvalue
problem for infinite matrices. Approximation by truncation is justified but no error estimates

are given there.

"The anthor investigated two of the major database on academic journals, COMPENDEX PLUS (the
database dealing with academic papers on engineering, since 1976, carrying approximately 2.34 million
articles) and INSPEC (the database dealing with academic papers on engineering and physics, since 1969,
carvying approximately 4.7 mitlion articles)



The class of eigenvalue problems studied there turns out to be subsumed in a more
general problem studied by the same author et. al in 1993{15], where an extremely accurate
asymptotic error estimate is shown.

In this section, we apply this error formula to the former case to obtain error formulas

in a closed, explicit form.

3.1.1  Description of the Problem

The second-order linear differential equation

d? 2 L(L+1
(3.1.1) dw o2 KEEDE
dp p p
where p > 0, — o0 < 1 < o0, and L is a non-negative integer, has two independent

solutions defined as Coulomb wave functions, one called the regular Coulomb wave function
w = I",(n, p), and the other the irregular Coulomb wave function w = Gr(n, p) (For more
details on Fr(n, p) and Gr(n, p), refer to {2]). (3.1.1) appears in atomic and nuclear physics,
and is obtained when we deal with the scattering problems with charged particles’ or the
separation of Schrédinger’s wave equation for a Coulomb force field. One will find that there
is abundant literature for the computation of the function value Fi,(n, p). Nevertheless, when
it comes to the computation of the zeros p of Fi(n, p), no previous research but [1j* and
[12] was found, according to the author’s investigation.

In 1975, the author of [12] showed that the problem of computing the zeros of F(n, p)
and of their derivatives may be reformulated as a matrix eigenvalue problem by rewriting
the three-term recurrence relations satisfied by Fi(n, p}, which represents a minimal solution
of the recurrence relations (a second-order linear homogeneous difference equation) in the
sense of [11]. Here are the main theorems of [12]:

[12, Theorem 2.1] Let L and 7 be given. Then p # 0 is a zero of Fi(n, p) if and only if
1/pis an eigenvalue of Ty, defined as follows:

-ndr+1 €L+l 0
er+1 ~Ndit2  eps4n
(3.1.2) TLy = " L 62— 72 with
ery2  —TMdp+3
o i

tIn this problem, L represents the orbital angular momentum quantum number, 7 = ZZ'e?/hu, and
p = uvr/h, where Ze, Z'e are the charges of the two particles, v is their relative velocity, 7 is the distance

between them, and pu is the reduced mass.
1) proposes a method for computing the zeros p of Fy(7,p), and the first three positive zeros are

computed for given 7 = 0.0,0.5,. . .,3.0. However, no error estimate is presented for the approximate zeros.
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s ! L[ k) |
(3.1.3) dy = oo (A= 1,2,...), e = c=0,1,2,...).
S = iy | hoek = @k Dk g 0L

Moreover, one finds that an eigenvector of Ty, corresponding to 1/p is a non-zero scalar
maltiple of 0 # u = MW@, 0T = (VIL 4+ 3F (0 ), V2L F 5Fra(n, ), .. |7 € £

Approximate zeros may be computed by truncation to any degree of accuracy.

(12, Theorem 3.1] Let L and n be given. Then p # 0 is a zero of £ (n, p) if and only if
1/p 1s an eigenvalue of TL!,, defined as follows:

2L+1

ﬁﬂj TFier 0
M nghile[ ~ndp 4y €L+1
31.4) Tp,= s
( ) Ly €41 L4 €2 > £ '
€142 ~ndg 13
i 0

where the definitions of dy, e are retained as (3.1.3). Furthermore, an eigenvector of T;,,,i Cor-
responding to 1/p is a non-zero scalar multiple of 0 # & = (VL + 1FL(n, p), V2L + 3Fp51(n, p),
V2L + 590, p),.. |7 € 2. Approximate zeros may again be computed by truncation to

any degree of accuracy.

What is missing from these two theorems is the precise error estimation. In fact, the
derivation of the explicit error estimates for the numerical procedure in 12, Theorem 2.1]
and [12, Theorem 3.1] is the concern of this paper. Our main results in this regard are stated

in the next section {See Theorem 3.1.1 and Theorem 3.1.2 in Section 3.1.2).

The derivation of {12, Theorem 2.1] and {12, Theorem 3.1] is nothing but a formal matrix
reformulation of the recurrence relations satisfied by uz, = Fr(n, p), found in (2, Chapter14],
which are (3.1.7) and (3.1.8) in the below. For our purpose, we need two more recurrence
relations (3.1.5) and (3.1.6) also found in {2, Chapter14] (, where “/” represents p-derivative}.

L2
(3.1.5) Louy = L2+n?up-y - (m; +n) UL,

2 S —
M. *_ njl u[‘ — \/(L _i,_ 1)2 _*_ .UZ U’L&'l R
7]

i

(3.1.6) (L+ 1} uf

and by {3.1.5) and (3.1.6),

L{L+1 ; 5
(3.1.7) L\/L 12+ ntup = (2L+1)(*“( ; )+??}UL*”(L+U\/L"+772ur,-—l,

L L+n+1
318 (L +n-+1 L +n)?+ 97" urin-1 — +2n 41 i n N ULin
{ ) 2 2 (2L 9 ) ( + )(p )+

HL AL+ n+ ) 4 g =0, n =012,
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which is obtained from (3.1.7) by replacing L by L + n.
In [12], the asymptotic behavior of up.,, is also derived from (3.1.8), using Theorem C:

ULtnt1 g
1. —_— = ] .
(3.1.9) - Qn[ +o(1)] = 0 (n — o)

The relation (3.1.8) is also satisfied by GL(n, p) (i.e., (3.1.1) still holds true when we
substitute G'p(n, p) for ur). The point is that u, = Fi(n, p) represents a minimal solution
of (3.1.8). See Gautschi[11].

In 1993, the same author(Ikebe) et. al{l15] studies a more general problem subsuming
the former cases, not only justifying the approximation by truncation but also deriving an
asymptotic error formula, and it is Theorem A, especially (2.1}, that we use in this section
to derive the error estimates in Section 3.1.2.

As seen later, the eigenvalues of T, (and T, too) are all real and simple, the matrices
under consideration being compact, real, symmetric, and tridiagonal, where all super-&sub-
diagonal elements are nonzero (Such a matrix operator is diagonalizable. See [26]) and
for any given eigenvalue the corresponding eigenvector is uniquely determined (since super-
&sub-diagonal elements are nonzero, the recurrence relations yield a unique solution up to

constant multiplication).

3.1.2 FError Formulas & Their Proofs

We now state two main theorems of this section, the error formulas ((3.1.10)—(3.1.13) in

the below), followed by their proofs.

*Error Formulas First, the error formulas shall be shown. Theorem 3.1.1 deals with the

approximate zero of Fi(n, p}, while Theorem 3.1.2 with F{(n, p):
[Theorem 3.1.1] For each k, let T(ﬂ be the kth principal submatrix of T, defined in

(3.1.2). Then, one can choose each Ag, an eigenvalue of Tg“j?, such that 1/Ax = pr — p. And
the following error estimate (3.1.10) and the rate of convergence (3.1.11) are valid.

JE@+E+12 402 (L4 1)? Frae(n 2Pkt (m0) ) | gy,

110 p—pr = ' '
(3.1.10) p— pr L+k+1 (L+1)2+n2 FE+1(7?,P)
2
£ — Pkl [
= i 1)] (they hold as £ — co}.
(3.1.11) o (Qk) [1+0(1)] (they ho )

{Theorem 3.1.2] For each k, let 'f‘iki, be the kth principal submatrix of T, defined in

- ~(k - .
{3.1.4). Then, one can choose each A, an eigenvalue of Tilzj, such that 1/A, = g — p. And
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the following error estimate (3.1.12) and (3.1.13) are valid.

s VE+E?+77 Frix—1(n p)Fr il 0)

(3.1.12 = - : 1+ o(1
) Iy Pk & L+ k {pz——gnp—L(L—i—l)}FE(n,p)[ 0( )}
_ V@R Fp (0, p) Frax(n p)
B L+k F(n, p) Fr,(m ) 11+ (L)
—_ "_‘_ 2
(3.1.13) E;)__f%tl - (5%) 1+ o(1)] (they hold as k — c0).

*The Proofs of Theorem 3.1.1 and Theorem 3.1.2 After the introduction of a few
more well-known relations by the Coulomb wave functions, we will show newly found rela-
tions which are to help the simplification of error formulas, and the proofs of the theorems.

First, Wronskian relations and the concrete form of Fy(n, p} are known{2, Chapterl4!:

(3.1.14) Fi{m, p)Ge(n, p) — Fr(n, p)Gp(n,p) = 1,
(3.1.15) Fro(m p)Go(mp) = Fuln, p)Gra(np) = L(L*+n*)~2,

ks
2%“’9 ID(L + 1+ in}]

(3.1.16) Fuln,p) = Colme™" > Af(m)e* """, with Cr(n) =

hz=L41 F(QL + 2)
Abp = L ALy = g (R D)(k-L-1)af = Al — Af, (k> L+2)
Next, newly obtained relations shall be shown.
[Lemma 3.1.1] In general, the following relation holds:
N/ ro 2(L+1
(3117) (u% (uqir:l) ) = (u':b-t-llu'[‘ - U‘L'U,L“H) = __(M_f.?_._.,),ULUL_i,l.
[Proof] The first equality is obvious. Replacing L by L+ 1in (3.1.1), one is given
: 2 L+1(L+2

{3.1.1) xup41— (3.1.18) xuy, yields

2AL+1
u'iuLH - U’[’,H’U'L + ( p2 up1tr = 0.

. - i i !
Hence, the second equality also holds, since uf vy — ufuryr = (wpur — upure1) i

[Lemma 3.1.2] Let y(p) = (2L+3)ul + (2L + 8, +--- = S (2L +2i+ 1)u? ;. Then
i=1
L+1)2 47
(31.19) o= LT I s — )
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(Proof] {{3.1.5)+(3.1.6)} xuy gives

2L+ 1
(2L + Dwpur, = L2+ n2upqug + p+ uf — (L + 1% + nPugig,.

Replacing L by L+ 1,L+2,... and adding both sides of each equation yield

(2[; "T“ 3)“-}},*,1_“,[,*.1 “+" (2L’ + 5)u1+2u1‘,+2 "i" - =
1 .
VL + 12+ n?uguy,y  + p {(2L_+ 3hui ., + (2L + 5)u?,, + .. } , OF

£y a0 ! 2 - Ty
(3.1.20) y(p) — ;y(p) = 2/(L+ 1)+ nPugug,,.

AL+ 12 4
L1

/
The LHS of (3.1.20) is equal to p* (Eg;l)  while the RHS turns .

(“L-r—auﬁ - H'f,ur,-m)f by (3.1.17). Equating them gives

(3.1.21) yo) YL Mz( /

I
7o - Uy g, — UpUf,a ) = ¢ (constant).
pz L“‘}"]. L1 L +1 ( )

What is left now is to show ¢ = (. Consider the asymptotic behavior of the LHS of (3.1.21) as
p == 0. (3.1.16} informs that 1, is a power series with its initial term Cp,{n)p**'. That means
the order of ) 1y, — wyup,. is at least O(p**2). On the other hand, y(p)/p® = O(p***?),
direetly from the definition of y(p). Consequently, the conceivable least order of the LHS of
(3.1.21) is O(p****). Since L > 0, the LHS of (3.1.21} — 0 {p — 0). Therefore, 0 = c.

Finally, we are ready to proceed to the proofs of Theorem 3.1.1 and Theorem 3.1.2.

{Proof of Theorem 3.1.1] Let us first show that the eigenvalue problem in question satisfies
the conditions imposed on Theorem A, part (7). The form of T, obviously meets the
requirements since dg — 0,¢e; — 0 (k — o0) and eg, # 0 (k= 0,1,2,...). We only have to

show that all the eigenvalues of Ty, are simple. In order to prove this, two facts

e There are no generalized eigenvectors of rank 2 or more corresponding to eigenvalues
for an infinite real symmetric matrix in the Hilbert space (See standard books on

functional analysis, e.g. [26))

¢ Once the first component of an eigenvector of Ty, , is given, all the others are uniquely

determined, since ex # 0. That is, there is only one linearly independent eigenvector

are cnough, since they are the definition of an eigenvalue being simple in themselves.

The derivation of an error estimate (Theorem A, part (éi)) follows. First, let us evaluat

T

u"u. Using »{p) defined in Lemma 3.1.2, we have u"u = y(p) and

(L+1)2+7?
L+1

2
uTu-“:,O

(—wpursr) (by uz =0)
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S(L+1Y¥+7° ,

(3122) (L + 1)2 UL 41
, (L+1)2 472 o
(v, = — T ur41 is given by (3.1.6) and uy, = 0).

Next, let’s check the conditions. By (3.1.15), up+1 # 0 when u;, = 0, leading u"u # 0.
And it is obvious by (3.1.9) that u™*¥/u(™ is bounded for all sufficiently large n. Now that
all are cleared, one can put the components of Ty,,, u and (3.1.22) into (2.1) and obtains
(3.1.10). (3.1.11) is easily derived by (3.1.10) and (3.1.9). g

[Proof of Theorem 3.1.2] Let us skip the proof for the part (¢) of Theorem A, since they
are shown in nearly the same way as Theorem 3.1.1. Let the derivation of an error estimate
be shown to the details instead. Substituting (2.1) with the components of Ty, and &, one
obtains

~ 2 (L + k)% + 92 ULik—1¥D4k
L+k alu

(1 +0(1)} (k — o0).

In order to achieve an error estimate in a closed form (3.1.12), what is still to be proved is
(3.1.23) e = {pz —2np — L(L+ 1)} ul (= —p*ulfug).

By the definition of @ and Lemma 3.1.2,

(L+1)%+7%
I+ 1 Urpyy

(3.1.24)a70 = (L4 Dl +y(p) = (L+ Dl +p° ug, {by uy, =0).

Replacing L by L + 1 in (3.1.5), which gives

L+ 1)
(L+1) up,, = (L+1)2+nu, -~ (( ) +?7) ULl

P
and putting v, = 0 into (3.1.6), which also gives

2
(“ﬁ)” M)ul,:ﬁmum,

(L + uy, {1 _2n (L'i"l)z}.

VL +1)2 472 i

yield, with L+ 1> 1, up, =

P p
Substituting this into (3.1.24), one finally obtains (3.1.23) (the second equality is simply by

(3.1.1)).
The proof of a7& = (L+1)u? +1(p) 5 0 has no difficulty since y{p} 2 0 and (L+1)ui > 0
(uz # 0 by (3.1.14)). (3.1.13) is derived directly by the error estimate (3.1.12) and (3.1.9).

12



3.1.3 Numerical Experiments

The author executed the numerical experiments for the presented methods in Theorem
3.1.1 and Theorem 3.1.2. The computations were done on Hitachi parallel computer SR2001,
using double precision floating-point arithmetic by FORTRAN77¢ . We used the FORTRAN
subroutine COMQRY in EISPACK [28] for the computation of eigenvalues.

We first computed pm (fm) by sufficiently large mth order principal submatrix of (3.1.2)
((3.1.4)), and regarded as the true value p. Then, for each k, we computed the reciprocals
of all the eigenvalues of Tﬁ"; (’i‘frf:}) and chose the closest to p to be pr. The values of

uren (n=0,1,2,...) were obtained by back-substitution.

Experiment 3.1.1 Experiment 3.1.2

Results of error estimate (Fi(n, p)} = 0) Results of error estimate (Fy(n, p) = 0)

Given L = 1,7 = 1.0, Given L = 0,71 = 0.0,

compute p = 6.566570903 - - - . compute p = 7/2.

Table 3.1.2. Actual errors
& estimates of (3.1.12)

Table 3.1.1. Actual errors
& estimates of {3.1.10)

k (AE.) (T.E.) ki (AE) (T.E.)
8 | -5.01E-05 -5.71E-05 2 | -1.03E-01 -8.75E-02
9 i -4.93E-06 -5.47E-06 3 | -6.58E-03 -6.93E-03
10 | -3.99E-07 -4.35E-07 4| -2.78E-04 -2.90E-04
11 -2.72E-08 -2.92E-08 5 | -7.36E-06 -7.56E-06
12 1 -1.58E-09 -1.68E-09 6 | -1.32E-07 -1.34E-07
13 | -7.94E-11 -8.36E-11 7| -1.72E-09 -1.74E-09
14 | -3.49E-12 -3.65E-12 8 | -1.70E-11 -1.71E-11

$The experiments in this paper, however, do not include parallel computations.

YA subroutine IMTQLL in the same package is replaceable, as was used in [12].

By (3.1.8) and the behavior wz4n — 0 (7 — o), we let upsn = 0 and upy—1 =€ (# 0,¢ shall be

taken appropriately so that an overflow doesn’t occur) for sufficiently large NV, and computed ur1n (0 =

N —1,N —2,...,0) successively in a decreasing order.
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Table 3.1.1 is the result of the numerical computations for a zero of Fi,(n, p), and Table
3.1.2 of F(n, p). In the tables, actual errors (A.E.) represent the LHS of (3.1.10) ((3.1.12))
divided by p while theoretical errors (T.E.) the RHS of (3.1.10) ((3.1.12)) without [1 +o0(1)}],
again divided by p, and 3 significant figures are displayed after rounding. One can observe
that (A.E.) and (T.E.) get closer and each error gets smaller acceleratively as k becomes
larger. Those figures are in agreement for the first digit in Table 3.1.1, and for the first two
digits in Table 3.1.2.

Let us show another result in Fig. 3.1.1, or the (5, p)-plots satisfying Fp(n, p) = 0 and
Fo(m, p) = 0. For given each 7, the computation of p was performed by the stated procedure.
To visualize (3.1.25) (appearing in the next section), p =+ /92 + (L + 1)2 (with L = 0)
is also plotted.

3.1.4 Remarks on the Zeros of Fi(n, p) and Fj(n, p)

This final section focuses on some remarks on the zeros p of Fi(n, p) and Fi(n, p).
[Remark 3.1.1] For given L and 7, the region of zeros of F}(1, p) is determined by the

inequality:

(3.1.25) p>n+/n?+(L+1)2

[Proof] By (3.1.23), v} {p* — 2np ~ (L + 1)*} = (2L+3)ul ., +(2L+5)u? o+ - The RHS
is obviously positive, then so is the LHS. That means p? — 2np — (L + 1) > 0. Considering

p >0, one has p>n+n?+(L+1)% |

(Remark 3.1.2] For given L and 1, the region of zeros of Fr.(7, p) is also confined to (3.1.25).

[Proof! Denoting the smallest zero of uz (u}) by ot (pit), we will show plst < pi&*

. Noting
that uz, — 0 as p — 0 {by the form of uy, in (3.1.16)) and ur(n, pi**) = 0, one finds, from
the Rolle’s theorem, that there exists at least one p satisfying v}, = 0 in (0, p*). Therefore,
pi*t < p§. This and Remark 3.1.1 are sufficient to prove the proposition. g
[Remark 3.1.3] There is one and only one zero of Fi(7, p) between two adjacent zeros of
Fr(n, p).
[Proof] Let us prove “there is one and only one zero of F,(1, p) between two adjacent zeros
of Fi{nm,p)”, which is equivalent to the proposition. By (3.1.23), o2 2np— L{L+1) >0
holds when uf, = 0. Recalling (3.1.1), which is % + {p? = 2np — L(L + 1)} ur/p* = 0, we
find that ur, and v/ have different signs then. Also note uy, # 0 (and so is u7) when uj = 0
by (3.1.14).

Suppose p1,02 (p1 < po) are two adjacent zeros of ug. Then, uy is of definite sign in

(o1, p2). Now, without the loss of generality, we may assume ur, > 0. If there are more than
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one zeros of uy, in (p1, p2), there is at least one pair of a maximal and a minimal point of uz,
there, which is absurd since u] > 0 at a minimal point, or u; and ] are of the same sign.
This contradicts that u;, and v} have different signs at the zeros of u}. g

Remark 3.1.4] There is one and only one zero of Fp4,(7, p) between two adjacent zeros of
Frin, p).

[Proof] The next equation is obtained if one lets u;, = Fi(n, p) = 0 in (3.1.6):

(3.1.26) (L+1)-up, = —+/(L+ 12412 uper.

This shows that v} and ur.; have different signs at the zeros of ur. Now, let pi, p2 (01 < p2)
be the adjacent zeros of uy. Since u; does not have double roots, obviously the signs of |
wy (p1) and u} (py) are opposite. This means that up1(p1) and up41(pe) are of different sign
too. Then, it is guaranteed, from the intermediate theorem, that there exists at least one
point p which satisfies ur.;(p) = 0 in the interval of (py, p2).

The next to be proved in order is that there is only one p in {py, p2} which is the zero of

ur41. Replacing L by L+ 1 in (3.1.5) gives

L +1)?
(L+1)-u£+1 :\/(L+1)2+772 U, ~ (“(““"”j——)+77> UL41-

J7)

Suppose that there are more than one such points in {p1, pa), or that satisfies ur. = 0.
Substituting uz4; = 0 into the above equation yields (L + 1) - uf,, = /(L + 1)? +7? ur.
Since uy, is of definite sign in (p1, p2), so does u},;. This obviously leads a contradiction,
since uz+1 == 0 has no double roots and w7, has to be of opposite signs at two adjacent

zeros of upc1. B

3.1.5 Summary of Section 3.1

In this paper, the author derived an error estimate for approximate zeros of the regular
Coulomb wave function F(n, p} and Fj(n, p) for given L and 7, as a successor of [12]. Some
numerical results enough to show the validity of the error estimates were also presented.
Furthermore, the author proved some properties regarding the zeros of Fy(n, p) and Fi(n,p),
as well as the new relations such as (3.1.19). The distributions of (7, p)-pairs satisfying
Fo(n, p) = 0 and Fi(n, p) = 0 were investigated too.

And let this paper be finished with some future plans. What are thought to be desirable
for further research are: the computation of “other” zeros (such as the zeros n of F; r(n, p) for
given L, p); the computation of complex zeros when there are no restrictions on parameters

L,n, and p; and the investigation of the distribution of those complex (L,n, p)-sets.
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3.2 The (Inverse) Eigenvalue Problem of Mathieu Differential Equa
tion

Given a complex number A, we consider the problem of finding those values of g for which

the Mathieu's equation
w’(2) 4+ (A = 2g cos 22)w(z) = 0

admits - or 27- periodic solutions. This is an inverse problem to the usual one where ¢ is
given and A, an eigenvalue of the equation, is unknown.

In this section, we propose to solve the inverse problem by a matrix method. We will
give an extremely accurate asymptotic error estimate.

In addition, we present a theorem (Theorem 3.2.3) which is fundamental to the method
that computes the points (g, A) such that ) is an eigenvalue satisfying dA\/dg = 0, with a

good rate of convergence.

3.2.1 Description of the Problem

In this section, the solution of the “inverse eigenvalue problem” of the following second-

order linear differential equation known as Mathieu differential equation
(3.2.1) w'(z)+ (A —2gcos2z)w(z) =0 (0L 2 < 2n),

where ¢, X are both parameters, is given. The stated “inverse eigenvalue problem” of Mathieu
differential equation is defined together with the “(ordinary) eigenvalue problem” which
equally should be treated as a pair:
[Definition] Let ¢ be given. Then, Ain (3.2.1) is called an “eigenvalue” if the solution w(z)
of (3.2.1) is either m- or 2a- periodic, and further, the problem of obtaining w(z) (called
Mathieu function of the first kind) as well as an eigenvalue, is defined as the “(ordinary)
eigenvalue problem”.

On the other hand, we think of the inverse problem to the above stated one.

Let X be given first. Then, we call ¢ in (3.2.1) an “inverse eigenvalue” if the solution
w(z) of (3.2.1) is either - or 27 periodic, and further we define the problem of obtaining
the Mathieu function of the first kind w(z) as well as an inverse eigenvalue as the “inverse

eigenvalue problem”.

Let me then show the result of investigation as for the literature of the two eigenvalue
problems defined above first, before proceeding to the actual solution of the inverse eigen-

value.
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As for the ordinary eigenvalue problem, there is much literature dealing with it. The
solution of the problem was initiated by using a continued fraction in {8]. Later, [32] proposes
the method for its solution by dividing the range of ¢ into four intervals to obtain A fast
and securely. In [19], the algorithm for obtaining the maximum 24 values of A with the
accuracy correct to the 9 decimal points is shown. [31] succeeded in computing eigenvalues by
Newton’s method. The newly published [13, Chapter 4] deals with the problem of obtaining
complex eigenvalues A for given complex parameters ¢ by matrix method. The books to be
recommended to read are [8] and [20].

Specifically, [13, Chapter 4] shares a similar methodology with the one presented in this
section. Theorem B is applied to give a solution for the ordinary eigenvalue problem. As a
result, this paper enables the solution for the complex parameter ¢, and the error estimation
for its approximate eigenvalues in equation form. For the later reference, let us extract one

of the core theorems in [13, Chapter 4]:

(13, Chapter 4] {ordinary eigenvalue problem, sesm(z, A) type. As for sean(z, ), refer to
Section 3.2.2) Let ¢ be given. Then, A # 0 is an eigenvalue of (3.2.1) if and only if A is an

cigenvalue of T defined below, or

(3.2.2) Ty = Ay, with
2 q 0
42 q
T = q 62 :D(T)—’ez,OﬁyZ[Bg,Bq,Bﬁ,”_]TGQQ
q T
L 0 B J

(where D(T) = {[ul® u® |7 :[22.u® 42. 4 |7 € £2}, and again, the undefined term
By(k = 1,2,...) appears in Section 3.2.2 with its definition). Furthermore, assuming the
existence of T~!, we have A\, — )\, where )\, is an appropriate eigenvalue of Ty, and Ty the
nth principal submatrix of T. Moreover, with the assumption that A is a simple eigenvalue

of T and y7y # 0, the following estimate is valid:

A=Ay = %{1 + o(1)} (n — oo}
In [13], it is also shown that T + oI has an inverse for an appropriate ¢ Then one need not
be anxious about the existence of T™!.
The ordinary eigenvalue problem is applied to various fields. One of the examples is the

application to the ship stability problem [3).
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In [5], the ship stability problem is discussed with the analysis of the Mathieu differential

equation with the term involving a first-order derivative dy/dz

d2y B, \ dy )
o7 <weIwm) e +{a — 2¢sin2z)y = 0.

In this equation, B, represents the total hydrodynamic roll damping, w, encounter frequency,
and Iy, roll virfual mass moment of inertia. And @ and ¢ are used as parameters. In this

paper, three cases, undamped, linearly and non-linearly damped have been studied and the
corresponding Mathieu charts are created.

Opposed to so many literature and applications for the ordinary eigenvalue problem,
no literature for the inverse eigenvalue problem has been found. This indicates that this
problemn may hardly have been researched, although two eigenvalue problems (ordinary and
inverse, of course) should be handled equally.

In this section, we will show the solution for the computation of inverse eigenvalues of
Mathieu differential equations as one of the applications of Theorem A. We deal with the
computation of an approximate (complex) inverse eigenvalue ¢ for given (complex) A (but the
computation of w(z), the Mathieu function of the first kind, is excluded in this paper). Since
this solution is based on Theorem A, the superior characteristics of the theorem directly lead

to the uniqueness and the usefulness of this solution presented here, which are:

1.) approximate inverse eigenvalues (say, ¢} can be close to the true value ¢ with arbitrary

precision,
2.} an asymptotic error estimate of ¢, to ¢ is achieved,
3.) the same algorithm applies to the computations for given real and complex A,
4.)  the simple procedure makes it easier to implement the algorithm into a variety of

computers.

3.2.2 Three-Term Recurrence Relations Regarding Fourier Expansion Coeffi-

cients

When Mathieu differential equation (3.2.1) has a 7- or 2 periodic solution w(z}, w(z)
is called Mathieu function of the first kind, and is classified into 4 categories, depending on
the type of expansion ((Fourier) sine or cosine series expansion and the period  or 2m) [2].
They are shown in Table 3.2.1:
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Table 3.2.1. Four types of Mathieu functions of the first kind

Mathieu function ' even or odd | period

o0

w(z) = ceam(2,A) =) A cos(2k)z, (m=0,1,2,...) even 7
=

w(z) = ceamy1(z, A) = Z Agkpr1c08(2k + 1)z, (m=10,1,2,...) even 2n
k=0

w(z) = segmz,A) = Z Baksin{2k)z, (m=1,2,3,...) odd 7
=

w{z) = 3€2m+1(za )‘) = Z Bagy1 sm(?k + 1)25 (m =0,1,2,.. ) odd 2
k=0

In Table 3.2.1, “even”, “odd” represent w(z) being an even, odd function, respectively, an
e, 2" w(z) being n-periodic, 2w-periodic, again respectively.
It is found that the expansion coefficients Ask, Agg+1, Bagse, Barsr (K =0,1,2,...) hay

the following relations, by the integrability of w(z) and the Bessel’s formula in [6]:

oC
[Ane® <00, > |Ans1|® < 00,

)8

(3.2.3) k=0 k=0
Y 1Bu|* <oo, Y |Batil? < o0
k=1 k=0

Also, the formulas regarding the expansion coefficients are known as below [2]. First, defir
(3.2.4) mEnrt-A{n=012...).
(i) Formulas regarding {Ag} (k=0,1,2,...) (ceam(2, A) type)

rodp + Q’A2 =
(3.2.5) 2qAg + oAz + qAy =

fown Y o B s

qAzk—2 + TorAgk + gAgke = 0 (£ 2>2)
(i7) Formulas regarding {Agky1} (K =0,1,2,...) (ceams1(2, A) type)

qgA) + rA+qA; = 0
(3.2.6) qAgk—1 + TopsrAzkr1 + Ay = 0 (k2 1)

(¢1i) Formulas regarding {Bx} (k= 1,2,3,...) (seam(z, )) type)

reBy+gBy = 0
(3.2.7) qBax—2 + rokBot + qBora = 0 (k>2)
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(7v) Formulas regarding {Baxs1} (k= 0,1,2,...) (seam+1(z, \) type)

—'qu -+ T‘lBl 4 qu = 0
(3.2.8) qBy—1+ r2e41Borr1 + @Bz = 0 (k2 1),

(3.2.5)~(3.2.8) are the fundamentals to proposing the method for the inverse eigenvalues
in Section 3.2.3.

Applying Theorem C (as defined in Section 2), a theorem on second-order linear differ-
ence equations, to (3.2.5)~(3.2.8) yields the behaviors of the solutions of these recurrence
relations. Let us apply the theorem to the case (44¢). And let the other three cases be skipped
since those solutions essentially have the same behaviors. The recurrence relations with the

same coefficients as (3.2.7),

’I"ghl -+ th 0
(3.2.9) qhn_1 + Tonhn +ghng = 0 (n22),

Il

are guaranteed to have two independent solutions {h, 1}, {h.2} with the behaviors
_ (2n)? Pnt+12 q

hnt1,1
( ) hn2 (2n)?

hn1

since the conditions corresponding to (2.4) are met.

1+ o(1)], [1+ 0(1)] — 0 (n — co)

It is easily found that the solution {h,;} diverges while {hn, 2} converges to 0 (both as
n - 00). Considering (3.2.3}, it is clear that the solution {B,,} of (3.2.7) has to have the

behavior of {hn,2}, the minimal solution of (3.2.9), or

Bamity _ __ 4
Bgn (2?’1)2

(3.2.11) [1+0o(1)] (n — c0).

Furthermore, if we may assume that 7, = n®—X # 0 (n = 2,4,6,...), the recurrence relations
with the terms {hz,—1} (n=1,2,...) vanished,

il

1 1 1 1
("‘“ + ""‘) hz + "‘"h4 --'2“'1"4]’142,
rp T A q

1 1

1
honts = 5§T4n+4h2n+2 (n=12,...)

Ton+2
are obtained by (3.2.9). Likewise, with the application of Theorem C, the above relations
are found to have the following two solutions {Aan1}, {han2}:

1
+ ) h2n+2 +

(3.2.12)
Tan+2 Tan+6

han + (
n Tdn+6

ha(n ¢ han, ?
Andl (4”;) (14 o(1)], 2oti? ‘;)4 [1+ 0(1)] — 0 {n — o0).

3.2.13
( ) han 1 q han,2 (

Again, with the consideration of (3.2.3),

B4(n+1} — q2
B4n (4’1’1.)

(3.2.14) 11+ o(1)] (n — co).
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Note that (3.2.14) is derived from (3.2.11), too.

Then, we shall propose the method for the approximate solutions of inverse eigenvalues
from the next section. Since the four cases (3.2.5)~(3.2.8) are essentially the same problems,
only the problem for the case (i) (seam (2, A) type) will be discussed to the details. As for

Ceam (2, A), S€am+1(z, A), ceame1(2, A) types, only the final results are shown.

3.2.3 The Solution of Inverse Eigenvalues

This section deals with the main theme, or the algorithm for the computation of ap-
proximate inverse eigenvalues is proposed. In addition, the error formula is derived for the

approximate eigenvalue obtained by the algorithm.

*The Computation of Inverse Eigenvalues of w(z) = sexn(z, A} Type Let the
author first categorize the problem into two cases: (a) A # (2k)? (k = 1,2,...), and (b}
A\ = (2k)? (for some natural number k) and discuss each solution.

(a) the case of A # (2k)? or ro 0 (k= 1,2,...):

First, let us show the theorem concerning the reformulation of the problem for the com-

putation of inverse eigenvalues, as a matrix eigenvalue problem.
Theorem 3.2.1] Let a complex number A be given. Then, ¢ # 0 is the inverse eigenvalue
of Mathieu differential equation (3.2.1) of segn(z, A} type if and only if 1/¢? is the eigenvalue

of a compact operator V in £2

1l 1y 1 “
AR o °
1 L(_I-_i__l-) 1
(3.2.15) V= r6v/Tay/Ts 7876 T T107  1i0/Te/T1
o 1 1

rov T Pt )
Ti0v/Te\/T1z 112710 14

L 0
Note that 4 is dependent only on & and X as defined in (3.2.4). Let 0 # x = [z{V), 22 T e

% be a corresponding eigenvector, or

(3216) Vx = aﬁ'x

be satisfied. Then, z® (s = 1,2,...) are uniquely expressed as follows, up to scalar multi-

plications:

(3217) :r:(é) = \/?"4;'341' (?, = 1,2, )
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[Proof] Suppose that ¢ # 0 is the inverse eigenvalue of Mathieu differential equation of
s€am{z, A) type. Namely, (3.2.7) holds. Deleting the terms { B2} (k=1,2,...) of (3.2.7),
one obtains the recurrence relations only with {Bg} (k=1,2,...), or

1 1 1 1
2 b =) Byt =By =
(Tg + rﬁ> 4 -t o D q27"4f34,
1 1 1 1
(3.2.18) Buy, + + Buajya + Byys = —5rani4Bakre (k=1,2,...).
Tak+2 Tak4+2  Tdk+6 Tik+6 q

Reformulating (3.2.18) into matrix form with symmetry gives (3.2.16). In order to show that
1/¢% is the eigenvalue of V, it suffices to prove 0 # x € 2.
x = 0 means that w(z) of (3.2.1) is a trivial solution, then we can assume x # 0. Then,

what is left to be proved is x € £2, or ||x||* < oo from its definition. Computing ||x||* gives

2 2
(3:219) ll? =[O+ oD = B VB
|6, Theorem 8.25] guarantees that
(n+1) |2
RE,}E{}OSUP ey <1

is equivalent to the convergence of .20, [#™[? = ||x]|*. By (3.2.14), the behavior

(n+1) o 1B 0dn +4)2 =X 2
(3.2.20)| _ | fTina) | Bamsa | _ |V e L+ 0(1)] = 0 (n — o0)
™ VTan Bin [(4n)2 — A 256n

is obtained, which leads obviously to R < 1. Then, ||x||* < co is satisfied and that 1/¢® is
the eigenvalue of V is guaranteed.

Conversely, we shall show that letting the eigenvalues of V be 1/¢%, one obtains the
solution of (3.2.1) of seq,(z, A) type.

Before putting the eigenvalue of V as 1/¢?, the proof that 0 can never be an eigenvalue of
V is in order. Supposing the contrary and we shall lead a contradiction. If 0 is an eigenvalue

of V, there exists an eigenvector 0 # a € ¢* of V corresponding to the eigenvalue 0. Namely,
Va=0-a=0

holds. Let us define a; (4 = 1,2,...) by a = [{/T401, /Ts02, - - J7, and for convenience, ap = 0.
Expanding the above matrix equation gives

1 1 1
ak-—1+( + )ak—i— A1 = 0(k=1,2,3,...).

Tak—2 T4k-2 Tak+2 T4k+2
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Again, defining Ay = a1 + ag gives

1 1
Ay +
Tqr—2 Tak+2

Ak-l—l =0 (k: 1,2,...),

which leads to

Ap = (1) ey (k=1,2,. ).
2

@ = 0 easily derives a = 0, therefore, a; # 0. Since [Ay| = o) + ax| — oo (k — oo},

(3.2.21) 00 & [ap-1 + ax[’ < 2 (lag- [* + laxl?) (k — co)

is obtained. This however contradicts a € ¢2. Taking a sufficiently large natural number N

leads

]

afl? ral - @] + |ra] - faa)? + Iz - [as]? 4 --

|7an] - |aN|2 F lranaal - lana P+ > layl® + lay P + -
lan(” + law]® | lanarf* + lansol?
+
2 2
This contradicts the assumption.

IV

IV

+ -+ — oo {(by (3.2.21)).

Now one is allowed to write the eigenvalue of V as 1/¢%. The next step is to define
{hat} (k =1,2,..) by h = [\/F;ﬁg, J?Tsﬁ4, \/r_ﬁfaﬁ, ..J¥ e £*, assuming that B is an eigen-
vector of V corresponding to the eigenvalue 1/¢%. It follows that Ay — 0 (K — ©0), since
h € ¢°. Now, expanding Vh = ‘Jﬁzﬁ gives the recurrence relations with the same coefficients as
{3.2.12). However, as in (32.1(?), only the minimal solution {hs.2} converges to 0, although
there are two independent solutions {hag 1}, {har2} (K = 1,2,...) of (3.2.12). This implies
that the solution {fagk} is a scalar multiple of {hg 2}, or ok = cBuk (c#0,k=1,2,...).
Therefore, (3.2.18) holds. Namely, ¢ # 0 is the inverse eigenvalue of Mathieu differential
equation (3.2.1) of sey,(z, A) typeg

Theorem 3.2.1 represents that the problem of computing inverse eigenvalues g of (3.2.1)
is reformulated as the problem of computing g obtained by the eigenvalues of the matrix
defined in (3.2.15). Using Theorem 3.2.1, the next lemma is also proved easily:

[Lemma 3.2.1] For given ) < 4, the inverse eigenvalue ¢ is always real.
[Proof] First, consider the case of A < 4. It suffices to show that V in (3.2.16) is a positive
definite matrix. rpn, = ()2~ A2 22— A=4-XA>0(n=1,2,...) shows that V is real

symmetric. Defining a real matrix S as

€1 0

€y €3 1 .
== :32“""5£26':"‘_—‘_”—”’_ 33112!"')’
s o e = e

-U .. " .] ’
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one can verify that V = 87s holds. This guarantees that V is positive definite.

I case of A =4 {, when r, = 0), one only has to follow the case (b} {(when &£ = 1), to be
discussed soon. After this, this can likewise be proved as A < 4 case. Theretore, A < 4 leads
that ¢ is real. g

One could say that Lemma 3.2.1 gives a sufficient condition for all ¢’s to be real when A
15 glven.

Next, with the application of Theorem A to (3.2.16), we shall derive Theorem 3.2.9.
Theorem 3.2.2] Given complex X, consider the eigenvalue problem (3.2.16) with ¢ # 0.
The definitions of V,x in (3.2.16) are retained in {3.2.15),(3.2.17). Then, for cach n, if one
tekes g, by & = 1/¢¢ properly, where £, is the eigenvalue of V,,, and Vv, is the nth principal

submatrix of V, one has a sequence {¢.} converging to ¢. Furthermore, with the assumption
of x"x # 0, the following error estimate is valid:

3 - -
Sy ey ey q 13)4!1 1[(.1')4”.,?4 \
(3.2.22 = gu= L 2B ] (s o0).
3 J] fj q 2 'f',‘.”_,-rz , (Xj X){ ( )] ( )

Also. direetly from (3.2.22} and (3.2.14),
T Yn 4 i J— .
(3.2.23) 47 (’) s (L o(1)] (n — 00),
' q = n 16 n
[Proof] That Theorem A may apply to the eigenvalue problem (3.2,16) will be proved. The
components of V obviously meet the conditions in Theorem A. Besides, x € €% is already

proved in Theorem 3.2.1. Then, what remains to be proved here is the next two:

(i) I we let x = [ 2 )T = [ /By, /T Bs, .. JF, /2™ is bounded for all

sufficiently large n.

(i) 1f xTx # 0, then the eigenvalue 1/¢* of V is simple.

i

(/) Tt is sufficient to show [z /2™ — 0 (n — oo). This, however, is already proved in
(3.2.20).
(ii) Take the contraposition. Namely, one only has to prove: ‘the eigenvalue 1/¢* of V has

a generalized eigenvector of rank 2 or more, or has two or more independent eigenvectors =

First, the second case ‘the eigenvalue 1/¢? of V has two or more independent eigenvectors’
is ruled out (this is already shown in the proof of Theorem 3.2.1). This means we can only
assume the first case ‘the eigenvalue 1/¢? of V has a generalized eigenvector of rank 2 or

. - - 2 . - e .
more’. From the definition, there exists a vector 0 # v € €% given an eigenvector x, which
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satisfies

i
x = (V= =D,
q

1 1
(V—=Dx = (V- —=D%u=o.
¢ ¢
The computation of x''x yields
T 1 T 1
x'x = {(V—-=DHou} (V- Egl)v
q

= (V- 5151)2'0 (from the symmetry of V) = 0,

‘T'hus, Theorem A may apply to the problem (3.2.16). The error formula (2.1) is computed

as follows:

1 1 m(q + qn) ) ((] - Qn) ”2((1 - Qn)
LHS = & = = 1+ 0(1)),
7 4 7@ g e
1
e ~—~—~VT‘4?’LB4YL\/ Thftn;Brlm!r‘d -
AT an/ Tdn . B nB 1o .
RHS - T4 2\/7‘ \/74 +4 ; [1 4 ()( 1)] — __Wﬂ“_.m_iu._}w‘m_u!l 4 ()(1)}‘
X X Tan4n * (X X)
followed by
3
Barn Byn.
g—qgn =~ AL 3451 (s o0).

2 Tinaa- (xTx)
By the direct computation, the rate of convergence of ¢, to ¢, defined by (¢~ ¢ni1)/{g —¢n),

is derived as

= n+ s Bn‘ Bn g B Ban.
0 net (mgm . W[l + 0(1)]) / (_5’2_ : __i’__j__té_.[l +0(1)])

2 Typs (X' x) Tan+2 - (xTx)

Tan4-2 Bdn+4 B4n-}—8 q )4 1
- ' ' =) 3 3.2.14)).
e St 28 o) = (£ 75 [L+o(1)] (n - 00) (by (32.10)

Theorem 3.2.2 guarantees that the values of ¢, computed by the eigenvalues of V,,, the
nth principal submatrix of V, reach the true value g faster as n gets larger, and the errors are
evaluated precisely using (3.2.22). The four uniqueness (or usefulness) mentioned in Section
2 are succeeded to this Theorem 3.2.2.

[Corollary 3.2.1] The problem for the computation of the inverse eigenvalue g for given A
is also equivalent to the computation of ¢ by the eigenvalue problem of the following matrix
U:

1

(3.2.24) Ux = Egic, where
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- S ] -
T v | ¢ V75 By
= }‘g(;‘% + -}"-i") b VTaBs
U= | TevTVTs 8 T8y/Te\/T10 P P e LR
) Ll Ly o T s
T‘S\/m o ('f'B " ‘?‘12) ' VrioBio
0 . . . |

Taking g, by 6” = 1/ qn properly, where £,g 15 the eigenvalue of U, and U, is the nth
principal submatrix of U, one has a sequence {§,} converging to ¢. Furthermore, with the

rssumnption of X' x # 0, the following error estimate is valid:

3

e e - i Hin zb]znaz )
£5.2.25] q = G = — gt g1 (00— 00).
1 f 2 - an (x[ X) [ ( )j ( )

Proof] In the same way as the derivation of (3.2.18), we first delete { By, }(n = 1,2,...)
from (3.2.7}) and express the relations in matrix form (with symmeiry) so that {3.2.24) is
obtamed. Let us omit the details since they are basically the same proofs as in Theorem
3.2.1 and Theorem 3.2.2. u

‘Remark 3.2.1] {¢.} converges faster than {¢.} to ¢ as the following asymptotic relation
represents:

2

7% ( L+ o(1)] (n— 00).

g Gn 25

‘Proof! The direct computation of (¢ — ¢.)/{q ~ ¢.) by {3.2.22) and (3.2.25) gives

f Tan Fian Bana. <%
90 L T BanBania 21+ o(1)
G = A Tan+2 B!inw'.?Bdn-i"Z X X B
(4n)? — X q q %% _ ¢ Ik T
: . 5 : 1+ o(l)] = v o 1+ 0l 1))
(dn+ 22 =X (4n)? (4n +4)* xTX{ o(l) 256n1 xIx{ Fob)

[n order to evaluate {x7%)/(xx), multiplying the both sides of the {th line ({ = 1,2,...)
of {3.2.7) by By gives

3.2.27) roBs 4+ qB:B, = )
‘f \5128) (]B'g B‘q T4 b):f 4 ([B4 Bﬁ = {)
(3.2.29) qBiBs + mB: + ¢BgBs = {
13.2.27) - (3.2.28) +(3.2.29) — - - - leads T‘ngwf',;Bf + rﬁ.Bgmrng%— coe= () or

(3.2.30) T2822+T5f3g+-"::?"48,?“?-7’35’3 e
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The LHS of (3.2.30) is "%, while its RHS is xTx, leading 7% = xTx. This shows (3.2.26)
holds.m '
[Corollary 3.2.2] The problem for the computation of the inverse eigenvalue ¢ for given A

is also equivalent to the computation of ¢ by the eigenvalue problem of the following matrix
T:

(3.2.31) Tx = —%i, where
0 1 0 | i ;
X T2vT4 . : VT2Bs
ko) e
R R I R RV S Bl P
0 g g :

Taking ¢, by én = —1/§, properly, where én are the eigenvalues of T, and T, is the nth
principal submatrix of T, one has a sequence {g,} converging to g. Furthermore, with the
assumption of x7 % # 0, the following error estimate is valid:

2
. By, By,
(32.3) 0= 4o = =22 14 o(1)] (m — o).
X
[Proof] One gets (3.2.31) after changing (3.2.7) and putting into matrix form. Again, the
above is derived in the same way as Theorem 3.2.1 and Theorem 3.2.2.3

[Remark 3.2.2] {g,} converges faster than {§,} to ¢.
[Proof] (¢ = ni1)/(g — Ga) by (3.2.32) yields

q— é’nJrl

1
3.2.33 = - - —
( ) g = Qn

2
_ 1‘% — [140(1)] (n — 00) (the details are skipped).

From the comparison between (3.2.23) and (3.2.33), it is clear that {¢,} converges faster

than {¢.} to ¢. X
[Remnark 3.2.3] (3.2.16), (3.2.24) are derived by (3.2.31).

[Proof] T%x = blgx is easily derived from Tx = —%fc. T? in a concrete form is
1 0 1 o ]
gy MV ]
0 mlmtr) 0 reva
2 _ 1 Al 1
Ll e o 0 g (rg + 7g) 0 )
1 1od 1

75 7‘4\/7_'52 0 T8 (1‘5 + 7"10)
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which is symmetric penta-diagonal with (¢, i-+1), (i+1, ¢} components vanished {i = 1,2, ..
Then, expanding T?x = —lgic, followed by picking up odd and even lines, and reformulat:
thern into matrix form give (3.2.16) and (3.2.24), respectively. g

[Remark 3.2.4] 1If the truncation size of the matrices of (3.2.16), (3.2.24) and (3.2.31)
the same, the numbers of the approximate inverse cigenvalues obtained from {3.2.16) a
{3.2.24) are twice as much as that of (3.2.31).

{Proof] One gets n approximate inverse eigenvalues from the nth principal submatrix
(3.2.31). On the other hand, in the cases of (3.2.16) and (3.2.24), 2n of the inverse eigenvalt
arc obtained since it is obvious that if ¢. or §, satisfies (3.2.16) or (3.2.24), so does —q,
.

This concludes the theorem for the computation of inverse eigenvalues of Mathieu d
ferential equation for the (a) case (where A 5 (2k)* (k = 1,2,...)). Next, the solution f
the {b) case, where A = (2k)? (for some natural number k), is given. The same methe
applies to this case as (a) case, then the details shall be omitted. Instead, the process f
the problem to be reformulated and the error formula given by the application of Theore
A are shown, only as for the one with the fastest rate of convergence.

(b}, the case of A = (2k)? (for some natural number k):

First, let us take the case of k = 1. The first three relations of (3.2.7) are

By + qB, _—
qBy + r4By + gBs = 0,
gBy + 716Bs + qBg =

13, = O since 79 = 0 and ¢ # 0. Also, rBs -+ ¢Bg = 0 from the third equation. This and t}
rest relations can eventually be applied by Theoremn A as the (a) case.
Secondly, take the case k > 2. For convenience, define By = 0. Picking up the k-

1,k k -+ 1th equations of (3.2.7), one gets

(3234) gBok_q + TopoBa_o + qBy = (),
(3.2.35) qBak—a + TuBau + qBokis = 0,
(3.2.36) qBak + Twe2Baiz + qBauys = 0.

Bog_z = —Barye since rop = 0 {(by (3.2.35)). (3.2.34) - (3.2.36) computes

LHS = ¢Boy.q + 7ok Bok—2 ~ Torr2 Barro — ¢ Bor+a
= qBak_4 — (rok—2 + Tor42) Bary2 — ¢Bax+a = 0 = RHS,
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where rop_g + Tor0 = 8 as 75 = 0. Then,

(3.2.37) q(—Bag—_4) -+ 8Bakss + qBapis = 0.
Substituting Boy..o = —Bgj o into the k& — 2ﬁh equation gives
(3.2.38) 9(—Bak-6) + Tox—a(—Bag-s) + gBogrs = 0.
Likewise, the 1~(k — 3)th equations of (3.2.7) are transformed as

ra(=Ba)+q(—=By) = 0
(3.2.39) q(—Bam-2) + Tom(—Bom) + ¢{—Bami2) = 0 2<m <k -3).

Thus, using the k + 2th equation of (3.2.7), along with (3.2.39),(3.2.38),(3.2.37), one only
has to take the same steps as the (a) case. Refer to Appendix 1 for the results.

*The Computation of Inverse Eigenvalues of w(z) = ceam(z, ), s€2m+1(2, A) and
ceam+1(2,A) Types The eigenvalue problem for w(z) = cegm(z, A) type can be reformulated
as matrix eigenvalue problem by the same process as we handled sesn.(z, A} type. The matrix
forms and error estimates are shown for the cases (a) A # (2k)? (k = 0,1,2,...), and (b)
A = (2k)? (for some k), only as for the one with the fastest convergence. See Appendix 1.

As for the types of w(2) = segm+1(2,A) and ceoms1(2, A}, one can apply Theorem A,
by reformulating (3.2.8), (3.2.6) into the form of Ty = —-%y. However, since the (1,1)
component of matrix T is nonzero, which is not the case of sepm(z, M), ceam(z, A) types, one
1s not allowed to separate the eigenvalue problems into two, in order to have a faster rate of

convergence. See also Appendix 1.

3.2.4 Numerical Experiments and ¢—\ Graph Making

In this section, the numerical results of error estimates obtained in Section 3.2.3 are
shown for the cases of seg,,,(2, A) and ceam(z, A) types. Also, pairs of real points {g, A) where
) are eigenvalues and ¢ are inverse eigenvalues, will be plotted. All the computations were
done in quadruple precision using Fortran77 on Fujitsu VPP-500, using comqr.f in EISPACK
(28] for the computations of matrix eigenvalues.

In the experiments, actual (relative) errors (¢ — ¢n)/¢ and theoretical errors (the RHS
of the error estimate without the term {1 + o(1)}, again divided by ¢} were computed and
compared to see its validity. The true value ¢ was given by one of the ¢n’s, which were

obtained from the eigenvalues of truncated matrices of sufficiently large size n. For each n, the
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closest g, to g, where ¢, were computed from the eigenvalues of the nth truncated matri
was regarded as the approximate value. {Bj,}, which appears in the error estimate ({A
for cearn type), were computed by backward substitution from (3.2.7) (likewise, (3.2.5))
Ban

(likewise, Ay, — 0 (n — 00)).

0 for sufficiently large NV (likewise, Asy = 0), from the fact By, — 0 (n —

In the tables, three digits are displayed after rounding, and ‘Re’, ‘Im’ represent the 1

and imaginary parts of the observed data, respectively.

Experiment 3.2.1

Given A

compute ¢

50 + 804,

Results of error estimate(segn,(z,\) type)

(263.9649620 - - ) ~ (95.28516350 - - )i

Table 3.2.2. Actual errors & estimates of (3.2.22)

Actual Error Theoretical  Error
n Re Im Re Im
2 | 1.04e+00 -2.05e-01 ;| -5.16e-02 -2.54e-01
3 | 824e-01 2.34e-01 9.19¢-02  -2.01e-01
4 | 6.37e-01 2.11e-01 2.83e-01  -3.76e-03
5 | -1.27e-01  1.60e-01 | -1.33e-01  2.25e-02
6 | 2.74e~03 1.27e-02 2.65e-03 1.36e-02
7 | 2.52¢-04  2.28e-05 2.54e-04 1.82e-05
8 | 5.07e-07 -1.24e-06 ; 5.01le-07  -1.24e-06
9 | -1.95e-09 -1.64e-09 | -1.95e-09 -1.64e-09
10 | -1.70e-12  1.08e-12 -1.69e-12 1.08e-12
11| 1.96e-16 7.02e-16 1.96e-16 7.02e-16
12 | 1.31e-19  1.52e-21 1.31e-19 1.48e-21
13 | 3.50e-24 -1.20e-23 3.38e-24 -1.20e-23

Actual Error: (¢ — ¢n)/q

Theoretical Error : —i ~ M - E

2 rynie- (x'x) 4
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Table 3.2.3. Actual errors & estimates of (3.2.25)

Actual Error | Theoretical Error
n Re Im Re Im
2 1.02e+00 -1.95e-01 | 9.31e-02 6.86e-01
3 8.49e-01  2.15e-01 2.38e-01 5.05e-01
4 | 6.60e-01 2.09e-01 | -1.07e-01  2.59e-01
5 | -6.45e-01  4.59e-01 -6.49e-02  -1.71e-01
6 | -1.61e-02  5.39e-02 | -2.83e-02  4.85e-02
7 | 1.61e-03  1.47e-03 1.70e-03 1.47e-03
8 | L1.8le-05 -1.11e-05 1.80e-05  -1.13e-05
9 | -1.57e-08 -6.38e-08 | -1.59e-08 -6.38e-08
10 | -7.91e-11 -5.35e-12 | -7.9le-11  -5.26e-12
11 | -1.51le-14  3.9le-14 -1.51e-14 3.92e-14
12 | 8.42e-18  6.49e-18 8.42e-18 6.49e-18
13| 1.11e-21 -8.21e-22 1.1le-21  -8.21e-22

Actual Error: (g — cjn)3/q

Theoretical Error :

Ban-2Bsns2 1

Table 3.2.4. Actual errors & estimates of (3.2.32)

Actual Error Theoretical Error

n | Re Im Re Im

2 | 0.00e+00 0.00e+00 | 8.16e-03  -5.16e-02

4| 9.42e-01  4.68e-01 4.44e-02  -1.08e-01

6 | 6.78-01  5.58e-01 1.63e-01  -8.59e-02

8 | 1.03e+00 -2.07e-01 1.17e-01 1.84e-01
10 | 8.31e-01  2.35e-01 -2.88e-01  -1.13e-01
12| 8.31e-01  2.35e-01 -2.46e-02  6.83e-02
14 | 1.61e-03  1.47e-03 2.04e-03 1.50e-03
16 { 1.81e-05 -1.11e05 1.87e-05  -1.29e-05
18 | -1.57e-08 -6.38¢-08 | -1.83e-08  -6.58e-08
20 | -7.91e-11 -5.35e-12 | -8.12¢-11  -3.96e-12
22§ -1.5]e-14 3.9le-14 -1.48e-14 4,00e-14
24 | 8.42e-18 6.49¢-18 8.58e-18 6.40e-18
26 | 1.11e-21 -8.21e-22 1.12e-21  -8.35e-22
28 | -3.49e-26 -9.07e-26 | -3.56e-26 -9.11e-26

Actual Error: (¢ — dn)/q

Theoretical Error :
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Table 3.2.5. Actual errors & estimates of (3.2.26)

Actual Frror Theoretical Error

n Re Im Re Im

2 | 1.02e400 -6.60e-03 | 1.48e+401 -1.23e+01
30 9TTe-01 287202 | 2.92e+00  -2.43e+00
4

5

9.69e-01  1.31e-02 9.25e-01 -7.68e-01
2.49e-01  -7.18e-02 1 3.79-01 -3.14e-01
6 2.03e-01 -1.11e-01 1.83e-01 -1.52e-01
7 [ 92202 -7.03e-02 | 9.86e-02 -8.18e-02
8 ¢ 5.10e-02  -3.74e-02 | 5.78e-02 -4.80e-02
9 | 3.13e-02 -2.28e-02 | 3.6le-02 -2.99e-02
10 | 2.04e-02 -1.50e-02 2.37e-02 -1.97e-02
11} 1.39e-02  -1.04e-02 1.62e-02 -1.34e-02
12} 9.86e-03 -7.42e-03 1.14e-02 -9.48e-03
13 7.19e-03  -5.46e-03 | 8.29e-03 -6.88e-03

Actual Error : 474n

4 —GOn
, Vs
Theoretical Frror : Seend

As one can tell from Table 3.2.2 and Table 3.2.3, the actual and theoretical (relative)
errors are in agreement for about two digits of both of real and imaginary parts at around

- 8. Table 3.2.4 shows the results of (3.2.32) and also shows that the matrix size needs
o be approximately double in order to obtain inverse eigenvalues with the same precision
i Table 3.2.2 and Table 3.2.3. Table 3.2.5 is the result of the computation of both sides of
(4.2.26) in Remark 3.2.1 (as for the RHS, the term [1+0(1)] is neglected).

As for the cegn(z, A) type, the experiments were performed only as for the case with the
fastest convergence of approximate inverse eigenvalues. (Refer to Appendix 1 for its error
estitnate). Table 3.2.6 is the result and shows that actual and theoretical (relative) errors
are in agreement for about two digits at around n = 6.

Lastly, real pairs of (g, A) computed by the algorithm proposed in this section and the
previous theorem|13, Chapter 4] are shown for seqn (2, A) type (Fig. 3.2.1).

In Fig. 3.2.1, one can find where d\/dg ~ 0 occurs. At those points, the problem of
zetiing g, given A will be unstable, then the algorithm in (13, Chapter 4} is used at such
points. Except such cases, however, the algorithm in this section is adopted. Since the rate
of convergence of approximate inverse eigenvalues in this paper is faster than the ones by
113, Chapter 4}, one can compute such pairs of (g, ) more quickly. The rate of convergence

. .
01 each case shall be shown:
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e The rate of convergence of {¢,} obtained in this paper ((3.2.23)) :

G Qnil
g — gn

A= Anp1

q2

4
16

{

e The rate of convergence of {A,} obtained by [13, Chapter 4, formula(10)]:

N O 4+ DD

As was shown in Lemma 3.2.1, given A < 4, one only has real inverse eigenvalues g, tl

7 [L+o(l)] =

q2

16

) 5 o) (n > co),

——% [1+0(1)] (n ~ o).

all {4, A) are included in the real g-real A graph shown in Fig. 3.2.1.

Experiment 3.2.2

Given A = 60 + 307, compute

Results of error estimate (cesn(z, A) type)

g = (79.56777345. -} — (50.87969961 - - - ).

Table 3.2.6. Actual errors & estimates

of cegn(z, A) case

Actual Error | Theoretical  Irror
nt Re Im Re Im
2 | 7.5le-01 -6.48e-01| -3.97¢-01 1.01le+00
3 | 1.07e+00 -6.46e-01 | 9.84e-01 7.45¢-01
4 !-3.88¢-02 2.79-01 | -1.70e-01  1.23e-01
5 | 4.88¢-03 3.57e-04 | 4.99-03 2.74e-04
6 | -7.05e-06 -1.19e-05| -7.57e-06 -1.18e-05
T 1 -3.24e-09 7.60e-09 | -3.24e-09  7.60e-09
8 | 1.34e-12 -2.80e-13 | 1.34e-12  -2.80e-13
9 | -5.67e-17 -5.20e-17 | -5.67e-17  -5.20e-17
10 | -1.80e-22 1.68e-21 | -1.80e-22  1.68e-21
11| 1.38e-26 -8.28¢-27 | 1.38e-26  -8.28e-27

Actual Error : (¢~ gn)/q

Theoretical Error :
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Fig. 3.2.1. Real g-real ) relation (w = seam(z, ¢) case)
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3.2.5 'Theorems on Double Eigenvalues and Their Computations

In the last section, the ¢-A graph of sesm(z,\) type was shown in Fig. 3.2.1. The
graph evidently suggests the existence of double eigenvalues (¢, \), where dA/dg = 0. Iy
this section, a theorem on double eigenvalues is presented such that a method for the fast
computation of those double eigenvalues is obtained (the method will be explained in Section
14.3).

In the later discussion, three types of the rest are omitted since they, or (i)~(iv) are
essentially the same problems. Also, in this section, we limit our focus only to the case
where ¢ and A are both real. Note that the more generalized discussion for the computation
of double eigenvalues of matrices of a certain type will be provided in Section 4. Then, only
bricfly, and at the same time, the points specific to the Mathieu’s case are stated for the rest
of this section:

‘Theorem 3.2.3] An eigenvalue A, an inverse eigenvalue ¢ # 0, and coefficients { By, } (n =
1,2, ...) have the next relation in general:

(3.2.40) (j%) (yTy) = m;i - (xTx), where

Y {[32) fg‘laBGs'--}T & 6’2,
x = (VFiBa aBy /FiiBu,.. | € £

Note that y and x defined here are nothing but the eigenvectors of (3.2.2) and (3.2.16).
[Proof] It is known that (3.2.7) is replaced by the matrix equation (3.2.2) {13, Chapter 4],
and differentiating the both sides of (3.2.2) with respect to ¢ (in the sequel, let us define

that “’ " represents the differentiation with respect to ¢) gives
(3.2.41) Ny = (T -}y +Ty.

On the other hand, transformation of (3.2.2) yields

~O 1 0 To 0 ]
10 1 1 -
(3.2.42) y = —- y.
1 O q s
| O ".‘ ] 0

This informs that the LHS of this equation is equal to T’y, the second term of RHS of
(3.2.41). Operating y7 from the left on the both sides of (3.2.41} gives

NiyTy) = y(T =2y +y Ty =y"T (by y'(T = Al)y' = {(T - \)y}"y' =0)
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, 1 1
= yP- (-——) Ty Y (by (3242)) = —"q"“(?"ng -+ T‘th? -+ T‘GB(? 4 )

2 2
= ~§(T4B§ +rsBf + Bl + ) (by (3.2.30)) = ~ (x"x).m
The fact is that Theorem 3.2.3 is applied to the general complex numbers g and A as well.
Furthermore, the next is stated when ¢ and A are real:

[Lemma 3.2.2] When ¢ # 0, ) are real, the necessary and sufficient condition for di/dg = 0

is x''x = 0.
[Proof] By (3.2.40), it is sufficient to show y7y # 0. When ¢ and ) are real, y is a real
vector. That means y"y = Bf + BZ 4+ --- = 0 leads By = 0 (k = 1,2,...), or y = 0. This

contradicts the assumption that y is an eigenvector of T defined in (3.2.2). Then, y7y # 0.
(Lemma 3.2.3] When A < 16, no pairs of real points (g, A) (0 # ¢ : inverse eigenvalue)
satisfying dA/dg = 0 exist.

[Proof] It suffices to show xTx # 0, from Lemma 3.2.2. When ¢ and X\ are real, so are
Do (n=1,2,...). And when A <16, r4, > 0(n=1,2,...). Then,

x"x=14B} + 13Bf + r2BY, + - > 0.
Also, since x 3 0, there are no cases where equality sign {“=") is valid in the above equation.
Therefore, xTx > 0.5

A method for the computation of such double eigenvalues is then proposed based on
the last theorem. Let's leave it, however, to Section 4.4.3 because Section 4 is where the

computation of double eigenvalues is its main topic.

3.2.6 Summary of Section 3.2

In this section, we attempted an approach to the problem for the computation of inverse
eigenvalues ¢ of the Mathieu differential equation, from the standpoint that one applies the
achievements for the eigenvalue problem for infinite matrices (in Theorem A) to some new
problem. As a consequence, the author obtained a new theorem on the error estimate of
g to g, for a given complex X. In addition, the analysis on double eigenvalues (g, A) was
treated. To show its validity, enough numerical experiments were tested, and ¢-A graph was
created.

The method for the computation of the inverse eigenvalues of the Mathieu differential

equation is seldom researched as of today. Then, it is thought to be a great impact that
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we newly gave a solution for the inverse problem, which should be treated equally as the
ordinary eigenvalue problem.

What is expected to progress in the future for this research is to make a contribution
to the solution for sesm.) and cegms types with small matrix size n and with enough
precision, together with the ordinary eigenvalue problem such as [13, Chapter 4], which is

complementary to the research in this paper.

3.3 The Eigenvalue Problem of Spheroidal Differential Equation
3.3.1 Description of the Problem

When the Helmholtz equation Aw(z,y, z) + K*¥(x,y, z) = 0 is expressed by the prolate

spheroidal coordinates

x = <¢sinhusinwcos g,
y = csinhusinvsing,
z = écoshucosv (0<é 0<vp<22r, 0<u<o0),

followed by the separation of variables, one of the given equations, which is the second-order

linear ordinary differential equation, has the form

o - d 2y dW 2.2
(3.3.1) o (1 z)dz}+()\mn c“z

1-=z

(there is another type “oblate”, in which case ¢? is replaced by —c? in (3.3.1}),

where m is used as 9 = X{u)Y(v) cosmep, and ¢ = éK. From the physical consideration,
has to be an integer parameter and ¢? is a real parameter, respectively. [n this paper, we
only deal with m > 0 case (even when m is a negative integer, one finds, easily from (3.3.1},
that the case may turn out to be the same case as m is positive). We define the “(ordinary)
eigenvalue problem” of spheroidal wave equation by finding Apn such that w, the solution of
(3.3.1), is regular in (—1,1), given m and ¢, and we let such Am, be called an “eigenvalue”.
As will be stated later, Amy is real when m > 0. And sorted eigenvalues in an increasing
order correspond to have n = m, n = m+ 1, ..., each. On the other hand, we also think

2
of the inverse problem to the ordinary eigenvalue problem. We let the problem of finding ¢

(or ¢) for given m and A such that again, w, the solution of (3.3.1), is regular in (-1,1), be
called the “inverse eigenvalue problem”. Let's call such ¢ an “inverse eigenvalue”.
The equation (3.3.1) has two independent solutions. They are denoted as pem (e, z) and

ge™(¢, z). We only deal with pe™(c, z), or the spheroidal wave function of the first kind.
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The expansion of pel*(c, z) by the associate Legendre function P7r. . (2) gives

o

(3.3.2) pemt(c,z) = Y 1A PR (2),
k=201

where A”

it

', represents expansion coefficients, and 2,/ is defined as

the sum of even — numbered terms, or £ =0,2,4,-- (if n — m is even),
the sum of odd — numbered terms, or £ = 1,83,5, - (if n —m is odd).

£z} is the function of the form

- " Py
Pty = (=20 (20, 1< <,
dz
where £,(z) represents Legendre polynomial
1 n n
Pol2) = 5y 'dz"("z -1)" (n=0,1,2,...),
with orthogonality over [-1,1}:
1
(3.3.3) / PP 2)dz = 0 (LK),
-1
1 2 (n+ m)!
PMYYdz = : :
11{ v ()} dz 2n+1 (n—m)!

3.3.2 Three-Term Recurrence Relations Regarding Expansion Coeflicients

It is known that the substitution of (3.3.2) into (3.3.1) gives the following three-term
recurrence relations{2, Chap 21, formula 21.7.3]. For convenience, let Ay}, be simply rewritten
Ar and A, be A In the sequel.

When n — m is even:
foAg + agAz = Ay,
(3.3.4) YorAgg—2 + PoxAgk + G Asiiz = Mo (k=1,2,3,...).
When n - m is odd:
BiAL +arAs = AA,
(3.3.5) Yorp1Azes + Bokr Apran + Gt Aaies = Mo (K =1,2,3,...).

In (3.3.4) and (3.3.5), each of ay, B, and i represents

Dm+k+2)2m+k+ 1)
(2m + 2k + 3)(2m & 2k + 5)
2(m+k)(m+k+1)~—27n2—~1( 2)

(2m + 2k — 1)(2m + 2k + 3)
= (m+k){m+k+1)+b- (£ ~ K (k— o),

k(k — 1) :

. = 2 = . 2 N:tf—- kj——} ,
(B38) % = G sy gE 1) ) =k (Fe) v (k= 00)

2
(£62) = ay, - (c?) ~ :1:5;1— (k — 00),

(33.7) B = (m+k)(m+k+1)+
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for k =0,1,2,---, Note that = signifies ‘+’ in the prolate case, while ‘" in the oblate case.
The three-term relations of (3.3.4) and (3.3.5) type are generalized as one single type of

three-term relations as follows:

ﬁsAs + aaAs+2 = AAm
(3.3.9) Yarrs sk 1yes + PokrsAzers + QokrsAspinyes = Aarys (F=1,2,3,...),
where

0 (if n -~ m is even)

(3.3.10) s = mod(n —m,2) =
I (if n—mis odd)

(Let mod(7, 1) be the remainder when i is divided by j).

Since (3.3.9) covers both of the cases where n—m is even and odd (or (3.3.4) and (3.3.5)),
one can handle both by dealing with (3.3.9) only. Let the behavior of the coefficients { Aze..s}
be examined then.

‘Lemma 3.3.1] The next inequality holds regarding {Age+s} (5 =10,1,2,...):

o 2 (2m + a)!
3.3.1 2 < 18] = ' ‘
(3.3 li)%lz As s K (m, 2k + s) < 0o, where K(m, a) e o

[Proof] Considering the integrability of the spheroidal wave function of the first kind

m

pe(c, z), one is given

2
( ST 1A P,’::”Jrk(z)) dz {by (3.3.2)) < c0.

k=0,1

i , i
(3.3.12) /{pef(c,z)}zdz::-/
-1

Now, by the orthogonality (3.3.3) of P, (z) over {~1,1],

1 = o0 1
the LHS of (3.3.12) = / Y, AIPE (2)dz= ) Aif_lff’::%(z)zdz

-1 k=ag,2+3,... k=3,2+8,...

00 f o0
-y a2 PmER S g K k) <o
k=g,24 8,0 2m + 2k +1 k! k=3,243,... |

Now, with (3.3.9) and (3.3.11), let the behavior of { Az, } be analyzed, by the application
of Theorem C:

First, consider the recurrence relations with the same coefficients as (3.3.9), or
Bh + azhy = Ahy,

(3313} 72k+ahk——1 + ﬁ2k+3hk “+ Of2k—+-shk+1 = )\hk (k = 2, 3,4, .- )

Theorem C may apply since (3.3.13) satisfies the conditions imposed on the theorem. As
a result of application, the existence of two independent solutions (say, {fn1}, {Pn2}) is

guaranteed with the behaviors
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Bng11 16n? h o2
3.3.14 il nil2
S S RO T = ez ol = 0 (1~ 00),

With the consideration of (3.3.11), it is obvious that {Asmis} (n=0,1, 2,...) can only show

the same behaviors ag {An2}, the minimal solution of (3.3.9). Thus,

Azntaiz 2
3.3.15 tendatt 8
( ) . T [T+ 0(1)] (n — o).

3.3.3 The Solution of (Ordinary) Eigenvalue Problem

Theorem 3.3.1] Given integer m > 0 and real ¢, A # 0 1s an eigenvalue of (3.3.1) if and
only if A is an eigenvalue of an infinite rea) symmetric tridiagonal matrix T acting as a linear

transformation from X into ¢ defined below:

5 NG 0 |
\/CT.‘J\/ Yats ﬁ?nf-s V¥4 \/;?m

(3.3.16) T =
V245 Vs Bais

0

The definitions of ay, By and -y, are retained in (3.3.6), (3.3.7) and (3.3.8), respectively. X

is & subspace of £2 defined as follows:

s 0
X = {yeé: Bave y €} c
0 :
- = (1) L T
Moreover, if one lets an eigenvector of T corresponding to A be 0 # x = (28, 2™ . |7 ¢
£, or
(3.3.17) Tx = Ax

holds, z (i = 1,2,...) are expressed with a scalar ¢ (5 0):

(1) g L m\%%’
(3318) AN =1 m

[Proof] If (3.3.9) is expressed in matrix form, that directly becomes an eigenvalue problem of

Azi-1)ts-

the infinite tridiagonal matrix. Also, since ¢ # 0 and m > 0, a - Ye2 # 0 (£ = 8,24 5, }3
hold which means that the coefficient matrix can be symmetrized. Since m > 0, eac

: : -
component of the symmetrized matrix T becomes real. From the behavior of Ay in (3.3.15),
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0 4 x ¢ 7 is also proved easily. Conversely, we shall show that letting the eigenvalues of
T be )\ one obtains an eigenvector corresponding to A being a scalar multiple of x whose
components o (1 = 1,2,...) are expressed as (3.3.18). However, this is likewise shown as
the last part of Theorem 3.2.1 (Mathieu’s case). Then, let us omit this. §

Lemma 3.3.2] A s real and simple.

Proofl Let N's being real be proved first, using (3.3.16). In the prolate case, one finds that
Gr =0 v = 0 {k = s, 244,...), while in oblate case, o <0, Yeuo <0k =s5,2+4,. )
This tmeans cgyese > 0 {k = s,2+35,...), in either case. Then T in (3.3.16) is real symmetric
iridingonal. Since the eigenvalues of real symmetric matrices are always real, A is guaranteed
to be real.

Second, the proof that ) is simple follows. As was proved, T is an infinite real symmetric
matrix in Hilbert space. In this case, there are no general eigenvectors of rank two or more
corresponding to the eigenvalue of T (See standard books on functional analysis, e.g. {26]).
Also, once the first component of the three-term recurrence relations is given, all the other
components are uniquely determined (This is because o - yeie # 0 (k = 5,2 +5,--+)). This
indlicates that there is only one independent eigenvector. The two facts show that A is simple.
n

Lemma 3.3.3] Let us first define the existence of T~! when the solution of Tx = 0 turns

out to x = 0. Then,

1

(i} In the prolate case, T™' always exists.

(i1} In the oblate case, with the appropriate scalar 6 taken, (T + 61)7! exists.
iProof]

(i) [In the prolate case] One only has to show that 0 is not an eigenvalue of T.

By Lemma 3.3.4, as will be shown later in this section, when m > 1 or when m = 0

and s = 1, A > 2 holds. Therefore, A # 0.

When m =0 and s = 0, A > 0 in case of ¢ # 0. Then, there exists T7".

(7i} iln the oblate case}] Let T be defined to be a similar matrix to T,

Bo og 0
T - Y2 2 g
Yo Ba
L. 0 .

42



It is sufficient to show 0 is not an eigenvalue of (T + 81), with § taken appropriately.

First, let ay, by, and vy be defined by
2m+k+2)2m-+k+1)

% Omo 2k +3)(2m + 2k +5)

: 2Am + k) m+k+1) —2m? —1

¢ (2m + 2k — 1)(2m + 2k + 3) '
k(k — 1)

T =

(2 + 2k — 3)(2m + 2k — 1)

which give the behaviors ax ~ 1/4,b ~ 1/2 and . ~ 1/4. The computation of

Ar = [Pl — Jow] — el derives
18] ~ ] — 1wl = (8] — axc® = ric?
Also, since
Bl = [(m b k)(m 4 K+ 1) = bid?| 2 (m k) (m b+ 1) — bed?,
then,
Ar > (mA+k)m+ k4 1) — (ag + b + 1)

holds. Since {ax}, {bx} and {ry} are all confirmed to be convergent, they are bounded.

Supposing ap < A, by < B,y < R gives, for all k,
0<ap+by +7p <A+ B+ R (constant) = .

Thus,

Av = |+ Be| ~ lowl = el = P+ (m+ k) m +k +1) - (ay, + b + 75)¢
> {p—(ax + by +m)}e? = {(A~ap) + (B = b} + (R—7)}e* > 0.

This shows that each Gershgorin Disc of the matrix defined by (T 4 6I) (6 = c*p) never
includes the origin. Namely, 0 is not an eigenvalue of (T -+ 61), or (T + 81). In other

words, {T + éI) always has an inverse. g

[Theorem 3.3.2] Let S #0 (k=15,2+s,---), ¢ # 0, and T™! exists. Also let X be one
of the eigenvalues of T. Now, for each n, one can take A,, one of the eigenvalues of T, the
nth principal submatrix of T, such that A, — A

Further, let {A.} converge to A, as stated above. Then, the following error estimate 18

valid:
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(3.3.19) A, = (0002'--azu-2) Agn-Aan
(3.3.1¢ - |

Y24 Ven-2 2T

noreover,

2
) A—=Anp1  oon Aggo 2p * Yon+2 c? 1
3.3.90) - Hon Soni2 1) = Fn - nt2y e L O
(3:320) -t = o LoD = - mp i+ ol = | 75 |- (1 +o(1))

‘Proof] By Lemma 3.3.2, A is a simple eigenvalue of T. Besides, it is easily proved that

x is real {easily leading x”x 5 0 since x # 0) since all the eigenvectors of a real symmetric
n+1)
matrix are real. By the behavior of {z(™}, I%—— — 0 (n — 00) is also derived, for,

substituting fo.1, ™ and z¢**1 into the LHS gives

V-2 \/Con— o,
JETs i 2n-2 vV %2n—4 \/_oA

tfn {n H)I _ F“‘“,an f“'—“‘,.),gn 2 \/—
CA I V04 /Aon6 \/“Az \
vV Tn-2 vV Yan—-4 Ve .
= |agn-o| - sznz ~+ 0 (n -+ oo} (by the boundedness of {agn-2} and (3.3.15)).

Hence, Theorem B may apply (3.3.17) and rate of convergence (3.3.20) as well as the error

estimate (3.3.19) are obtained by the direct computation. g

3.3.4 The Solution of Inverse Eigenvalue Problem

Letting ag, br and v be defined by o = apc®, B = (m+ kYm +k+ 1) + bic? and
v = rec?, as (3.3.6), (3.3.7), and (3.3.8), we have

2m+k+2)2m+k+1) 1
(2m+ 2k +3)(2m+ 2k +5) 4

) _ AmA k) (mA k1)~ 2mP -1 1
(3.3.22) b = (2m + 2k — 1)(2m + 2k -+ 3) Ni(k"')oo)’

B k(k— 1) 1
(3.3.23) " T Gmisk-s)Emiz=1) "1k

{3.3.21) ay

(k — o0),

Also define dj, by
(3.3.24) di=A—(m+k)m+k+1).
(3.3.9) is rewritten as follows, using (3.3.21), (3.3.22), (3.3.23), and (3.3.24):

baA.s +a'sAs+2 = S%As,

d .
(3.3.25) ToktsAak-1)ss + OkrsAokss + QortsAoprr)es = 2:;8 Agiys (£ =1,2,3,--)-
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The following discussion is divided into two cases, or (a) darys # 0 (k = 0,1,2,...), and
(b) darss = 0 (for some non-negative integer k).
(a) dopis #£ 0 (k=0,1,2,...) case:
[Theorem 3.3.3] Let m and A be given. Then, ¢ # 0 is an inverse eigenvalue of (3.3.1) if
and only if 1/¢? is an eigenvalue of the compact transformation T in #2, where

bs/ds v/ asrs—l‘?/\/ dydgia 0
(3.3.96)T v as?'s-+-2/\/ dodgr2 bs-%-ii/ds-{-&! NN 4.21‘3";4/\ ;‘ds.i.:z—a‘:;;
D2 f T = \/a’s+27"3+4/\/ dyr2dg14 boira/dspa
0 T

Note that ag, by, 7 and dj are the ones defined in (3.3.21),(3.3.22),(3.3.23), and ( 3.24).
Furthermore, if we let an eigenvector of T corresponding to 1/c? be 0 # x = [2, 22, 1T ¢
£ or

. 1
(3.3.27) Tx = -5x,

€

then, =07 {i = 1,2,...) are expressed as, using a scalar £ (# 0):

28 RO H‘ 1\/02; +s
(3.3.28) £t = Hi—1)+s
VT2t

[Proof] Suppose that ¢* # 0 is an inverse eigenvalue of (3.3.1). Then reformulating the

Aﬂ(t L)-ber

three-term relations (3.3.9) into matrix form gives

T 1
X = X,
c2

What remains to show that 1/¢% is an eigenvalue of T is x 3 0 and x € ¢%.

x = 0 directly means Ager, = 0 (k = 0,1,2,...). Clearly, the solution of (3.3.1) is
trivial in this case, then we may assume x # 0. In order to show x € £%, one only has to
prove {|x||* < oo from its definition. Since ||x{* = |22 + |z(®{* + .-+, the convergence of
™ (n=1,2,...) is guaranteed if
(n+1)

Fepee | <1
e

R = lim sup

n—+co

is satisfied, according to [6, Theorem 8.25]. By (3.3.15),

Cﬂ{n don ao As 2
3.3.29 e = 1+40(1)] = 0 (n— o0)
(3.3.29) mw V,__dzn : I = el o(1)] = 0

is easily derived. Then, R < 1, meaning ||x|{> < co. Thus, 1/c? is an eigenvalue of T,
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On the contrary, the proof follows that ¢? is the inverse eigenvalue of (3.3.1) when 1/¢*

is assumed to be the eigenvalue of T. First, let us define T which is similar to T:

bs/ds as/ds 0 ]
7's+2/ds+2 bs+2/ds+2 Qg42 /ds+2

Ts+4/ds+4 b4 /ds+4

0

Since T and T are similar, the set of eigenvalues of T are identical to the one of T. From
rnow on, then, let us think of solving the eigenvalue problem for T.

Before one may assume the eigenvalue of T to have the form of 1/¢% one needs to prove
that { can never be an eigenvalue of T. Let an eigenvector of T corresponding to 0 be

w o= jwy, wey, .. .7 € £2. Then,
Tw=0 -w=0
The expansion of this equation gives the next three-term recurrence relations:

bow; + awy = 0,

otk 1)1 9Wh1 + bah-1)+sWk + Qo-rsWiir = 0 (k=1,2,3,...).

If one applies {11, Theorem 2.3] to the relations, one finds, from the behaviors of the coeffi-
cients of the recurrence relations as(g-1y4s ~ %I,bg(k_l)ﬂ ~ %,rg(k_;)_m ~ 211 (k -~ o0), that
this type of the relations is categorized into [11, Theorem 2.3, case (b)] case, and that the

behavior of the solution {wy} is given by
lim sup [wg| = L.
k— 00

This, however, contradicts the fact w € 2. Then, one can say that 0 can never be an
cigenvalue of T.

In the above, it was guaranteed that one may let the eigenvalue of T be 1/¢? and further
let us define the corresponding eigenvector to 1/¢* by h = {hy, ha, b, . ..]". Expanding
Th = (igh yields the same recurrence relations as (3.3.9). However, the solution {ha} (k=
1,2,...) of {3.3.9) must be a minimal one {hy,} since it is to converge to 0. Namely,
Ban = hgng = Az, (n=1,2,...). Thus, (8.3.27) holds. §

Furthermore, the next Theorem 3.3.4 is derived by applying Theorem A to Theorem
3.3.3.

Theorem 3.3.4] Given m and ), consider the eigenvalue problem (3.3.27), where ¢ # 0

is assumed. The definitions of T, x in (3.3.27) are retained in (3.3.26),(3.3.28), respectively.
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For each natural number n, one can have {2} converge to c?, if each ¢} = 1/&, is taken
appropriately, where £, represents one of the eigenvalues of T, and T, the nth principal
submatrix of T. Moreover, assuming x x # 0, one finds that the following error estimate is
valid:

. - 44lmnsA 24 A n4-s
(3.3.30) (2 (R S IR BN 1 (1)) (5 — 00),
X X

(2m -+ 1)(2m + 2)(2m + 25 + 1)
(2m + 1)%(2m +4dn + 25 = 3)(2m +4n + 2s — 1)(2m + 4n + 2s + 1)

where L = * gt ans O

By (3.3.30), the next rate of convergence is easily derived:

o -t A | _
(3.3.31) e (1) 5 [+ 0(1)] (n > o0)

Proof] Let us show that Theorem A can apply the eigenvalue problem of (3.3.27). The
components of T obviously satisfy the conditions of Theorem A, and x € #2 is already proven

in Theorem 3.3.1. This signifies that one may only have to prove the next two:
(i) Letting x = [V, 2@ |7, 20D /20 is bounded for all sufficiently large n.
(i) xTx # 0 leads that the eigenvalue 1/¢? of matrix T is simple.

(i) It suffices to show [zt /z™M| — 0 (n — o). Actually, this is already proved by
(3.3.29).
(i) Take the contraposition. Namely, think of proving ‘the eigenvalue 1/c? of T has an
cigenvector of rank two or more, or, there exist more than one independent eigenvectors =
xTx = 0.

First, the fact is that there is no case where ‘there exist more than one independent
eigenvectors’. This is because it is shown in Lemma 3.3.2 that x is uniquely determined up
to scalar multiplication. Therefore, take only the case where ‘the eigenvalue 1 Jc? of T has
an eigenvector of rank two or more’. When this holds, there exists a vector v € £?, given x,

such that
1
] 76 X = (T - ’—2'1)'1),
(T ! I) (T - D=0
— —=I i = —_— = U.
7 ¢
Thus,
x'x = {{T- ?I)u} (T — &-Q—I)fu

= oI (T - &151)21) (by the symmetry of T) = 0.

47



Then, Theorem A may apply. The error estimate (3.3.30) is computed as follows:

11 -
LHS = o = = = m11 +o(1)],
G =)
{ -1 VB2 1)+ : n /G251
s = (i oo M ) (0 o )
In—2+sV 1 In-ks 1 1 lm T SA ﬂm'usA’ -8
.\/(lz PR \/72 b i [ +TO( )] — e, 2T Zi.? 214 [1‘“%*()(1)](]"1. — OO)
\/diin—?-i-s\/d’.m-i-s X X (X X)/t
This vields
. ‘ —c“lm n Ag, —%. Ag, .
cl . Ci — 1,8 XT; +3 1 I—S[}, + O(l)](TL — OO)

Also, the rate of convergence (¢® — ¢2,,)/(c* = c2) is given as

2 2 4 4
o O - L’m_n. ’SAQ - Ag R ~c' T, A'an2~ 3A2rz—~3 ;
"‘;@""""'“Q'““ _ ( +1 e nt§ n-+2-+g [1 + 0(1)] / I, T, 8 - + 1 [1 + 0(1)]

X X X X

£m r+l,8 AZrL-i-—s A2n+2%s (C)4 1 oo
ntls ) T4+o(lW =~ = [1+0(l by (3.1
Ilm,n..s A’Zn——2+s A2n+s [ F O( )} 4 TL{; [ i O( )] (n - OO) ( Y (

(b) dyprs = 0 (for some non-negative integer k) case :
For starters, take the case of k = 0, or dy = A — (m+s)(m + s+ 1) = 0. The first line of
(3.3.25) thus yields

d s
biAs + 00 Asiz = 5 A =0, or A, = —‘Z_Aﬂ_s.
&

Substituting this into the second line of (3.3.25) turns

a‘ST & d 8
(3.3.32) (Baro = 2222) Agyy o aaroAgse = 2 Anie =0
8

Considering (3.3.32) and the equations in the sequel of {3.3.25), one can reformulate them
as the matrix eigenvalue problem as was derived in the (a) case.

Next, take the case where k is a natural number. Picking up the k, & + 1, and k + 2 ﬁﬁ
lines of {3.3.25) each gives

EiMQ(kml)"ks

(3.3.33) o-1y 45 A2(k=2)+s T Bolkim 1)t Aok-1)s F Ok 1yrs Aokt = ; Agtr1yes)
Aokt
(3.3.34) TokrsA2(k-1)ts + DokrsAbrs T QoppsAakityrs = 2 = Agkis =0,
- dz(k+1)+a
(3.3.35) ro(ri1)rs Adkrs + Bageit)rs Aoty s T Qatkrn)rsA2ki)+s = "‘—67““”“/'12(%1)%-

By (3334), A2k+3 = “"B#ﬂ (T2k+sA2(k—l)+s +0}2k+‘5A2(k+1).|,3) = (. Substituting this into
(3.3.33) and (3.3.35) yields

az(k— T2k
(3.3.36) Tok~1)+s A2k-2)+s + (bzck—1)+s - “2{"—(;12“)“4‘"——”&) As(k—1)+s
s
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A2(k—1)+5D2he-t-s Aok—1)+s

A = =S D Ane
b2.k+.9 2k+1)+s 62 2(k—1)+a,
ToktsT2(k+1 Aok4-3T20k+1
(3.3.37) ——“"““(“i"}"tiﬁz{kq)ﬂ + (bz(k+1)+s - M) Adieys
botts bakts
do(k+1
+ Gt +sA2(ki2) s = —-(-%—)iiAz(k+1)-+-s-

Regarding the first to (k — 1)th, (3.3.36), (3.3.37), and later than (k + 3)th equations of
(3.3.25) as a new series of recurrence relations, one can reformulate them into the form of a
matrix eigenvalue problem, likewise.

Lastly, a few of geometrical properties of A-¢? graph obtained shall be shown below.
[Lemma 3.3.4] In the prolate case, X is always non-negative. More precisely, A > (m +s) -
{m+ s+ 1) holds, given m.

[Proof] It suffices to show A > (m + s) - (m + s + 1) for given m, since the first staterment
is covered by the second.

Suppose the contrary, or A < (m+s) - (m+ s+ 1), and let the contradiction be reached.
Since A < (m+s) - (m+s+1),

de=A—{(m+k)- (m+k+1) <0 (k=3s2+s,4+s,...).

Transforming (3.3.27) gives

A, ] [ (—d)A, ] [ b, a 0 ]
A',.g '—d sA-.s [ 7945 st A3+ s
(3.3.38)T A - _12 (Zara) A , where T = o ’ "
Adis ¢ | (—dass)Asgs Tats Dats
. | o |
1 0
—d, ,
Also, operating Vs 1 from the left on the both sides of (3.3.38)
;; _d4+s
L~ 0 -
gives
Uy = -—-3y,where
c
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=

a
;J ""ds ""'d2+.9

Tty b2i—s A g
U = m ~dyys s \/Wd2+s \/“‘d4+3
T4ta byyy
N
i 0
Yy = {\/ﬁ*dsASs \/wdQ-{-sAQMPSa \/:CE;:;A4+3: .. -]T

Symmetrizing U by a similarity transformation gives

1
Vz = ——z where
C
[ _b# V@ /T21s
__- ! d d2+.s
T %mm V25 \/Tits
(3.3.30) Vv =/ —d s ~dy+s NS
Y A4y Y T49 {)4 8
— —_— _—344—.9
\/ d2+s\/ d4+3
0
W a'2 3§
A Vas ([ Aa), (v/~dyrs A 1,
Z _\/ 72 e 2+ 24 -\/m; m 443 4+3 :I

where one finds that all of the components of V are real (and furthermore, positive). Now,

V is found to be decomposed, using a real matrix S, as V = 8§78, where

(3.3.40)

€]

€4

€7 €3

0

, with
€5

(k— 1){2m +k— 1)

1
= S k=123, )
o [dn, Jmm+2k—$@m+2kmn( )
P, = k—24 (k mod 2).

This leads to
Thus, A >

This shows that V is positive definite (refer to Appendix 2 for its proof).
a contradiction (since the eigenvalue of V was assumed to be ~1/c¢* < 0).
(m+s)-(m+s+1) 1

(Lemma 3.3.5] In the prolate case, if one assumes ¢? # 0, then A > 0 always holds.
Proof] Lemma 3.3.4 shows A > 0ifm > 1 orif m =0 and s = 1. Then one only has to

show A # 0 whenm =0 and s = 0.
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By taking the similar measures as the proof for Lemma 3.3.4, one may assume A =0 a

¢* # 0 for leading a contradiction. Since dy = —k(k + 1) when m = 5 = X = 0,
ds =0, and di, <0 (kiw""« 1,2,...).

Obtaining Ay = ‘_%SAQ from the first line of (3.3.25), and substituting this into t

subsequent lines yield

d
(bz B %7‘2) A2 + 03214.4 = '-%Ag,
0

Tok Agr-1y + bo Ak + aorAory = 5 Aw (=12,3,4,...).

After reformulating them into matrix form and transforming for symmetry, one is given

Vz = ——é%,where
¢
(b — L2y /(d,) —Ml2VTE 0
7882 y —day/ —dy
V 024/ T4 _%_ V3ay/To
v = —dg\/ —dy o —dygy/ —dg

e

4+/Tg b
i a
0 -

; = _@Az,%(\/—_m‘i),%%(\/—?&m),n} .

Also, one finds that all of the components of ¥ are real (moreover, positive). V is aga

found to be decomposed as V = 878, where

- -
e 0
I i
e, e
2 .
S = 3 , with
€y €5
g

PR U (k+1)
C T Jdm, 2K+ 1)(2k+3)
P, = k—234 {(k mod 2).

(k:2>3:41"‘)$

This means that V is positive definite. Arriving at a contradiction, we have A > 0. |
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3.3.5 Numerical Experiments and A~c? Graph Making

In this section, some experiments are executed to show the validity of the error estir
The results are shown in the table below.

Given m and ¢, the author let one of the eigenvalues A be computed. And error estim:
was done to the approximate eigenvalues. By putting those computed values into the
estimate, we compared the results between the LHS and RHS of the estimate formula (a
the RHS, the term [1 4 o(1)] is neglected). The computation was done on FUJITSU %
000 with quadrupie precision, and subroutine COMQR in EISPACK[28] was used for
computation of eigenvalues. We continued until the absolute value of the error rea
[0e-25.

In the table, one can confirm that they agree to the first three digits for n large eno

Experiment 3.3.1

Results of error estimate

given m = 0, ¢® = 5,
cormpute
AV = 4446262 13744 59746 44443 47485 - - -
A® = 74.51992 09530 20538 80224 85287 - - -
A®) = 112.51206 13927 08998 16536 96080 - - -.

Table 3.3.1 Actual errors and estimate of (3.3.19)

nof A - AD EM 2@ _ 3@ E® || 2B @ 3
1 -5.252e-02 | -5.242e-02 || 7.452e4+01 | 5.240e-02 || 1.126e+02 | 2.521e-05
2 | -4.030e-05 | -4.033e-05 || -4.131e-02 | -4.127e-02 || 1.125e+02 | 4.129¢-02
3 || -8.152e-09 | -8.154e-09 || -2.029e-05 | -2.030e-05 || -3.408e-02 | -3.405e-02
4 1| -6.667e-13 | -6.668¢-13 || -2.745¢-09 | -2.745¢-09 || -1.160e-05 | -1.161e-05
5 -2.701e-17 | -2.701e-17 || -1.558¢-13 | -1.558e-13 || -1.122¢-09 | -1.122e-09
6 || -6.124e-22 | -6.125e-22 || -4.516e-18 | -4.516e-18 || -4.674e-14 | -4.674e-14
7 -7.521e-23 | -7.521e-23 || -1.017e-18 | -1.017e-18
8 -1.296e-23 | -1.296e-23
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, where
A denotes AT, the exact eigenvalue of (3.3.17),

M%) denotes an approximation of A*) computed from

n X n matrix,
E®) — (%0Q2 " Qangy Agn-2.Am
Y2 Y4 Yan-~2 L

T
and z = | A, Y% gy, Vs VO 4 ]
and @ = Ay, Y2 Sy, 2 LG

Also, the graph showing the relation of A and ¢* is shown in Fig. 3.3.1 (the up
(above A-axis) of the figure). This was made by computing eigenvalues A, given ¢?, t

Theorem 3.3.2. This figure visually shows that A is simple. And for comparison, the .

H

graph in the oblate case is also plotted (the lower half (below A-axis) of the figure).
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Fig. 3.3.1 A—c? graph
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3.3.6 Summary of Section 3.3

The methods for computing approximate eigenvalues as wel as inverse eigenvaluy
the spheroidal wave equations were proposed both by matrix method. Also, some ¢

geometrical properties were also showed.

3.4 Summary of Section 3

Throughout Section 3, the author proved that three more problems may be applied ¢
by Theorem A or Theorem B, With previous applications included, up to present, it has
proved that Theorem A and Theorem B each may apply to the problems of
<Theorem A>:

e the computation of the zeros z of J,(z),

¢ the computation of the zeros z of 2J/(2) + HJ,(z),

o the inverse KVP of the Mathieu differential equation,
s the inverse EVP of the spheroidal wave equation,

s the computation of the zeros p of Coulomb wave function F(n, p) and its first de

tive,
<Thearem B>:

e the computation of the zeros v of J,(2),

the computation of the zeros v of 2J.(2) + HJ,(2),

the ordinary EVP of the Mathieu differential equation,
¢ the ordinary EVP of the spheroidal wave equation.

Very lately, the anthor has found that the computation of the zeros of Whittaker func
(M, ,(2), for further explanations on this function, refer to [9}) is likely to be applied by ’
orem A. This research will appear somewhere else to the details although the investige

is immature yet.
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