2 Three Key Theorems

In this section, three theorems are introduced for the later use. Fach of these theorems is
strongly related to the present paper, therefore, one section is allocated for their introductions
to the details. First, two previous theorems mentioned in the last section, or Theorem A
and Theorem B, shall be introduced.

[Theorem A] [15, Theorem 1.1 & 1.4] Given a complex symmetric tridiagonal matrix
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where di. — 0, fx — 0 {k — 00), fx # 0 (k = 2,3,...), representing a compact operator in
the Hilbert space €2, Let A have a simple eigenvalue A # 0, and 0 # y =[xV, x®,.. |7 e £

be an eigenvector corresponding to A. Then

(i) Letting A, (n = 1,2,...}) denote the nth order principal submatrix of A, there is a

sequence {A,} of eigenvalues of A, which converges to .

(i1) Letting xTx # 0, and x™*1 /%™ be bounded for all sufficiently large n, we have the
following error estimate:

(n) (n+1)
(2.1) Aw,\n:.faﬂ_%___[wo(m (n — o0).

[Theorem B] {13, Theorem 1] Given a non-compact complex symrnetric tridiagonal matrix
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where 0 < |dil - oo (k — 00),0 < |fi] < const (k = 2,3,...), D(T) = {[ulV o ]7:

[diu'V dyu®, . )7 € £2}. Let T have a simple eigenvalue A # 0, and 0 # x = [xV, x*,.. |7

be an eigenvector corresponding to A, and assume the existence of T~!. Then

(i) Letting T. (n = 1,2,...) denote the nth order principal submatrix of T, there is a

sequence {A,} of eigenvalues of T, which converges to A.



(i1} Letting x"x # 0 and for x™*Y/x™ — 0 (n — 00), we have the following error

estunate:
(r)(n+1)
(2.2) A=A, = Mm—{l +0(1)] (n — oo0).

X' x
I "Qmorem A & B, we define €% as the complex Hilbert space €2 = {[ey, ¢0,...)7 1y ¢oy. - €
C, Z len? < oo}; o{1) as the quantity converging to zero as n — oo; and the simple
czigiéﬁi@lue A as having the unique corresponding eigenvector {(up to scalar multiplication)
and also no corresponding generalized eigenvectors of rank 2, namely, no vectors 0 # v, € &
{or 0 # vy € D(T), in the Theorem B’s case) satisfying {A — AL)*v; = 0 (or (T ~ M)%vy =0,
likewise). Also, in Theorem B, the definition of the existence of T~! shall be that there is
only one solution z = 0 which satisfies Tz = 0. Wc use these definitions throughout this
Dapet.

, and [15]), and have the

Theoremm A & B are complementarily related {refer to [7],[13

next 4 favorable properties in common:
1. The computed eigenvalues shall be approximated with any precision.
2. An asymptotic error estimate for approximated eigenvalues to the true one is obtained.

3. There is no need to use different methods separately for getting real or complex eigen-

values (you only have to use one method consistently).
4. The simplicity of the algorithm makes the implementation to computers casy.

OUne more attention to be paid to the error estimate formulas in the two theorers is that
they are identical in their forms.

Another theorem which plays an important role in this article is introduced. This theorem
guarantees the behavior of the solutions for three-term recurrence relations of a certain type:

[Theorem C] {11, Theorem 2.3, Case(a}] Consider three-term recurrence relations of the

form
(2.3) hoi1 + Pl + Guhp-1 =0 (0= 1,2,...).

If the following conditions

P = 0Pl o(1)]gu = ¢ n®{L+o(D] (n = 00),gu # 0 (n=1,2,.. ),

(24 e .
) p, ¢ are non — zero, and P, @Q are both real satisfying 2/ > @



hold. then (2.3) has two linearly independent solutions, {h,1} and {h,2
behaves as

L }n.- e N
Dbl o _onPlL o(1)}, %ﬁiﬁ — MgnQ P[l +o0(1)] (n — o0

Iri {111, a solution {g,} of (2.3} is defined as “minimal solution of (2.3)" if
Jiry g/ =0

holds for all the solutions {h,} but {gn} and any constant multiple of {g,
case, {h,o} is the minimal solution of {2.3).

This theorem is considered one of the key theorems in that we are ¢
concrete behavior of the components of eigenvectors of matrix A (in Theorer

T {in Theorem B), which is indispensable for obtaining error estimates (2.1



