L ST I S r .-
R Bl
g e i Tt

Organization and Analysis of
Access Facilities for Set-valued Objects

Based on Signature Files
by

Yoshiharu Ishikawa

A DISSERTATION PRESENTED TO
THE FACULTY OF UNIVERSITY OF TSUKUBA
IN CANDIDACY FOR THE DEGREE OF

DoCTOR OF ENGINEERING

. July, 1995
5 W Y

36302204

Acknowledgments

First and foremost, I am grateful to my adviser Associate Professor Hiroyuki Kita-
gawa, provided encouragement, numerous suggestions, and guidance on this re

search.

I would like to thank to Associate Professor Nobuo Ohbo who motivated me to
become involved in research in this area. The constant encouragement of Professor

Yuzuru Fujiwara and Professor Isao Suzuki is gratefully acknowledged.

Mr. Yoshiaki Fukushima of NEC and Mr. Noriyasu Watanabe collaborated on
the research of set-based signature files. I wish to thank them for their technical

assistance and discussions.

‘Thanks to Associate Professor Kazunori Yamaguchi of University of Tokyo, As-

ii

sistant Professor Jeffrey X. Yu of Australian National University, Dr. Kazutaka
Furuse of RICOH Corp., Mr. Takayuki Suzuki, and members of database labora-

tory of University of Tsukuba for their helpful suggestions.

I have moved to Nara Institute of Science and Technology (NAIST)in 1994. Iin-
debted to Professor Shunsuke Uemura and Associate Professor Masatoshi Yoshikawa
of NAIST for their thoughtful and valuable comments. And thanks to all members

of Uemura Laboratory.

Finally, I am grateful to Processor Seiichi Nishihara and Associate Professor

Yasushi Kiyoki of University Tsukuba for their comments to improve the thesis.

Abstract

Set is a fundamental data structure and plays important role in data modeling not
only for traditional database applications but for advanced ones. The main issue of
this dissertation is indezing methods for set-valued objects. Set has several inherent
comparison operators such as inclusion (2) and membership (3}. Therefore, index-
ing methods for set-valued objects must support efficient retrieval of objects under

such set retrieval conditions.

In this dissertation, superimposed-coded signature files, popular methods in text
retrieval area, are proposed as promising indexing methods for set-valued objects.
Such signature files are called set-based signature files. In this dissertation, several
issues of set-based signature files, such as organization schemes, retrieval/update

algorithms, and availability, are investigated.

1i1

As queries, four kinds of set retrieval conditions are considered: has-subset
(T" 2 Q), is-subset (T' C @), has-intersection (T N Q), and is-equal (T = Q).
For each query, false drop probability formulas, important measures to estimate the

performance of signature files, are derived.

The first main issue of this dissertation is set retrieval of non-nested objects. For
signature files, two representative file organization schemes, the Sequential Signature
File (SSF) and the Bit-Sliced Signature File (BSSF), are considered. In addition to
these organization schemes, compressed BSSF (BSSFcmpr) is proposed as another
candidate for the organization scheme of set-based signature files. For the compar-
ison purpose, the nested indexr (NIX), an well-known indexing method for nested
objects, is also examined as an alternative set access facility. They are compared in
terms of retrieval cost, storage cost, and update cost for small-scale databases and
medium-scale databases. Based on the analysis, query evaluation strategies (smart
retrieval strategies) are proposed to improve the retrieval costs of these set retrieval

facilities.

The second main issue is set retrieval of nested objects. The target is extended to
multi-level nested objects with set-valued attributes. By combinating BSSF and the
nested index, four candidate set access facilities, Zessr, Tnix, Tossenix, and Twrxnix
are proposed. For each set access facility, retrieval, insertion, and deletion algorithms
are described. Then, cost formulas including the navigation costs in nested objects
are derived, and the retrieval, storage, insertion, and deletion costs are evaluated

under some parameter settings.

The analyses in this dissertation clarify the advantages and disadvantages of

set-based signature files.

Contents

1 Introduction

2 Background

2.1 Signature Files

2.2 Complex Object Management

3 Set-based Signature Files

3.1 Notion of Set Retrieval

3.2 Set-based Signature Files

3.3 False Drop Analysis

vi

12

14

14

22

27

CONTENTS

3.3.1

3.3.2

3.3.3

3.3.4

Basic Considerations

Generic Formulas

False Drop Probability Formulas

Varying Target Cardinality,

4 Set Retrieval of Non-Nested Objects

4.1 Set Access Facilities for Non-Nested Objects . . .

4.2 Cost Model

421

4.2.2

4.2.3

4.2.4

4.2.5

Cost Estimation of SSF

Cost Estimation of BSSF

Cost Estimation of BSSFempr

Cost Estimation of NIX

Actual Drops

vil

27

29

34

40

42

43

44

48

51

56

58

65

CONTENTS viil

4.3 Cost Analysis for Small-scale Databases 66

4.3.1 Retrieval Costfor T 2¢ 67

432 Retrieval Costfor 7CQ 73

433 Storage Cost 77

434 UpdateCost 178

4.4 Cost Analysis for Medium-scale Databases 78

44.1 Retneval Costfor726¢ 79

44.2 Retrieval Costfor7CQ 8

4.43 Storage Cost e 84

444 UpdateCost. 8

4.5 Discussion o ... 86

5 Set Retrieval of Nested Objects 90

CONTENTS 1x

5.1 Introduction9

5.2 Preliminaries

5.3 Set Access Facilities for Nested Objects W

5.3.1 File Structures of Set Access Facilities 04

5.3.2 Query Processing Algorithms 9

5.3.3 Update Algorithms 9

5.4 Cost Models 102

5.4.1 Configuration of Nested Objects103

542 Retrieval Costs 108

54.3 Storage Costs107

544 UpdateCosts 108

5.5 Cost Analysis for Case I 110

5.5.1 Retrieval Costs 111

CONTENTS

5.5.2 Storage, Insertion, and Deletion Costs

5.6 Cost Analysis for Case [T .

5.6.1 Retrieval Costs e

5.6.2 Storage, Insertion, and Deletion Costs

5.6.3 Discussion L

6 Discussion and Conclusion

Appendix

A Properties of Two False Drop Probabilities

B. Derivation of D;p‘
C. Forward Traversal Costs
D. Derivation of DC{Tssse }

E. Derivation of DC{Znx}

114

. 119

115

. 118

119

121

125

. 125

128

130

134

. 136

CONTENTS

References

xi

139

List of Figures

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

Organization of Signature File (F =16, m=3)

SSF and BSSF

Example Schema

Example Objects

Generation of a Set Signature (F =16, m=3)..

Set-based Signature File

Query Processing of Q; (T 2 Q)

False Drop. L

x1i

10

15

16

23

23

24

25

LIST OF FIGURES xiil

3.7 Query Processing of Q, (I’C Q) 2
3.8 Query Processingof Q3. o2
4.1 Retrieval Cost (D, =10, N=32,000). 68

4.2 Retrieval Cost with Small m-value (D, = 10, F = 500, N = 32,000) . 69

4.3 Smart Retrieval Cost (D =10, N =32,000) T2
4.4 Smart Retrieval Cost (Dy = 100, N = 32,000) 7
4.5 Retrieval Cost (Dy = 10, N=32,000). 7
4.6 Smart Retrieval Cost (Dy =10, N =32,000) 76
4.7 Smart Retrieval Cost (D = IOO,-N: 32,000) T
4.8 Smart Retrieval Cost (D, =100, N =320,000) 80

4.9 Smart Retrieval Cost of Compressed BSSF (D = 100, N = 320,000) 82

4.10 Smart Retrieval Cost of Compressed BSSF (D, = 10, N = 320,000) . 82

LIST OF FIGURES

5.1

5.2

5.4

5.6

5.7

5.8

5.9

An Example Schema oo

Retrieval Cost (T D Q, D,

Retrieval Cost (T 2 @, Dy

Retrieval Cost (T 2 Q, D,

Retrieval Cost (T D @, D,

Retrieval Cost (T" 2 @, D,

Retrieval Cost (T" 2 Q, Dy

Retrieval Cost (T C Q, D,

Retrieval Cost (T C Q, D,

=10, n=3). oo
=100,n=23),
=10, n = 3)

=100, n=3)
=10, =8) . e
=100,n=3),
=10, m=3) e o
=100, n=3) ...

X1v

92

111

112

113

113

. 116

117

117

. 118

List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Symbols Lo e

Symbols and Their Values

Symbols for NIX

Configuration of NIX

Storage Cost

Update Cost o e

Values of %%E (pages) (N = 320,000, D, = 100)

Retrieval Cost for Medium-scale Database (pages)

XV

28

47

59

61

78

79

81

LIST OF TABLES xvi

4.8 Retrieval Cost of Compressed BSSF 84
4.9 Storage Cost of BSSFand NIX 8
4.10 Storage Cost of Compressed BSSF (pages) (N = 320,000) 85
4.11 Update Cost {N =320,000) 86
5.1 Symbols and Their Values 108
5.2 Storage, Insertion, and Deletion Costs 114

5.3 Storage, Insertion, and Deletion Costs 119

Chapter 1

Introduction

Set is a fundamental data structure and plays important role in data modeling.
The relational data model, proposed by E. F. Codd and has become the basis of
many commercial and prototype DBMSs, is constructed based on the mathematical
notion of set. However, the relational data model lacks of the ability to explicitly
handle set values; it can only represent relations, namely, sets of flat tuples. The
ability to directly represent and manipulate complex data including set values were
required in advanced database application areas (e.g., CAD/CAM, CASE). To meet

this requirement, advanced data models with more expressive power, such as nested

CHAPTER 1. INTRODUCTION 2

relational models and object-oriented database models, have been proposed and
investigated. In these data models, some kinds of constructs to represent set-valued

objects {e.g., set constructor) are generally provided.

In implementing such advanced data models, there still remain many issues;
indexing method 1s an important one of them. The main issue of this disserta-
tion is indexing methods for set-valued objects. Set has several inherent compar-
ison operators such as inclusion () and membership (3). Therefore, indexing
methods for set-valued objects must support efficient retrieval of objects under
such set retrieval conditions. So far, a lot of indexing schemes for complex ob-
jects were proposed. For example, for nested objects, some basic index structures
(e.g., the nested index) were proposed and their derivatives were intensively stud-
ied [BK89, Ber90, Ber91, Ber93, Ber94, CBBC94, KM94b, KKD90, KP92, LL92b,
MS86, PY94, SHH*95, Sai95, SM91]|. However, they are not designed to fully sup-

port set manipulation 1n general.

Set-based Signature Files In this dissertation, superimposed-coded signature
files are proposed as promising indexing methods for set-valued objects. Such
signature files are called set-bused signature files. Although the use of signa-
ture files for traditional record retrieval has been discussed by some researchers
[CYKL93, Fal85a, Fal90, L1.92a, Lin91, PF94, SK86, Sta90, TR92], study on their
capabilities from the standpoint of set retrieval has not been reported. In this dis-

sertation, several issues of set-based signature files, such as organization schemes,

CHAPTER 1. INTRODUCTION 3

retrieval/update algorithms, and availability, are investigated.

As queries, four kinds of set retrieval conditions are considered: has-subset
(T 2 @), is-subset (T C Q), has-intersection (TN Q), and is-equal (T'= Q). T
and @ stand for a set value in the database (target set) and the set value in the query
condition (query set), respectively. T' = () represents retrieval conditions based on
set equality and 7' N Q means TN Q # @. Membership 7' > ¢ is a special case of

T2Q.

Retrieval with signature files is always accompanied by mismatches called false
drops. The number of false drops has a direct effect on the performance of signature
files. Therefo‘re, it is important to estimate the false drops for the cost estimation
and the signature file design. The frequency of false drop is usually measured in false
drop probability. In this dissertation, formulas estimating false drop probabilities for

the four types of retrieval conditions and their derivation are shown.

Set Retrieval of Non-Nested Objects The first main issue of this dissertation
is set retrieval of non-nested objects. For signature files, a lot of physical organiza-
tion schemes have been proposed. In this dissertation, two representative ones, the
Sequential Signature File (SSF) and the Bit-Sliced Signature File (BSSF), are con-
sidered. In addition to these organization schemes, cornpressed BSSF (BSSFcmpr)
1s proposed as another candidate for the organization scheme of set-based signature

files. For the comparison purpose, the nested index (NIX), an well-known indexing

CHAPTER 1. INTRODUCTION 4

method for complex objects, is also examined as an alternative set access facility.

SSF, BSSF, BSSFempr, and NIX are compared in terms of retrieval cost, stor-
age cost, and update cost for small-scale and medium-scale databases. A cost model]
is developed and retrieval costs of the four set retrieval facilities for 7' O @ and
T C @ queries are analyzed in detail. Based on the analysis, novel query evalua-
tion strategies to improve the retrieval costs of BSSF and NIX, called smart object
retrieval strategies, is developed, and further the retrieval costs under the strategies

are compared.

Set Retrieval of Nested Objects The second main issue of this dissertation
is set retrieval of nested objects. Nested objects frequently appear in databases for
advanced application areas and may contain set values in their attributes. Therefore,
efficient indexing methods for set retrieval are also required for nested objects. In
this chapter, the target is extended to multilevel nested objects with set-valued

attributes.

By combinating the signature file method and the nested index (NIX), four
candidate set access facilities are proposed. Tessr is the direct extension of BSSF to
set retrieval of nested objects. Znix is also direct extension of NIX. Zsssr.vix consists

of a BSSF file and an NIX file, and Zwix-nix consists of two NIX files.

CHAPTER 1. INTRODUCTION 5

The target queries for comparing their retrieval costs are root-level object re-
trieval with a leaf-level set comparison predicate. As the set comparison condition,
T 2 @Qand T C @ are considered. For each set access facility and query type, the
retrieval algorithm is described in detail. In compared with the non-nested object
case, retrieval algorithms for nested objects become more complicated. Similarly,
insertion/deletion algorithms are also specified. Based on these algorithms, cost for-

mulas for retrieval, insertion, and deletion are derived and evaluated by simulations.

Outline of the Dissertation The remainder of the dissertation is organized as
follows. In Chapter 2, the background of the research - the signature file method and
complex object management - is described. Some basic concepts of the signature
file method also hold for set-based signature files, In Chapter 3, the notion of
set retrieval and set-based signature file is introduced. Then, false drop probability
formulas, irnportant measures to estimate performance of signature files, are derived
in a generic manner. In Chapter 4 and 5, set retrieval of non-nested objects and
nested objects are discussed respectively. | Chapter 6 is the final discussion and the

conclusion.

Chapter 2

Background

2.1 Signature Files

Signature files were originally proposed for text retrieval [CYKL93, Fal85a, Fal90,
LL92a, Lin91, PF94, SK86, Sta90, TR92]. Generally speaking, they require much

smaller storage space than inverted files, and can handle update easily. A signature

CHAPTER 2. BACKGROUND 7

is a bit pattern formed for each data object and stored in the signature file. In
text retrieval, data objects are usually logical blocks (text blocks) consisting of text
data including a predefined number of words. In addition to the signature file, there
exists an OID file (or pointer file, TID file, etc.), which relates each signature to the

ID of its corresponding data object.

The superimposed coding method is often used to form a signature [Fal85a]. In
text retrieval, a word signature is first created for each word in a logical block. All
word signatures have F-bit length and contain m “1"’s and F — m “0"’s. The
number of “I”’s in a signature is called the weight, so that the weight of an element
signature is m. Then, a block signature is composed by OR-ing (superimposing)
word signatures for each logical block and stored in the signature file. F and m are

design parameters tuned based on performance perspective.

Basic structure of signature file is shown in Figure 2.1. Suppose that the
document to be indexed contains a sentence ’signature files were originally
proposed for text retrieval’. Im the first step of insertion, the document are
divided into logical blocks that contain predefined number of words. In general, stop
words ~ words that frequently occur in usual documents such as 'were’ and "for’ -
are eliminated from the logical blocks. For example, three words are to be contained
in a block, two logical blocks ’signature files originally’ and ’proposed text
retrieval’ may be generated. For these blocks, block signatures are made and
inserted into the signature file. Each block signature is accompanied with its block

id to specify the location of the block in the document.

CHAPTER 2. BACKGROUND 8

word word signature
signature — 0001000000000101
files -+ 1100100000000000
originally — 0100001010000000
I D signature file ID file
block signature 1101101010000101 — I 1101101010000101 I,

1110110111000010 I

Figure 2.1: Organization of Signature File (¥ = 16, m = 3)

Typical query processing for signature files is processed as follows. When a
query (one or more words) is given, a query signoture is formed from the query
as the same way to block signatures. Then each signature in the signature file is
examined over the query signature for potential match. If the signature satisfies a
predefined condition implied by the query condition, the corresponding data object
hecomes a candidate that may satisfy the query. Such a data object is called a drop.
The last step is the false drop resolution, and each drop is accessed and examined
as to whether it actually satisfies the query condition. Drops that fail the test are
called false drops, while the qualified data objects are called actual drops. False

drops occur due to the following reasons:

1. Generation of word signatures by hashing.

2. Generation of block signatures based on the superimposed coding.

CHAPTER 2. BACKGROUND 9

The number of false drops has a direct effect on the number of disk page accesses.
Therefore, it is important to estimate the false drops and to properly control them
in the design of signature files. False drop probability Fdis an important measure
to estimate the performance of signature files and given by the following formula

[FC84, FC88:
false drops

Fd= .
total number of objects — actual drops

Next, representative physical organization schemes for signature files are intro-
duced. There are a number of choices in physical signature file organization. Se-
quential signature file (SSF) and bit-sliced signature file (BSSF) are representative
and basic ones. Figure 2.2 illustrates the file structures of SSF and BSSEFE. In this
dissertation, they are applied to set retrieval as candidates for set-based signature

file organization.

SSF is the simplest organization and directly implements the concept of signature
file. SSF is easy to implement and requires low storage space and low update cost.
Signatures are stored sequentially in the signature file. When a query is given, a full
scan of the signature file is required. Therefore, it is generally slow in retrieval. On
the other hand, BSSF stores signatures in a columnar manner. Thus, F files (called
bit-slice files), one per each bit position of signatures, are used. In retrieval, only a
part of the F bit-slice files have to be scanned, so that the search cost is lower than
that of SSF. However, update cost becomes larger. For example, an insertion of a

new signature typically requires about F disk accesses, one for each bit-slice file.

CHAPTER 2. BACKGROUND 10

signature file OID file

SSF | F |
0]170[6[1]0[0]0 o]
0]0/1]0j0[0]0[1 02
0 0[o[0]0]0

03

M-

1]10{1]|0i0|0{0|0 ON

BSSF
01Hm 0] o1
’—oo 1] 02
0[[o][1][0] 0 03
EEEAEED)
|

=y

bit-slice files OID file

Figure 2.2: SSF and BSSF

CHAPTER 2. BACKGROUND 11

Application areas of signature file are not limited to text retrieval. For other

areas, the applications have been proposed:

e multikey access, formatted record retrieval {CS89, CL89, CL92, CYL92, Fal88,
PBC80, Rob79, Sti60, YCLKS3]

o Prolog system [BCH87, CJ86, RS86, TRN86, WW9]]

e office information system, office filing [BRG&8, CF84, CHT86, DGMS89, FC87,
TC83|

o image database [LYC92, RS91, SDR83, SD85}

o document ranking [WLOT85]

e object-oriented database systems [LL92b, YLK94]
e transitive closure query [Teu94]

e image reirieval [RS91, 1.YC92)

¢ spatial databases [CJ94]

In each area, signature file organization scheme is devised considering the require-

ments and performance.

In this dissertation, the signature file method is applied to set retrieval. Ap-

plication of signature files to set retrieval has not been reported before by other

CHAPTER 2. BACKGROUND 12

researchers.

2.2 Complex Object Management

Complex objects frequently appear in advanced database application areas. To
represent and manipulate complex objects, many data models have been proposed.
Especially, nested relational models are closely related to set retrieval because they
directly represent and manipulate set values. In the following, the notion of nested

relational models is briefly introduced.

The relational model have influenced the construction of the database theory
because of its simplicity and rigorous mathematical foundation. However, advanced
database applications required more powerful modeling power to manipulate com-
plex data structure in a more natural manner. Therefore, powerful data modeling

abilities are required.

Based on such requirements, nested relational models were proposed and have
been intensively studied. In 1977, Makinouchi proposed to relax the relational model
by removing the first normal form assumption [Mak82]. Jaeschke and Schek also

generalized the relational model by allowing relations with set-valued attributes and

CHAPTER 2. BACKGROUND 13

two operators (nest and unnest) [JS82]. Thomas and Fischer generalized Jaeschke
and Schek’s model and allowed nested relations of arbitrary depth [TF86]. Many
proposals for nested relational models and nested relational algebras were appeared
[AB84, AB86, AFS89, Bids7, Col89, Col90, FT'83, FSTGE5, GF88, GG88, KK89,
KKO91, LL90b, 0zs88, RKS88, RKS89, SS86, Sch86, SPS87, TF86]. Also, several
prototypes implementing nested relational models were proposed [DKA*86, Dad8s,
DL8Y, DG88, HHRY3, HSR91, Lin87, PSSD87, PT85, PA86, PD89, 5589, SPSW90,
SPS87, SAB*89, VER86]. These nested relational models explicitly handle set-
valued attributes or relation-valued attributes. Therefore, set access facilities will

be very important in these models.

Other representative data models supporting complex objects are object-oriented
data models. For object-oriented data models and languages, too many proposals
have been studied and cannot cover them here. Research surveys and text books for
object-oriented database systems are found in [BM93, Cat9l, Dit90, Dit91, Hug91,
KM94a, Kho93, KL89, Kim90a, Kim90b, Mas91, Mak91, Tan9l, Yos91, ZM90].
These object-oriented data models usually support set-valued objects, and set re-

trieval should also be important.

Chapter 3

Set-based Signature Files

3.1 Notion of Set Retrieval

In this dissertation, data retrieval based on conditions containing set comparison
operators {e.g., D) is called set retrieval. In this section, the notion of set retrieval is

introduced, and it is shown that the notion is applicable to database query processing

14

CHAPTER 3. SET-BASED SIGNATURE FILES 15

in various situations.

There exist several set comparison operators used in query evaluation. To exam-
ine as to whether two sets satisfy subset relationship or not, the inclusion operators
(>, 2) are used. The membership operator (5) is a special case of the inclusion
operators to compare a primitive value with a set value. Moreover, the equality
operator (=) for the set equality and the overlap operator (1), which checks as to

whether two sets intersect or not, also appear in queries.

To illustrate examples, let us consider a sample database. The schema of the
sample database (Figure 3.1) consists of three class definitions. “[--:]” denotes
the tuple constructor, and “{---}” denotes the set constructor. The structure of
a class is defined by combining these constructors. For example, Student class
has a primitive attribute name and two set-valued atiributes courses and hobbies.
The courses attribute takes a set of OIDs of Course objects as a value, and the
hobbies attribute takes a set of strings. This convention for schema description is

used throughout the dissertation.

Student = [name: string, courses: {Course}, hobbies: {string}]
Course = [name: string, category: string, teacher: Teacher]
Teacher = [name: siring, ...]

Figure 3.1: Example Schema

Example objects for these classes are shown in Figure 3.2. In the figure, s1 and

s2 denote OIDs of Student objects, c1 to c6 denote OIDs of Course objects, and

CHAPTER 3. SET-BASED SIGNATURE FILES 16

t1 and t2 denote OlDs of Teacher objects.

si: [name:"Jeff", courses:{cl, c3, c4},
hobbies:{"baseball", "fishing", "tennis"}]

s2: [name: "Mike'", courses:{cl, ¢3, ¢5, c6},
hobbies:{"baseball", "music"}]

cl:[name: "Database Theory"”, category:"database”,
teacher:t1]
c2:{name:"Linear Algebra", category:"math", teacher:t2]

Figure 3.2: Example Objects

Let us consider the following query Q; for this sample database:

Query Q, (T D @Q): Find all Students whose hobbies contains both “buseball” and

“fishing”.

select name
from Student

where hobbies D {“baseball”, “fishing”}

The set {“baseball”, “fishing”} is called the query sef and represented by . On
the other hand, each set that resides in the database and becomes the target of the
query is called a tfarget set and represented by 7". In the above database instance,
{"baseball", "fishing", "tennis"} is a target set. This kind of query is called

“T 2 Q" (has-subset). Membership query (T' 3 q) is a special case of T2 Q.

CHAPTER 3. SET-BASED SIGNATURE FILES 17

Let us illustrate other kinds of queries.

Query Qs (T C @, is-subset): Find all Students whose hobbies do not contain other

than “baseball”, “fishing”, “tennis”, and “ogging”.

select name
from Student

where hobbies C {“baseball”, “fishing”, “tennis”, “jogging” }

Query Q3 (7' N Q, has-intersection): Find all Students whose hobbies contains

“tennis”, or “jogging”.

select name
from Student

n (194

where hobbies N {“tennis”; “jogging”}

Namely, T' M Q means T N Q # 0.

Query Qg (T = Q, is-equal): Find all Students whose hobbies contains only “base-

ball” and “fishing”.

CHAPTER 3. SET-BASED SIGNATURE FILES 18

select name
from Student

where hobbies = { “baseball”, “fishing”}

In summary, these four kinds of queries are considered as set retrieval.

1. T2 Q (T 5 q): has-subset (membership)
2. T C Q: is-subset
3. T M Q: has-intersection

4. T = Q: is-equal

In the next paragraph, some application examples of set retrieval in object-

oriented databases are shown.

Application to Object-Oriented Databases In object-oriented databases,
multilevel nested objects are frequently appear. For such databases, similar set-

retrievals are also considered. Consider the following query Qs:

Query Qs (T C Q): Find oll Students who take only lectures in database, math, or

network category.

CHAPTER 3. SET-BASED SIGNATURE FILES 19

select name
from Student

where courses.category ¢ {“database”, “math”, “network”}

However, for multilevel nested objects, there are other kinds of quenes. Three

sample queries Qg, Qr, and Qg are given below.

Query Qg:

Find all students who take all of the lectures in the “database” category.

For this kind of query, the following query processing scheme can be used:

1. Retrieve the OIDs of Cowurse objects which satisfy the condition

‘Course.category = “database”’ into a set. Let this set be Som.

2. Retrieve Student objects which satisfy the condition ‘Student.courses D

Som’.

Query Qr:

CHAPTER 3. SET-BASED SIGNATURE FILES 20

Find oll students who take only the lectures in the “detabase” category.

If the search condition ‘Student.courses 2 Spyp’ in the above query processing
scheme is replaced with ‘Student. courses C Sorp’, this query can be processed in

a similar manner.

Query Qs:

Find oll students who take lecture(s) in the “database” category.

In this case, set comparison operator ‘1" is used. This query is very popular in

complex object databases and can be expressed simply as follows:

select name
from Student

where courses.category = “database”

Query Qs can be processed with existing indexing methods for nested objects (e.g.,
the nested index) [Ber93|. However, for Qs and Qy, such indexing methods cannot

be applied directly.

CHAPTER 3. SET-BASED SIGNATURE FILES 21

As exemplified above, facilities to efficiently evaluate set predicates are
also very important in query processing in object-oriented databases. In gen-
eral, commercial OODBMSs and object-relational DBMSs support set classes
(types) and membership conditions (I' 3 q) over the classes. For exam-
ple, the 0C_Set class of ONTOS QCDBMS [ONT] has a member function
0C.Boolean isMember(0OC_Argument element), and ObjectStore 0ODBMS [Obj]
has a member function os_int32 contains ((E)const). UniSQL [Unij, an object-
relational DBMS, provide three collection types (set, multiset, and sequence),
and some set compatrison operators over the set type. For example, T 3 ¢ query can

be expressed as

select name
from student

where ’tennis’ in hobbies;

Query Qi (I' 2 Q) can be represented by the superseteq (or superset) operator.

select name
from student

where hobbies superseteq {’baseball’, *fishing’};

CHAPTER 3. SET-BASED SIGNATURE FILES 22

As other set comparison operators, UniSQL have subset, subseteq (T C @), seteq
(I' = @), and setneq. However, UniSQL does not support indexes over the set
type. In UniSQL, indexes can be created on attributes of all data types ezcept set,

multiset, and sequence [Uni].

3.2 Set-based Signature Files

In this dissertation, the superimposed coding-based signature file technique is ap-
plied to efficiently process set retrievals. To facilitate searching qualified set atiribute
values, set-based signature files are created and used for query processing. Such at-
tributes are called indered set attributes. For each indexed set atiribute value, the
superimposed coding method is used to generate its set signature. First, each ele-
ment in a set value is hashed into a binary bit pattern called an elernent signature.
All element signatures have F-bit length, and m bits are set to “17. Then, a set
signature is obtained by bit-wise OR-ing (superimposed coding) element signatures
of all the elements in the set. An example of the element signature generation is
shown in Figure 3.3. Each set signature made from an indexed set attribute value
is called a target signature. Pairs of such a target signature and the OID of the
object including the target set are stored in the set-based signature file as shown in

Figure 3.4.

CHAPTER 3. SET-BASED SIGNATURE FILES 23

set element element signature
baseball 0001000000000101
fishing 1100100000000 000
tennis 0100001010000000 OID
set signature — 1101101010000101 si

Figure 3.3: Generation of a Set Signature (F = 16, m = 3)

{“baseball”, “fishing”, “tennis”} — [1101101010000101 | s1
{“baseball”, “music”} — [1110110111000010 | s2

Figure 3.4: Set-based Signature File

When a query is given, a query signature is generated from the query set Q
and then the signature file is examined. If a target signature satisfies the following
condition implied by the set predicate in the query, the corresponding data object

becomes a candidate which may satisfy the query.

T O Q: query signature A larget signature = query signature
T C @Q: query signature A target signature = target signature
T 1 Q: weight(query signature A target signature) > m

T = Q: query signature = target signature

where 'A’ stands for bit-wise AND) operation. Then, the drops are retrieved and

CHAPTER 3. SET-BASED SIGNATURE FILES 24

checked as to whether they actually satisfy the query condition (false drop resolu-

tion).

Figure 3.5 illustrates the query processing of query Q; (T° 2 Q). For the two
elements in the query set { “baseball”, “fishing”}, element signatures are created re-
spectively. Then, a query signature is composed by bit-wise OR-ing the elernent sig-
natures and target signatures satisfying the above condition for 7' 2 () are searched.
The object with the OID s1 becomes a drop because its target signature satisfies
the condition. In this case, the object s1 has an indexed set value {“baseball”, “fish-
ing”, “tennis”} and actually satisfies the query condition. Therefore, the object s1

becomes an actual drop.

query element element signature
baseball — 0001000000000101
fishing — 1100100000000000

(!
query signature 1101100000000101

signature file
(actual) drop « |1101101010000101 | s1
1110110111000010 | s2

Figure 3.5 Query Processing of Q, (7" D Q)

Figure 3.6 shows a case where false drops occur. The query with the condition
T D {“skiing”, “music” } is processed in this example. While this target set does not
satisfy the query condition, the target signature satisfies the above search condition.

Therefore, a false drop s2 occurs. This is due to hash collisions and the superimposed

CHAPTER 3. SET-BASED SIGNATURE FILES 25

query element element signature
skiing ~ 1010010010000000
music — 0110000100000000

1
query signature 1110010110000000

signature file
1101101010000101 | s1
(false) drop « | 1110110111000010 | s2

Figure 3.6: False Drop

coding method.

Figure 3.7 illustrates the query processing of query Q2. In this case, the object
s1 becomes a drop and actually satisfies the query (actual drop). Other two queries

(T'M Q, T = Q) are processed in a similar manner.

The query T M @ could be processed following the above procedure. However,
it has been clarified in [KFIO93] that this processing scheme for T' M Q is some-
times undesirable because the number of false drops is rather large. An alternative

processing scheme for T' M Q) to resolve this problem is shown below:

1) An element signature is generated for each element in the query set Q.

2) The signature file is examined. Each target set becomes a drop if any element

CHAPTER 3. SET-BASED SIGNATURE FILES 26

query element element signature
baseball — 0001000000000101
fishing — 110010000¢00060000
tennis — 0100001010000000
jogging — 0000100001010000
J
! query signature 1101101011010101 l

signature file
(actual) drop « | 1101101010000101 | s1
1110110111000010 | s2

Figure 3.7: Query Processing of Q, (" C Q)

signature generated in step 1) satisfies the following condition.

element signature Atarget signature = element signature.

3) The drops in step 2) are retrieved and checked whether they actually satisfy

the query condition (false drop resolution).

Figure 3.8 illustrates query processing of the query Qs under this scheme. In the
following discussion, the query T N ¢ processed under the first scheme is denoted

by T' My @, and that processed under the second scheme is denoted by 7'M, Q.

CHAPTER 3. SET-BASED SIGNATURE FILES 27

query elementi element signaturel
tennis ~+ 0100001010000000
query element? element signature?
jogging - 000010000101 0000

signature file
{actual) drop « | 1101101010000101 | s1
11101103111000010 | s2

Figure 3.8: Query Processing of Q3

3.3 False Drop Analysis

3.3.1 Basic Considerations

Table 3.1 shows symbols used in our analysis. For the analysis, following assumptions

are rade:

1. The weight of an element signature is very small compared with the signature

size (m < F).

2. The “1"’s are uniformly distributed in an element signature. Therefore, each

bit position is set to “1” with the same probability.

CHAPTER 3. SET-BASED SIGNATURE FILES 28

From the assumption 2, each bit position in an element signature is set with the

probability m/F. Therefore, the probability that a bit position &, of a target signa-

ture is set to “1" is given by
m\ P _nDy
p(b) =1~ (1“};:.") ml—-e" T (m« F). (3.1)

Similarly, the probability that a bit position b, of a query signature is set to “1” is

given by

~l—e T (m&F) (3.2)

Table 3.1: Symbols

symbol definition

Signature size in bits
Element signature weight
Cardinality of a target set T

Total number of target sets in the database

F
™m
D,
D, Cardinality of a query set Q
N
1%

Cardinality of the set element domain

The following formula giving the false drop probability for 7" 3 ¢ was derived by
Faloutsos and Christodoulakis [FC84]:

Fdirsg = (p(b))" (1 - e“"ii")m. (3.3)

Stiassny derived the optimal m-value that minimize Eq. (3.3) for m:

Fln2
D,

, (3.4)

Mopt =

CHAPTER 3. SET-BASED SIGNATURE FILES 29

[Sti60], where In stands for the natural logarithm. In addition to the assumption 1,

he used the following assumption to derive mp,:

174
o<
where V' is the vocabulary size, namely, the cardinality of the set element domain.
Note that m,,: does not depend on V. In the text retrieval area, signature files with
the superimposed coding often use Mopt a8 m-value [FC84, Fal8ba, Fal85b, FC87,
F(C88;.

In this section, false drop probability formulas for 7' 2> @, T C @, T g, and

T' = () are derived taking these considerations as a starting basis.

3.3.2 Generic Formulas

First, the case where all target sets have the same cardinality D, is considered. Let
b (1 <7 < F) be the j-th bit position of the target signature a,ndbé {(1<j7<F)be
j-th bit position of the query signature. For each i (1 £i < F —m), the following

equations hold:

Feiyy Dt
Prob{b{ =0A---AH =0} = ((m))

CHAPTER 3. SET-BASED SIGNATURE FILES 30

(F — m(F m—1)(F-m—i+1)\7
Fol)- (F—i+1))

- U (1- F—‘m) (3:5)

If Fﬁ:”;—ﬂ < 1 1s satisfied for 1 < k <,

1 1T Dy (41} Dy m Dy
—_— —]____._ﬁ._ —_———
F) (F—l) (1 F—'é+l>

mD, mD, mD
s A
F F-1 F—it+1

(

(. mDy
_ ((F—l)(F—2)"-(F—z))

(

Prob{by = 0A - - Abl =0} =

FF—1) (F_it1)

The above approximate condition is equivalent to the condition o7 < 1. Since
1 < m < F (assumption 2), =T = p=. Therefore, the approximate condition
is expressed as y*; < 1. That is, if m < F —1{ is satisfied, Eq. (3.5) can be

approximated as

7 s omDy
Prob{b! = 0A--- AK =0} (1 - %) . (3.6)
Similarly,
Prob{t! = 0A-- Ab = T(1 m_)\ 3.7
rob{, = A e I

Ifm <« F — s satisfied for 1 < k < ¢,

s mBOy
Prob{f;=0A- Al =0} ~ (1-2)" . (3.8)

CHAPTER 3. SET-BASED SIGNATURE FILES 31

In the following, generic false drop probability formulas for 7 2 @, 17 CQ,
N, and T = @ are derived. The probability that the target signature weight
is ¢ is denoted by p(¢)}, and the probability that the query signature weight is ¢ is

denoted by py(4).

1) T D Q: A false drop occurs when the following condition holds for every bit
position j (1 < j < F):

W=0 = bf;]:U.

If the target signature weight is £, the number of “0”’s in the target signature is
£ — 1. Therefore, the probability f{75¢}(7) that the target set becomes a false drop

is derived from Eq. (3.7) as follows:

. 1 F—q = —-__m Da
F{720)(¢) = Prob{b; = 0A--- A BT = 0} :,El (1* F—k+ 1) '

If m €< F — 1 holds,

o= (- 5= (3

is derived from Eq. (3.8). As distribution of the target signature weight is determined

by p(i), the false drop probability for T 2 € is given by

mDg

Fdiroey = gpt(i) (-}5) - (3.9)

In case Dq = 1, this formula gives the false drop probability for T3 g¢.

CHAPTER 3. SET-BASED SIGNATURE FILES 32

2) T C Q: A false drop occurs when the following condition holds for every bit
position j (1 <j < F}

B =0 = H=0.

q

If the query signature weight is ¢, the probability fircq}(i) that the target set

becomes a false drop is derived from Eq. (3.5) as follows:

. . o Fq m D,
feceyi)=Prob {5} =0 A A =0} = JT (1= 5—7—) -

=1

o

If m < F — ¢ holds,

fircay(i) ~ (1 _ F}; i)“’”" _ (%ma

is obtained from Eq. (3.6). As distribution of the query signature weight is deter-

mined by pq(7), the false drop probability for T' C @ is given by

F + . omDy
Fdircoy =Y py(i) (%—) . (3.10)
=0

3)TNQ

31) T M, Q: A false drop occurs when the target signature weight and the

query signature weight are at least m, and they have m or more bit intersection.

CHAPTER 3. SET-BASED SIGNATURE FILES 33

Therefore,
(o ()
Fdirr,q} = Zpt(%)Y pald) > s (3.11)
j=m kE=max(m,i+j—F) (J)
Ly F—1
is obtained. Here, S"rn&) ()ox) is the probability that the target signa-
k=max(m,i+j—F) (}jj y 14 g

ture and the query signature have m or more bit intersection when their weights are

pi(7) and py(7), respectively.

3.2} T N, Q: The false drop probability for T M, Q is simply expressed with

Fd{rsq} as follows:

Dq
Fdirmgy = Z Fd{rsq} X (1~ Fdirsg)"™! = 1 — (1 — Fd{rag)*. (3.12)

i=1

4) T ='Q: A false drop occurs when both the target signature weight and the
query signature weight take the same value 7, and the target signature is equal to

the query signature. Therefore, the false drop probability for T = @ is given by

1
Fdir=q} = ZPt 1)Pq (i T) (3.13)

CHAPTER 3. SET-BASED SIGNATURE FILES 34

3.3.3 False Drop Probability Formulas

As shown in Subsection 3.3.2, probability distributions of the target and query
signature weights denoted by p¢ (3) and po(z), respectively, play an important role in
estimating the false drops. In this subsection, three sets of formulas by estimating

p:{7) and py(2) values are derived in the following three different approaches.

Formulas ¥'1

Here, an assumption is made: the target and query signature weights are equal to

their expected values m, and m,, respectively, given as follows:

iy = Fxp(b)rm F(l—e 7)) (3.14)

My = F xp(by) =~ F(1— e "), (3.15)

Therefore,

mD

1 ifi=F(l—eF)

0 otherwise

and
D

1 ifi=F(l-e"F)

0 otherwise,

CHAPTER 3. SET-BASED SIGNATURE FILES 35

The false drop probability formulas based on these p,(¢) and py(1) values are as

follows:
HT2@
Fdragy.ri = (1~ e~ F)mDs, (3.16)
TCQ
Fd{rcey,ri= (1~ e_m"’"ﬁ'pi)mD‘. (3.17)
3 Trne:
Fd{rn g} m
Fl1 —ﬂ;?—‘] F—F(l-—e_zﬁg_t}
min(F(l—e*-anl'}'i),F(lw-e_T'i"Di)) (k) F(lﬁev%gg')mk
= Z =)
mD mig mDq
k=max{m, F{l—e JHF(1-e” TF)=F) (F(l—e——!’_))
(3.18}
moy o\ D
Fd{rn,@yrm =1- (1 ~(1~e °F)m) . (3.19)
HT=q
Fd{r=q),r1= (;——, {3.20)

where 72 = F(1 - e_%) = F(1 - e).

CHAPTER 3. SET-BASED SIGNATURE FILES 36

Note that Eq. (3.20) for 7" = @ is applicable only when D; = D . Also, note that
Eq. (3.16) becomes Eq. (3.3) in case Dy = 1.

In Appendix A, some useful properties of F'd{r2¢@},F1and Fd{Tcq},F1 are derived.

Formulas F2

In this approach, we assume that each bit position in the target signature and
the query signature is set to “1” with probabilities p(b;) and p(by) (given in Subsec-
tion 3.3.1), respectively, independently of other bit positions. Then, the distribution
of the target and query signature weights follow the binomial distribution, and we

get

i) = (£ ot =ate
pq(t) = (f)p(bq)"u — p(by))".

The false drop probability formulas based on these p(i) and p,(z) values are as

follows:

CHAPTER 3. SET-BASED SIGNATURE FILES 37

)T 2Q:
F 2\ mDg
Fdirog)r2 =) (f‘)(l R e ala (%) : (3.21)
1=0
2) T CQ:
F c o\ mDy
Fdircoyre = Z (1:)(1 —e” ﬁq)'e ?‘?(F—i) (%)) (3_22)
i={
HTrng:
3.1) T'my @:
Fdirng),F2 .
r F » F . min(i,5) i F:i
= Z() ()1 - p(B)P Y () s -y W5
i=m t j=m k=max(m,i+j-F} (3)
(3.23)
F C.m Dy
Fdirnoyre = 1 — (1 _ ZO (f) (1- em%‘)z’(ip’a‘*w_i) (%)) ,
(3.24)
4) T =q:
F F _mDy . _mDg . -m(Dqu}(F__t.)
Fd{r=q},p2= =TTy (e e T T (3.25)
=0

CHAPTER 3. SET-BASED SIGNATURE FILES 38

Formulas F3

In deriving the formulas F1 and F2, two different approaches are employed to esti-
mate the target and query signature weights. Murphree and Aktug derived a more
strict mathematical formula giving the probability distribution of the set signature
generated by superimposed coding [MA]. Murphree and Aktug considered superim-
posed coding of D element signatures as a Markov process consisting of D stages.
Let m; (1 < ¢ < D) be the weight of the i-th element signature, ¥; be the weight
of the set signature after the stage i, and W be the final signature weight. Then,
m; =Y <Y, £-.- < Yp = W holds. They derived the following probability

distribution formula for the set signature weight by analyzing this Markov chain:

Prob{W =w}= 3. (F " ml) (F T J) g yemti H Ue’) (3.26)

F=0 J w-—my —] () ,

where m; € w < min(F, m; + --- 4+ mp). When we apply this formula to our

context, we get the following formulas:

= Zm(") m—yj)(wl)"“”‘”[(g)
0

po(i) = g: (F j m) (f—_:j:;)(”l)i_mﬂ {(E;)J%l if m <i <mD,,

0 otherwise.

} if m <i<mbD;,

otherwise,

CHAPTER 3. SET-BASED SIGNATURE FILES 39

The false drop probability formulas based on these p,(7) and py(i} values are as

follows:
0NT2QE:
Fd{r2q},F3
R, R
min(F,mD) {-m F —m — j)) (m—H) 7 m Dy
e e
i=m J=0 e a ‘7 (m) £
(3.27)
2) T CQ:
Fd{rcqy r
min{F, mDg) i—m F m — j . . (m+j) Pat 1 mD,
e [
i=m i=0 j (m)
(3.28)
3) TNQE:
min{ F, mD) min(F, mDq) min(i, 5) i) (F-i
Fdimeym = > p(i) Y p(5) >, (k)gf—k)
i=m j=m k=max(m,i+j—F) (j)

(3.29)

CHAPTER 3. SET-BASED SIGNATURE FILES 40

Fd{rn,Q),F3

e

{3.30)
4) T = @
Fdir=0),r3
B min(F,mDy, mDq} | fiwm F—m\{F-m-j i (m‘f:j) o
=B Cmee [F)

3.3.4 Varying Target Cardinality

Hitherto, the case where all target sets have the same cardinality D; has been
focused. It is not difficult to extend the above study to the case where the cardinality
of the target set varies. Let a set element domain be a set from which each target
set element is taken, and its cardinality be V. If we do not consider the case that
the target set is an empty set, the target set cardinality varies from 1 to V. Suppose
the probability that the target set cardinality is D, is given by the function P{Dy)

(1 £ Dy £ V). Then, the false drop probability is derived with the following formula

CHAPTER 3. SET-BASED SIGNATURE FILES 41

for eachcase of T 2 Q, T CQ, TNQ, and T = :

%
Fdvre,e; = Y P(D)Fde1, (3.32)
D=1

where ¢ and f are parameters indicating one of {T" 2 Q}, {T C @}, {T' M, @},
{T N @}, {T = Q}, and one of F1, F2, F3, respectively. Fdc,s is the false drop
probability formula derived in Subsection 3.3 for each combination. For example,

the false drop probability for T D @ based on F3 (Eq. (3.27)) is given as follows:

Fdvrc {T2¢),F3

B i 5 | ey B]

Dy=1 i=m j=0

Chapter 4

Set Retrieval of Non-Nested

Objects

In this chapter, set retrieval of non-nested objects are discussed. SSF (sequential
signature file) and BSSF (bit-sliced signature file) are emploved as candidates of
physical organization schemes for set-based signature files, and their storage cost,
update cost, and storage cost are compared. For BSSF, compressed .organiza.tion
(BSSFcmpr) is proposed for medium- and large-scale databases. In addition to these

files, the nested index is also examined as a possible index structure for set retrieval.

42

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 43

For signature files, file organization and query evaluation schemes are further devised

based on the result of the performance evaluation and the analysis.

4.1 Set Access Facilities for Non-Nested Objects

As described in Chapter 2, there exist various organization schemes for signature
files. But most of them are designed for text retrieval, and there have been no
proposals for set retrieval. The performance of signature files depend on physi-
cal organization scheme. For text retrieval, a lot of file organization schemes are

proposed but it is not clear which organization is best suited to set retrieval.

In this chapter, SSF and BSSF, representative signature file organization
schemes, are considered as candidates for the organization schemes of set-based
signature files. For set retrieval, the basic structure of SSF and BSSF are not differ-
ent from that in text retrieval. SSF stores target signatures sequentially and BSSF
stores them in a columnar manner. However, pattern matching conditions between a
query signature and target signatures are different from those in text retrieval appli-
cations. For usual text retrieval, one or more keywords are specified and documents
are retrieved based on the keywords. Such a query corresponds to T 2 @ (T" = q)
query in set retrieval. In addition to this query, there are other kinds of queries

TCQ, T, and T = Q for set retrieval and the pattern matching conditions are

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 44

different each other. For each query, the advantage and disadvantage of SSF and
BSSF should be examined. In addition to SSF and BSSF, compressed BSSF (abbre-
viated as BSSFcmpr) is proposed especially for medium- and large-scale databases,

and compared with other facilities.

For a comparative study, the nested index {abbreviated as NiX) [BK89, Ber93],
proposed as an index method for nested objects with BT-tree-like index structure,
is employed as other candidate for set retrieval facility. In a leaf page, NIX stores
index entries composed of a key value and the list of OIDs for objects that have the
key value in the indexed nested attribute. The format of a nonleaf node is similar
to that of BT-tree. For example, suppose that an object with OID O, has a value
{a,b,c} in its indexed set attribute. In this case, three pairs {(a,O;), (b,01), and

(c, 01) are inserted into the B¥-tree-like index file.

4.2 Cost Model

In order to evaluate the performance of set-based signature files and NIX, it is
necessary to construct a precise cost model integrating various factors in set retrieval.
For set-based signature files, there exist design parameters such as F' (signature
size) and m (weight in an element signature) as described in Chapter 3. These

parameter settings have serious influence on the retrieval, update, and storage cost.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 45

In addition to these design parameters, parameters for the target database also effect
on the retrieval cost. For example, the number of entries of indexed objects (N),
the distribution of the cardinalities of the target sets, the characteristics of the set
domain (e.g., cardinality, distribution), the access costs for objects in the false drop
resolution step, the kind of query issued by the user (e.g., T 2 @), the cardinality

of the query set (D), and so on.

In the previous chapter, approximate formulas for false drop probabilities are
derived. These formulas are depend on parameters F', m, Dy, Dy and contain expo-
nential expressions. Generally speaking, false drop probabilities dynamically change
as the parameter values change. If false drop probability is small, the number of
false drops is also small so that the cost of false drop resolution will be small. How-
ever, parameter settings that minimize false drop probabilities ;'a.re not necessarily
optimal when total retrieval costs are considered. For example, to minimize the false
drop probability for T' 2 @, F should be infinitely large (property 4 in Appendix A)
and m should be m,, (property 1 in Appendix A). But such parameter settings
will increase the scan cost for the signature file, then the total retrieval cost become

WOorse.

Many studies on signature files for text retrieval employed the parameter settings
that minimize false drop probabilities. If F' is fixed, m = mqy (Eq. (3.4)) is such
an optimal setting. One of this reason is the query pattern in text retrieval. In text
retrieval, T 5 ¢ retrieval accompanying many false drops frequently occurs so that

the false drop resolution cost generally dominates the total retrieval cost. However,

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 46

in set retrieval, there are some situations such that the false drop probability is so
small that the scan cost of signature files rather than the false drop resolution cost
dominates the total retrieval cost. To evaluate and analyze the retrieval cost of set-
based signature files, the analysis of false drop probability alone is insufficient and

a cost model considering the total retrieval cost should be constructed and used.

Table 4.1 lists values for the symbols used in the following analysis. To construct

the cost model, some assumptions are made for simplification:

1. Each indexed set attribute value has the same cardinality D:. Namely, D,
elements are contained in each indexed set attribute value. In the following

analysis, two cases of Dy = 10 and D, == 100 are considered.

9. The D, elements of a target set are randomly selected from the set domain

with the cardinality V.

3. The D, elements of a query set are randomly selected from the set domain

with the cardinality V.

4, Each object has an unique OID and can be accessed witha constant cost using
its OID. For successful search, namely, when the indexed set attribute value of
the object satisfies the query condition, the access cost is /. For unsuccessful
search, the access cost is P,. These access costs are used to estimate the false

drop resolution costs.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 47

Table 4.1: Symbols and Their Values

symbol definition and value
F Signature size in bits
m Number of “I"’s {weight) in an element signature
Fdi False drop probability
Dy Cardinality of a target set
Dy Cardinality of a query set
N Number of objects (= 32,000 or 320,000)
|4 Cardinality of the set domain (== 13,000)
P Size of a disk page (= 4096 bytes)
b Number of bits per byte (= 8)
oid Size of an OID (= 8 bytes)
P Number of page accesses to fetch an object on successful retrieval
(= 1 page}
P, Number of page accesses to fetch an object on unsuccessful
retrieval (= 1 page)
RC Retrieval cost {pages)
SC Storage cost (pages)
IC Insert cost for one set value {pages)
DC Deletion cost for one set value (pages)
LCoin{c}(N) | Access cost for the OID file for N objects (pages)
SCsig(N) | Storage cost of signature file for N objects (pages) (SSF only)
SCust(IN) | Storage cost of a bit-slice file for N objects (pages) (BSSF only)
M {c} Number of bit-slice files to be retrieved
Nod Number of OIDs in a disk page (= |P/oid| = 512)
SCow(N) | Size of an OID file in pages (= [N/Nyq] pages)

Afe)(N)

Number of actual drops for N objects

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 48

In the following four subsections, the retrieval cost, the storage cost, and the
update cost are estimated for each set retrieval facility. Since the performance of
these facilities mainly depends on the I/O cost, the costs are estimated in terms
of the number of page accesses. Since some of the cost formulas are also used in

Chapter 5, cost formulas are derived in rather general forms.

4.2.1 Cost Estimation of SSF

SSF consists of two files: a signature file and an OID file (Figure 2.2). Set signatures

and OIDs are sequentially stored in each file.

Retrieval Cost

Set retrieval using SSF is processed as follows.

1. A query signature is formed from the given query set value.

2. SSF is scanned sequentially to examine each target signature. If a target
signature satisfies the pattern match condition explained in Section 3.2, the

corresponding OID is retrieved. The set of retrieved OIDs is called Som.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 49

3. For each OID entry in Soip, the object is retrieved and checked as to whether
1t actually satisfies the query condition. This step is the false drop resolution.

Qualified objects are returned to the user.

Based on the discussion in [FCB88], the retrieval cost of SSF for N entries is

derived as

RCssp{c}(N) = SCg(N) -+ LCorp{c(N)

(4.1)
+ PAEN) + PyFdie}(N — Ages(N)),
where SC;;;(N) is the storage cost of the signature file itself:
NF
SCug(M) = | 5| (42)

Since SSF requires a full scan over the signature file, SC,;(N) is so large that it
directly influences the total retrieval cost RC. LCom{cH{ N)is the lookup cost of the
OID file and its value is given below. PA{}(N)+ P,Fd{}(N — A(c}(N)) is the cost
for the false drop resolution step. P, A(c}{V) is the object retrieval cost for actual
drops. Similarly, P,Fd{c}(N — A{c}{(IV)) is the object retrieval cost for false drops.
Fd{c}(N — A{c}(N)) is the number of false drops.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 50

The lookup cost of the OID file is*

LComie(N) = npa(A{e}(N) + Fd(eyN — A()(N)), N, SComp(N)), (43)

where SCom(/V) is the storage cost of the OID file, and npa is the formula of Yao to
estimate the number of page accesses [Yao77|; To retrieve t records from n records

stored on p pages, the number of page accesses is estimated by

npa(t, n, p} = p (1 - f[s ;1—/§)+_1i . 1) '

i=1
Storage Cost

The storage cost of SSF is given as

SCSSF(N) = SCsigr(N) + SCOID(N). (44)

'For LCoip{}(N), other formula
LCoip{c{N) = npal{A{c}(N) + Fd{c}(N - A{c}(N)), NoiaSComn(N), SCom(N))

can also be considered, but they are not different so much.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 51

Update Cost

The update cost of SSF is as follows:

ICSSF = 4 (45)

DCssp(N) = EQOIQD—(M-JrI. (4.6)

Insertion of a set value requires two page access (read /write) both to the signature
file and the OID file to append the information at the end of the files. In deleting a
set value, a delete flag is set in the OID file. To set the delete flag, the corresponding
entry is first searched by the given OID. Therefore, E-‘ZIL,B{—N—) page accesses 1s required.

When the delete flag is set, the page is written back. Therefore, one page access is

needed.

4.2.2 Cost Estimation of BSSF

BSSF consists of F different bit-slice files and an OID file as illustrated in Figure 2.2.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 52

Retrieval Cost

Set retrieval using BSSF slightly differs for T 2 Q and 7" C @, and is described as

follows:

1. A query signature is formed from the given query set value.
2. If thequeryisT 2 Q,

(a) For each bit position which is set to “1” in the query signature, the
corresponding bit-slice file is retrieved. Therefore, the expected number
of bit-slice files to be retrieved is equal to mg, the weight of the query
signature. The expected value of mq is given as i, ~ F(1 — e~ F D)
(Eq. (3.15)).

(b) These bit-slice files are AND-ed together. For each entry where “1” is set
in the resulting AND-ed bit-slice file, the corresponding OID is retrieved

from the OID file into a set Sqip.
3. If the query is 7' C @,

(a) For each bit position which is set to “0” in the query signature, the
corresponding bit-slice file is retrieved. Therefore, the expected number

of bit-slice files to be retrieved is F — mj,
(b) These bit-slice files are OR-ed together. For each entry where “0” is set
in the resulting OR-ed bit-slice file, the corresponding OID is retrieved

from the OID file into a set Som.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 33

4. For each OID entry in Som, the object is retrieved and checked as to whether
it actually satisfies the query condition. Qualified objects are returned to the

USEr.

The retrieval cost of BSSF is as follows:

RCpsseicl(IN) = SCuee(N) x M3 + LCom{s}(N) 41
-+ PSA{C}(N) —+ PuFd{c}(N — A{c}(N))

The first term represents the retrieval cost for hit-slice files. SCpe(N) is the storage

cost for a bit-slice file and given by

SChat(N) = [%} . (4.8)

M is the expected number of bit-slice files to be refrieved and given by

Mir2q} = my (4.9)

Mircgy = F—mq. (4.10)

LCom{}(N) is same as SSF (Eq. (4.3)).

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 54

Storage Cost

The storage cost of BSSF is given as

SCBSSF(N) = SCbsf(N) X F+ SCOID(N). (4.11}

Update Cost

To derive the update cost of BSSF, the following assumption is made:

1. At the creation time of a BSSF file, all bits of F bit-slice files are initialized

tO HO)) .

2. On the insertion of an entry, the signature is appended to the end of the BSSF

file.

3. On the deletion of an entry, the signature for the entry is re-generated, and

the signature and the OID for the entry are given to the deletion procedure.

Therefore, the insertion algorithm is given as follows:

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 55

1. For each bit position in the given signature, the bit-slice file page corresponding
to the insertion position is retrieved, and the bit of the insertion position is
turned to “1”, then the page is written back. The expected number of bits to
be turned to “1” is equal to m, the weight of target signature, and is estimated

as T, F (1- e ") (Eq. (3.14)).

2. The OID file page corresponding to the insertion position is read and updated,

then written back.

Thus, the insertion cost of BSSF is

IChssy = 2(m, + 1). (4.12)

The deletion algorithm is as follows:

1. The OID file entry is searched by the given OID. When the OID is found,
a delete flag is set at the deletion position in the OID file, and the page is

written back.

2. For each bit position that is set to “I1” in the given signature, the bit-slice
file page corresponding to the deletion position is retrieved, and the bit of the

deletion position is turned to “0”, then the page is written back.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 56

Therefore, the deletion cost is

SCom(N
DCBSSF(N) = —HQI—EM-}-Q?RW‘—I-l (413)

The first and the third terms are the update cost of the OID file and the second

term is the update cost of the bit-slice files.

4.2.3 Cost Estimation of BSSFcmpr

As described in the following cost evaluation, the overall retrieval cost of BSSF in
set retrieval become better when the parameter m is very small (eg., m =2, 3).
In such a parameter setting, each bit-slice file is very sparse and many bits are set
to “0”'s. Therefore, it would be considered that the retrieval cost and the storage
cost of BSSF might be improved by the compression of bit-slice files. In this study,
such a BSSF file is called compressed BSSF and abbreviated as BSSFempr. In
the following, the bit-length of a bit-slice file with compression is estimated. As a

compression scheme, the run-length coding method of [GVT5] is assumed.

The retrieval algorithm for BSSFempr is not different from that of BSSF. Only
one exception is that BSSFcmpr requires decoding of compressed bit-slice files. As

this cost model only considering 1/O cost, the cost for decoding is not included in

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 57

the retrieval cost. The update algorithms for BSSFcmpr are also similar to those of
BSSF. But the update costs of BSSFcmpr may become larger because BSSFempr
does not permit direct access to a bit in a bit-slice file; decoding of the entire bit-slice
file is required to change only one bit value. To reduce update costs, it would be
better to divide a bit-slice file info some segments and to compress the segments
independently. Although the worst naive update costs can be derived, the derivation
of update costs for the improved scheme is rather difficult. Therefore, the update
costs for BSSFempr are not derived in this analysis; more efficient update algorithms

and their analysis are leaved as a future research theme.

The retrieval cost and storage cost of BSSFcmpr are expressed by Eq. (4.7) and
Eq. (4.11), respectively. But SCh(N) in these formulas is differ from the case of
BSSF. Now the expected size SChe(N) for BSSFempr is estimated. Let @ be the
probability that “0” occurs in a bit in a bit-slice file and let I be an integer that
satisfies

'+ 8 <1< 44t

The expected bit-length of a code with the optimal encoding, 7, is given as

k

i

where k = 2Uegl+1 — [[GV75).

Since the probability that a bit in a signature stored in a BSSF file is “1” is given

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 58

by plby) &2 1 — e~ =7 (Eq. {3.1)), 8 is derived as
0=1-plb)=eF (4.15)

After all, the expected size of a bit-slice file with compression is

SChe(N) = {&é%lﬂ , (4.16)

where Np(bi} is the expected number of bits with the value “1”. This is equal to

the number of sequences of “0”’s in a bit-slice file.

4.2.4 Cost Estimation of NIX

Bertino and Kim compared NIX with the path index and the multi-index in the
context of navigation queries in OODRBs [BK89]. In the following, the costs of NIX
for the queries T 2 Q and T C Q are estimated by extending the cost model

introduced in [BK89, CBBC94]. Symbols for NIX are listed in Table 4.2. Other

parameters are same as the case of signature files.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS

Table 4.2: Symbols for NIX

39

symbol

definition and value

3
Pk

1(y)
ki

noid

re

ds(y)
pp

Total number of keys

Average number of objects whose indexed set attribute includes a
given set element value

Number of given key values

Number of records at level k

Number of pages at level k

Size of a leaf-node index entry for NIX in bytes

Size of a key value for NIX (= 8 bytes)

Size of a field which specifies the number of OID entries (= 2 bytes)
Average fanout from a nonleaf-node (= 218)

Retrieval cost per index entry (pages)

Size of a directory in bytes

Size of a page pointer (= 4 bytes)

NIX Configuration

The cost formulas for NIX will also be used in Chapter 5. Therefore, generic cost

formulas are derived here.

Let & be the total number of keys, ¥ be the number of entries corresponding to

a key value in a leaf-node page of NIX, ng and p; be the numbers of records and

pages at level k of NIX, and A be the height of NIX. The cost of NIX depends on the

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 60

condition that a leaf entry is larger than one page or not. The size of a leaf entry is

y X oid + kI + noid ifllly) < P
(y) = (4.17)

y % otd + kl + noid + ds if H{y) > P,

where ds(y) is the size of the directory created when a leaf entry exceeds one page,

and given by

ds(y) = FI X oid +Pkl + nozd-l x (oid + pp), (4.18)

where pp is the size of a page pointer. Therefore, the total number of leaf pages is

given by
x Hi{yy< P
Py = ‘ (I_P/“(y)_]} (y) - (419)
z x [H)] if 1{y) > P.

The number of entries in a nonleaf-node pagein levelk (1 <k <h—1)is
hy = f, (4.20)
where f is the fanout of NIX. The number of nonleaf-node pages is

P = Ff-}“—l] . (4.21)

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 61

When 2 index keys are given in a query, the retrieval cost of NIX is 2

h

> npa(ty, ny, Pr) ifz>2
renmx(z, ¥, 2) = kxl (4.22)

h ifz=1

[CBBC94], where t, = z and ¢,_, = npa(ty, n, py).

In the cost analyses in Section 4.3 and Section 4.4, there are four cases of com-
binations of D,- and /N-values. NIX configuration for each combination is shown in
Table 4.3. N = 32,000 assumes small-scale databases and N = 320, 000 assumes
medium-scale databases. For only the case of D, = 100 and N = 320,000, li(y)
exceeds one page and the height of NIX becomes 3. For other cases, the height of
NIX is 2.

Table 4.3: Configuration of NIX

N and D, Pr (pages) | nonleaf pages | A
N=32000 | D, =10 650 413
N'=32,000 | D,=100| 6500 29 3
N =132,0000 | D, =10 6,500 2913

| N=132,00600| D, =100 65,000 280 | 4

#Note that this retrieval is not set retrieval but wsual one.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 62

Retrieval Cost

Set retrieval algorithms using NIX differ for 7' 2 @ and 7" C Q, and are described

as follows:

1. For each element in the query set, the OIDs corresponding to the element

1s retrieved using NIX. As aresult, D, sets of OIDs are obtained.

2. The intersection of the Dy sets is taken. For each OID in the resulting

set, the object is retrieved and returned to the user.

1. For each element in the query set, the OIDs corresponding to the element

1s retrieved using NIX. As a result, D, sets of OIDs are obtained.

2. The union of the D sets is ta;ken. For each OID in the resulting set,
the object is retrieved and checked as to whether it actually satisfies the
query condition. Qualified objects are returned to the user. Note that
the element in the union does not necessarily satisfies the query condi-
tion. Therefore, a processes corresponding to the false drop resolution in

signature files is required.

The retrieval cost of NIX is given as follows:

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 63

T2Q
DN
RCwrx (129} N) = renx (Vﬂ 7 Dq) + P A(T20)(N) (4.23)
T CQ
Dyi-1 ¢Dg Vv~ Dg
RONIx{TCQ} = Tenx (V, D{,NaDq) + PN Lih ((,)(Dt_,)
Pt (4.24)

Dq
+P5N(D)

Dy

The derivation of the second and the third terms for T 2 Q is explained as {ollows;

After D, index lookups, the number of objects to be accessed is given by

U W) B)

(2. (5.)

where the first term expresses the number of objects which do not satisfy the query

condition, and the second term represents the number of objects which actually

satisfy the query condition. Therefore, Eq. (4.24) is obtained.

Storage Cost

The generic formula for the storage cost of NIX is given by

B
SCnix(z, ¥) =3 ps- (4.25)
k=1

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 64

This formula is used in Chapter 5. For the following analyses, parameters z and

y are set to V and iQ;,—N, respectively. Therefore, the storage cost of NIX for the

analyses in this chapter is

DN
SCxax (Vs =). (4.26)
v
Update Cost
The generic insertion and the deletion costs based on z key values are
ICwux(z,y, z) = DCnux(z,v, 2)
h
> npalte, na, pr) + npalty, na, pr) (2>2) (4.27)
= k=1
h+1 (z=1).

The second term for each formula represents the rewrite cost. On insertion and
deletion of a target set, D, elements are inserted or deleted. Therefore, the inser-

tion/deletion formula of NIX for the analyses in this chapter is given as

D
IChix (V, “{,—N, Dz) (4.28)
Dewx (V, 25+, 1) (429)

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 65

4.2.,5 Actual Drops

False drop probability formulas are derived in Section 3.3. False drops occur only
in signature files. However, actual drops are related to all access facilities. Here,

actual drop formulas for T" D Q) and I' C Q are derived.

roQ
In this case, we assume that D, > D,. Since the cardinality of the set domain

is V, the probability that a query set value becomes a subset of a target set is

(o)
D-D,

(5.)

The actual drop A is the expected number of such target sets. Therefore, we

have
V-Dy
AfT20}N) = Ng?—‘—;—qg-z (4.30)
' (D‘t)
rcao

We assume that D, > D,. The probability that a query set value becomes a

superset of a target set is

Therefore, we have
(o)
(2)

This actual drop value is almost negligible for probable values of D; and D,.

(4.31)

Agregy(N) =N

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 66

4.3 Cost Analysis for Small-scale Databases

In this section, the retrieval costs for SSF, BSSF, and NIX for queries T 2 Q and
T C) are compared in the context of small-scale databases (N = 32,000). As D
values, two cases of Dy = 10 and D, = 100 are considered. In this section and the
following section, F-values are set in a manner that the storage costs of signature
files are less or at most equal to that of NIX. As false drop probabilities, formulas F1

in Section 3.3, simple but moderately accurate formulas

Fd{iroqy = Fd{r9).F1
mD, % mDq
- (1-..e--T‘) (Eq. (3.16))
Fd{rcQy = Fdirce}rm

= (1=) (Ea 617)

are used.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 67

4.3.1 Retrieval Cost for T D Q

Owverall Trend of Retrieval Cost

First, the retrieval costs of SSF, BSSF, and NIX for T O @ in smali-scale databases
(N = 32,000) are presented. Figure 4.1 shows the retrieval costs of three set access
facilities under Iy = 10 and N = 32,000. D, varies from I to 10. For signature files,
there exist iwo design parameters ' and m. In this case, two signature sizes F = 250
(bits) and F' = 500 (bits) are used, and myy (Eq. (3.4)) is used as the m-value. In

the context of text retrieval, mgy is a typical m-value. When m = mgy, the false

T4 Flin
drop probability is given by Fdirog) «~ (]5) B (see Eq. (A.1)in Appendix A).

This false drop probability is almost negligible under the parameters of this figure.

In Figure 4.1, the retrieval costs of SSF and BSSF are higher than that of NIX.
Since SSF requires a full scan over the signature file in retrieval, SCy(N), the
storage cost of the signature file, directly influences the retrieval cost. If smaller
signature size F' is chosen, the storage cost might decrease. However, the false drop
probability will increase - this is a dilemma of SSF. On the other hand, the retrieval
cost of BSSE does not depend on the storage cost but on 7, the expected number
of “1"’s in the query signature. Since Ty increases as Dg increases, the retrieval
cost of BSSF becomes higher for larger D, as shown in Figure 4.1. However, the
retrieval cost of BSSF can be improved. In the following subsection, the tuning of

the parameter m of BSSF is discussed.

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 68

60s T T T T T ¥ T T
560 i\ . . 5
SSE {F - 500} -e—
§5F (F = 250} ~+—
KA BSSF (F = 500} -B--
BSSF (F = 250) -%-
= NIX -
o
2
z 300 k- _
2 - - - "
- +— + + + ol
BT
200 | e .
g
B
'____.G\'" s K
AR SR e VI 1
g " e
e |
~~~~~~ ' I R DRSS SRSttt st
0 iy et § - & L ! 3
1 2 3 4 5 6 7 g 3 10

Figure 4.1: Retrieval Cost (D¢ = 10, N = 32, 000)

For three set access facilities, similar properties are also ebserved for I, = 100.

Tuning m-value for BSSF

The retrieval cost of BSSF is direcily influenced by the m-value. Although mey
gives the minimum false drop probability, it is not necessarily the optimal choice for
the total retrieval cost. If smaller m-value is taken, the total retrieval cost would
reduce, even if the false drop probability becomes larger. However, if m is too
small, the total cost increases drastically because the false drop probability becomes

intolerable.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 69

For D¢ = 10 and [}y = 100, the retrieval cost of BSSF with small m-values is
compared with that of NIX. Figure 4.2 shows the retrieval cost for D, = 10 and
F = 500. In this case, m ranges from 1 to 4. As shown in the figure, when D, = 1,
BSSF is inferior to NIX; For small Dy-values (Dy = 1, 2), the number of actual drops
(Eq. (4.30)) is large but this is common to BSSF and NIX. In addition to actual
drops, BSSF suffers from the overhead of false drops especially for small Dg-values
and small m-values. However, for other Dj-values, the retrieval cost of BSSF with
small m-values is comparable to or lower than that of NIX. Thisis because actual
drops and fa,lse' drops are turned to be negligible. In other cases (e.g., D; == 100,
F' = 2500), similar results are obtained so that the advantage of BSSF with a small

m-value 1s realized.

RC (pages)
(X
[ =]
T

Dq

Figure 4.2: Retrieval Cost with Small m-value (D, = 10, F =500, N = 32,000)



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 70

Smart Retrieval Strategy

If Figure 4.2 is observed carefully, it can be seen that there exist efficient ohject
retrieval strategies for BSSF and NIX which reduce the expected number of page

&CCESSES.

Suppose that a query with D =3 is issued by the user to BSSF with m = 2. If
the object retrieval 1s done as described in Subsection 4.2.2, it costs 6.0 page accesses
as shown in Figure 4.2. However, note that it is not necessary to lookup all the 7,
bit-slice files to answer the query. Only part of the m, bit-slice files are sufficient
in selecting candidate objects, since the final gualification of the candidates is done
at the false drop resolution step in any case. In this example, if only two elements
in the query set are used to form a query signature, the total cost decreases to 4.0
pages, as indicated by the page accesses for [ = 2 and m = 2. Although the
merease of 1)y leads the reduction of false drops and actual drops, it also brings
about the increase of 7r7,. Therefore, it is ﬁot wise to stick to looking up all the 7,

bit-slice files, as exemplified by the observation here.

The above discussion suggests the following smart retrieval strategy for BSSF

{m = 2 in Figure 4.2):

1. If Dg =1lor Dy = 2, lookup BSSF as described in Subsection 4.2.2.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 71

2. If Dy > 3, form a query signature from only two arbitrary elements in the

query set and lookup BSSF using this query signature.

Under this smart strategy, the retrieval cost become constant for Dy > 2.

Figure 4.2 indicates that the smart retrieval strategy can be applied to NIX in

a similar way. The smart strategy for NIX is as follows:

1. If Dy = 1 or Dy = 2, use NIX as described in Subsection 4.2.4. D, index

lookups are needed.

2. If Dy = 3, lookup NIX only two times for two arbitrary elements in the query
set. Then, take the intersection of the two sets. Finally, for each OID in the
resulting set, retrieve the object and check as to whether it actually satisfies

the query condition.

The retrieval costs under these smart retrieval strategies are shown in Figure 4.3
(Dy = 10) and Figure 4.4 (D; = 100). As shown in these figures, NIX has an
advantage only for Dy = 1. BSSF shows almost equal or lower retrieval cost for
Dy > 2 in Figure 4.3 and D4 > 3 in Figure 4.4. Therefore, BSSF is comparable to
NiX for T D Q.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS

Page Accesses (pages)

Page Accesses (pages)

1800 T T
BSSF (F = 230, m = 3} e
BSSF (F = 250, m = 2} -+
BSSF (F = 500, m = 31 -8--
BSSF (F = 500, m 2} =M
NIX b

Dy

Figure 4.3: Smart Retrieval Cost (D, =10, N = 32,000)

1000 ' y .
BSSF (F = 1000, m = 3} -e= ]
. BSSF (F = 1000, m = 2} —+= ]
. BSSF (F = 2500, m = 3) -@-r
BSSF (F = 2500, m = 2} -»-
NIX - ]
s
1 i 1 L
1 2 3 4

Figure 4.4: Smart Retrieval Cost (D¢ = 100, N = 32,000)

72



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 73

4.3.2 Retrieval Cost for T'C Q

Overall Trend of Retrieval Cost

Now the retrieval costs for T C ) are analyzed for two D, values Dy = 10 and

D; = 100. First, let us observe the overall trend of the retrieval costs of SSF, BSSF

and NIX.

Figure 4.5 shows the retrieval costs of the three access facilities for D, = 10 and

F'=500. D, varies from 10 (= D;) to 1000.

lDDODG 4 T T T Ll L T T T
L pperen
e
10000 b e .
5
@
=3 A
g 1000 | s
g E
[¥]
=54
SSF {m = 10) —
3 SSF qm = §) e
B N 38F (n = 2) 4
\} BSSF (m = :0) -
‘ BSSF (m = 5) -=-
BSSF (m = 2) -
NIX
19 1 1 L L i 1 1 !
100 200 300 400 500 600 700 809 900 1030

Dq

Figure 4.5: Retrieval Cost (D, = 10, N = 32, 000)



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 74

At first, SSF and BSSF are compared.. For large I, values, the retrieval costs
of SSF and BSSF are high and increase monotonically as Dy becomes larger. Both
the retrieval costs of SSF and BSSF, given by Eq. (4.1) and Eq. (4.7), come close to
PN for large D, values. The reason is that the false drop probability is almost 1 for
large Dg-values 2. In these situations, most of the data objects have to be accessed
to answer the query. For small D, -values, the retrieval cost of BSSF is superior to
that of SSF. This is due to the difference of the file organizations; SSF requires a full
scan over the signature file, whereas BSSF only requires accesses to F* — g bit-slice
files. For all D, values, Figure 4.5 shows superiority of BSSF over SSF under the

same m-value settings.

The retrieval cost of NIX increases monotonically as D, increases. As described
in Subsection 4.2.4, D lookups of NIX is performed for 7' C @, and then the union of
the retrieved sets of OIDs is taken. As Dy increases, the cardinality of the resulting

set comes close to N. For other values of F' and Dy, similar results are observed.

Smart Object Retrieval

As T D @, the retrieval strategy of BSSF for T € ¢ can also be improved. In the
following, the smart retrieval strategy for T C  is described and the retrieval cost

of BSSF with the smart strategy is compared with that of NIX.

3 Actual drops A{rcqQ}(N} is negligible in T C Q queries for probable Dg-values.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 75

Note that BSSF with m = 2 in Figure 4.5 takes the minimum value when
Ly = 300. Considering the object retrieval costs for D = 100 and Dy = 300,
the difference is mainly due to the number of bit-slice files to be retrieved (i.e.,
i—gﬂ (F — ). It costs 335 pages for Dy = 100 and 150 pages for Dy = 300.
Note that, for Dy < 300, the numbers of false drops and actual drops are almost
0. Therefore, 335 — 150 = 185 (pages) are the page accesses for the useless bit-slice
files. Namely, even if such bit-slice files are lookup-ed to lessen the number of drops,

1t does not pay because the number of drops is already almost 0.

Based on the above observation, the smart retrieval strategy for 7 C Q is given

as follows:

1. If Dy < DgP*, lookup only Fe ¥ files out of F —my bit-slice files which cor-
respond to the bit positions set to “0” in the query signature. These Fe™ FP%"
bit-slice files can be selected arbitrarily. The remaining object access process

is similar to that described in Subsection 4.2.2.

2. If Dy > DgP, retrieve objects as described in Subsection 4.2.2.

Here, Dgpt i1s the Dg-value that minimizes the total retrieval cost of BSSF and

roughly estimated as

port s~ Eyp o - d i



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 76

The derivation of DZP* is in Appendix B.

The retrieval costs of BSSF under the smart object retrieval strategy are shown in
Figure 4.6 (D; = 10) and Figure 4.7 (D, = 100). As m-values, small values are used
for consistency with the analysis in Subsection 4.3.1. For comparison, the retrieval
cost of NIX is also plotied. The retrieval cost becomes constant for D, < Dt This
is the effect of the smart retrieval strategy. Since Dgpt is relatively larger than D,
the retrieval cost of BSSF is considered to be a constant value for probable values
of 12;. On the other hand, the retrieval cost of NIX is large even with the smaller
values of Dy. The analysis show that BSSF is the most efficient set access facility

for T C Q.

100000 T T T T Ll T T T T

10000

1000 b 7
;

Page Accesses {pages)

100

10 ] 1 1 )\ 1 1 1 ]
50 104 150 200 250 3400 350 400 450 500
Dg

Figure 4.6: Smart Retrieval Cost (D, =10, N = 32, 000)



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 77

00000 — T T T T T T T T T

10000

1000

[T !

Page Accesses (pages)

= 1000,
= 1060,
= 2500,
= 2540,

mom
3331
[

] I 1 1 1 L 1
500 1060 1500 2000 2500 3000 3506 1000 4500 5000
g

Figure 4.7: Smart Retrieval Cost (D, = 100, N = 32,000)

4.3.3 Storage Cost

Table 4.4 shows the storage costs of the three set access facilities for several param-
eter values. The sfora.ge costs of SSF, BSSF, and NIX become higher in this order.
Although SSF and BSSF are almost comparable, the storage cost of NIX is much
higher than that of BSSF. For D, = 10, two F values F = 250 and F = 500 are
used. The storage costs of BSSF are about 45% (F = 250) and 80% (F = 500) of
that of NIX. For D, = 100, two F' values F = 1000 and F = 2500 are used. Their

storage costs are about 16% and 38% of that of NIX, respectively.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 78

Table 4.4: Storage Cost

=10 D, = 100
file SC' (pages) SSF (F ﬁli 1000) Scl(;);ges)
SSF (£ =250) o SSF (F = 2500) | 2504
SSF (I = 500) oo SSF (F = 5000) 4946
BSSE (I = 250) 513 BSSF (F = 1000) | 1063
BSSF (F = 500) o6 BSSF (F = 2500) | 2563
NIX 654
NIX 6529

4.3.4 Update Cost

Table 4.5 shows the update costs IC and DC for the three access facilities. The
update cost of SSF is quite low in comparison with those of BSSF and NIX and
constant with respect to [J,. The update cost of BSSF is the worst because it

requires updates for bit-slice files.

4.4 Cost Analysis for Medium-scale Databases

In this section, the costs of BSSF, BSSFempr, and NIX for 7 2 Q and T C @

in medium-scale databases (N = 320, 000) are compared. BSSFcmpr is the devised



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS

Table 4.5: Update Cost

D, file IC (pages) | DC (pages)
SSFE 4 32

BSSF (FF = 250, m = 2) 40 71
BSSF (£ = 250, m = 3) 59 89

01 BssF (F = 500, m = 2) 41 71
BSSF (F = 500, m = 3) 60 90

NIX 24 24

SSF 4 32

BSSF (F = 1000, m = 2) 365 395

Log | BSSF (F = 1000, m = 3) 590 550
BSSF (F = 2500, m = 2) 386 417
BSSF (F = 2500, m = 3) 567 598

NIX 229 229

79

version of BSSF and especially targeted for medium-scale databases. The cost of SSF

1s not considered here because of the poor performance is revealed in the previous

section.

4.4.1 Retrieval Cost for T D Q

Figure 4.8 shows the case of D, = 100 and N = 320,000 with the smart retrieval

strategy. The retrieval cost of BSSF is obviously inferior to that of NIX. For example,

consider BSSF with F = 2500 and m = 2. For small-scale databases (Figure 4.4),



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 80

the retrieval cost resides in same order to NIX. However, in Figure 4.8, the retrieval
cost of BSSF is quite larger than that of NIX. This is because the size of a bit-slice
file increase in proportion to N sothat the retrieval cost of BSSF is also proportional
to N. On the other hand, the effect of N to NIX is rather small because the height
of NIX increase in the log order. For D; = 10, similar characteristic is observed. In
conclusion, the retrieval cost of BSSF for T' O @ is worse than NIX for medium-scale

databases.

has-subset with smart retrieval (N = 320000, Dt = 100)

10000 , . |
BSSF(F =2500,m=3) —=— ]
BSSF(F =2500,m=2) -+
BSSF(F =5000,m= 3) B
BSSE(F =3000, m =2} =
NIX -a--
OO |
&
B
100 ¢ i .
10 L
1 2 3 4 5

Figure 4.8: Smart Retrieval Cost {D, = 100, N = 320, 000)

Improvement of Retrieval Cost with Compression

To improve the retrieval cost of BSSF for medinm-scale databases, the compressed
BSSF (BSSFcmpr) is considered. The length of a compressed bit-slice file is given by

§Chut(N) = [ﬁ%()b—g"ﬁ] (Eq. (4.16)). As examples, several values of %‘;W are derived



E’a
g

CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 81

in Table 4.6. Under this parameter setting (N = 320,000), the size of a bit-slice file
without compression is 10 pages. The use of small m-values for the smart retrieval

also produces good results in terms of compression.

Table 4.6: Values of ﬂ’}%‘ﬁ (pages) (N = 320,000, D, = 100)

F |m=1|m=2\m=3|m=14
2500 2.72 | 4.59{ 6.11| 594
5000 1.57 | 272 3.72| 459
10000 | 0.885 ] 1.57| 2a7| 272

The retrieval cost of BSSFempr is compared with that of NIX in Figure 4.9. It is
observed that as the density of “1”’s in a bit-slice file becomes smaller, the improve-
ment of retrieval performance of BSSFempr get larger. If BSSF and BSSFempr is
compared under the same storage cost, BSSFempr can set larger F-value so that is
advantageous because the false drop probability becomes small. The retrieval cost
for Iy = 10 is shown in Figure 4.10. For other parameter settings, similar costs are

obtained.

4.4.2 Retrieval Cost for TC Q

For BSSFcmpr, DgP-values for N = 320,000 and D, = 100 are shown in Table 4.7
with the retrieval cost at the point Dy = Dg"t. The retrieval cost is proportional

to N (Eq. (B-4) in Appendix B), therefore 10 times larger than that of small-scale



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 82

has-subset with smart retsieval (N = 320000, Dt= 100}

10000 . i .
BSSFempr(F = 2500, m =3) ——
BSSFempr(F = 2500, m=2) -
BSSFempr(F = 5000, m=3) -a--
1000 F BSSFcmpr(F = 5000, m = 2) = |
BSSFempr(F = 10000, m=3) ~a--
BSSFempr(F = 10000, m = 2) -%--
NIX —~—
B 100 &
D‘ e
10 F - ey
1 - . ,
1 2 3 4 5

Dg

Figure 4.9: Smart Retrieval Cost of Compressed BSSF (D, = 100, N = 320, 000)

has-subset with smart retrieval (N = 320000, Dt= 10)
10000 Y T T

BSSFempr{F =500, m =3) ——
BSSFempr(F = 500, m =2) -+
BSSFcmpr(F = 1000, m =3) -o--
1000 b BSSFempr(F = 1000, m =2} %~ |

X BSSFompr(F = 2500, m = 3) -+
BSSFempr(F = 2500, m = 2) -=--
NIX ——

pages

100 ¢

10 &

Figure 4.10: Smart Retrieval Cost of Compressed BSSF (D, = 10, N = 320, 000)



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 83

databases. On the contrary, the cost of NIX is very poor. For example, the retrieval
cost of NIX with D; = 100 is about 35,000 pages at the point of Dy = 100 and still

increases as [J; increases. For Dy = 10, similar tendency holds.

Table 4.7: Retiieval Cost for Medium-scale Database (pages)

(T C Q, N = 320,000, D; = 100)

F and m DP* | retrieval cost (pages)
F = 2500, m =2} 3960 1170
F = 2500, m =3 | 2940 818
F = 5000, m=2| 8130 2173
F = 5000, m =3 | 6010 1523

Note that large F'-values are not necessarily contribute to the improvement of
the retrieval performance; This is differ from T" 2 Q. For T C @, bit-slice files
corresponding to “0”’s in the query signature are retrieved, but the number of “0”’s
increase as F increases so that the number of bit-slice files to be retrieved also

increases,

Improvement of Retrieval Cost with Compression

When compression is used, the approximate formula for DP* (Eq. (B.3)) cannot
be applied. However, such optimal D, values can be found if we actually set the
parameters and look for the minimal point. Table 4.7 indicates such Dg-values

(denoted as DY) when D, = 10, and the retrieval costs at those points are shown.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED ORJECTS

Table 4.8: Retrieval Cost of Compressed BSSF

(T'C Q, N = 320,000, D, = 100)

F and m DgP" retrieval cost (pages)
F =200, m=2 3870 626
Fo=2500,m=3 | 2910 543
F = 5000, m=2 7780 739
F = 5000, m=3 5830 669
F = 10000, m =2 | 11820 1926
F = 10000, m = 3 { 11660 983

84

By Table 4.7 and Table 4.8, it is concluded that BSSFcmpr is superior to BSSF

for same parameter values F and m. The improvement of the retrieval cost with

compression is also observed for D, = 10.

4.4.3 Storage Cost

Table 4.9 indicates storage costs of BSSF and NIX. The storage costs of BSSF is

about half or equal to that of NIX, but BSSF is poor in terms of retrieval costs for

TDQ.

Table 4.10 shows the storage costs for BSSFempr. In comparison with Table 4.9,



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 85

Table 4.9: Storage Cost of BSSF and NIX

D, file SC (pages)
BSSF (F = 250) 3125
10 | BSSF (F = 500) 5625
NIX 6529

BSSF (F = 2500) | 25625

100 | BSSF (F = 5000) 50625
NIX 65280

the superiority of BSSFempr is obvious.

Table 4.10: Storage Cost of Compressed BSSF (pages) (N = 320, 000)

D, F{m =2(pages) | m = 3 (pages)
500 1987 2483

10 1000 2194 2799
2500 2461 3204
2500 12099 15899

100 { 5000 14242 19200
10000 16311 22362

4.4.4 Update Cost

For NV = 320,000 and DD, = 100, the update costs of BSSF and NIX for D, = 100

are shown in Table 4.11. For insertion cost, BSSF is superior to that of NIX. For



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 86

deletion costs, NIX is superior to BSSF when D; = 10. For D, = 100, BSSF is

better than NIX. The update cost of BSSFempr is a future work.

Table 4.11: Update Cost (N = 320, 000)

Dy file IC (pages) | DC' (pages)
BSSF (F = 250, m = 2) 40 352
BSSF (F = 250, m = 3) 59 370

10 | BSSF (F = 500, m = 2} 41 353
BSSF (F = 500, m = 3) 60 372

NIX 229 229
BSSF (F = 2500, m =2) | 386 698
BSSF (F = 2500, m = 3) 567 879

100 | BSSF (F = 5000, m =2) | 394 706

BSSF (F = 5000, m =3) | 584 896
NIX 307 307

4.5 Discussion

First, the case of small-scale databases is discussed. By the analyses of retrieval
costs, it is shown that SSF is inferior to BSSF for both T 2 @ and T C @. SSF
requires a full scan over the signature file, whereas only a part of the bit-slice files are
accessed in BSSF. Moreover, there exist the smart retrieval strategy that improves
the retrieval cost of BSSF. Therefore, as far as the retrieval cost is concerned, BSSF

is more appropriate as a set-based signature file.



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 87

For T O @, the retrieval cost of BSSF with a small m-value is almost equal to
that of NIX except for Dy = 1. Under the smart retrieval strategies, their retrieval
costs are constants for most of the D values, and the constant cost values are almost
the same. However, for very small I, values, the retrieval cost of BSSF becomes
worse due to the false drops. In particular, for Dy =1, NIX is more efficient than
BSSF in all cases investigated. For T C ), BSSF has small constant page accesses

for probable values of 2y, and overwhelms NIX.

For storage costs, two signature files are at most equal to or smaller than that
of NIX. For update costs, SSF has very small cost but BSSF is rather lager and the
worst of the three indexes. To improve the deletion cost of BSSF, another algorithm
that is similar to that of SSF may be used; When deleting an entry, BSSF simply
set a delete flag at the deleting position and does not reuse the bit position. In
this scheme, the deletion cost will become smaller, but the scheme is not suited to
dynamic environments. The weak point that the deletion algorithm is not suited to

dynramic environments also holds for SSE.

From these analyses, it is concluded that for small-scale databases, BSSF with
a small m-value is rather stable set access facility for both 72 @ and T C @. For
example, in BSSF with m = 2 and F = 250 for D; = 10, the storage cost of BSSF
is half of that of NIX, and is almost same as that of SSF. For the retrieval cost for
T 2 @, BSSF is comparable to NIX except for D, = I and is much superior than
SSF. The retrieval cost of BSSF for T C Q is much lower than those of SSF and

NIX. The only problem with BSSF is that update costs are rather higher than those



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 88

of SSF and NIX. If T D Q with small D,-value (e.g., T 3 ¢) frequently occurs, two
configurations are considered: 1) use an NIX file. In this case, ' C () queries cannot
be support very well. 2) use an NIX file for T O @ queries with small Dg-values and
use a BSSF file for other queries. Since NIX covers T 2 ¢ with small D -values,
the signature size F' of BSSF can be set to smaller value and can achieve a compact

organization.

In the context of text retrieval, my, (Eq. {3.4)), is usually used as the value of
sn-value. However, the analysis has clarified that we had better to set a far smaller

value to m for efficient set retrieval.

Next, the case of medium-scale databases is discussed. For medium-scale
databases, the costs of BSSF, BSSFcmpr, and NIX for 7' 2 Q and T C () are
compared. For T' O @, BSSF is inferior to NIX, but BSSFcmpr has almost similar
retrieval costs except for Dy, = 1. For T' C Q, the retrieval cost of NIX is quite
worse. In this case, BSSFcmpr also improved the cost of BSSF. For storage cost,

compression achieves great reduction.

In conclusion, for these set access facilities, BSSF suited for small scale databases
and BSSFcmpr suited be used for medium-scale databases. They attained almost

equal and small cost for T' D @ (except for D, =1) and T C €.

The estimated size of BSSFempr assumed an optimal encoding. Therefore, the



CHAPTER 4. SET RETRIEVAL OF NON-NESTED OBJECTS 89

compression rate might become worse in the real situation. Efficient update algo-

rithms for BSSFempr are remained as a research issue.



Chapter 5

Set Retrieval of Nested Objects

5.1 Introduction

Nested objects frequently appear in databases for advanced application areas. Many
advanced database systems support some kind of construct to express and manip-

tlate set values. Therefore, efficient indexing methods for set retrieval are also

90



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 91

required for nested objects. In order to support efficient retrieval of nested objects,
several indexing methods such as the nested index, the path index, and the multi-
index have been proposed [BK89, Ber93]. However, they are not designed to support

set retrieval of nested objects.

In this chapter, the target is changed to multilevel nested objects with set-valued
attributes and efficient set retrieval facilities are investigated. Four candidate set
retrieval facilities are proposed by combining the signature file method and the
nested index, and they are compared in terms of retrieval cost, storage cost, and
update cost. Since it is difficult to construct a cost model for a general case, the

following two independent cases are considered:

Case I : Nested objects do not have set attributes except for leaf-level attributes.

Case II : Nested objects may have set atiributes in their nonleaf-level attributes,

but two nested objects do not share their references.

So far, most performance analyses of indexes for nested objects have been performed
assuming that nested objects do not have set attributes [BK89, Ber93]. Therefore,
some of the results also contribute to analysis of indexes for nested objects in general

as well as their set retrieval



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 92

5.2 Preliminaries

In this section, the notion of nested objects is informally defined as the basis of the

following discussion. Then a sample query is shown.

An object comprises tuple-structured data defined by the tuple constructor ([...])
and has one or more attributes. Each object is identified by its cbject identifier
{OID). The structure of objects in a class is specified by the class definition. A
set of class definitions is called a schema. There are two types of attributes: an
atomic atiribute takes a primitive value or an OID as its value, and a set attribute
takes a set of primitive values or an QID set of objects in some class as its value.
In a schema, a set attribute is specified by the set constructor ({...}). An example

schema is shown in Figure 5.1.

{Deptartment = [dname: string, projects: {Project}, ..,
Project = [pname: string, emps: {Employee}, leader: Employee, ...},
Employee = [ename: string, hobbies: {string}, .. |}

Figure 5.1: An Example Schema

If an object O has an OID of some object O' as a primitive attribute value,
or has an QID of some object O in its set attribute value, we say that the object
O references object 0. Next, assumne that classes Cy, Cy,. .., Cy are defined in a
schema. A path P is defined as P = Cy.A;.Ag. -+ . Ay, where 4; (1 < i< n—1)

is an attribute of the class C; and takes an OQID of a C; ., object or an OID set of



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 93

Cis1 objects as its value. A, is an attribute of C,, and can take a primitive value, a
set of primitive values, an OID, or an OID set as its value. An instance of the path
P has the form O,.0,.---.0,.X, where O, is an OID of a C; object (this object is
called the root object). If the attribute 4; (1 < i < n— 1) is a primitive attribute,
Oiy1 is an OID of a C;,; object which appears as the A; value of O;. If A; is a set
attribute, the A; value of O; contains OID O;,, as a set element. X is the 4, value

of the object O,.

In the derivation of retrieval costs, the following query form over the path

C1.A; Ay -+ A, 1s assumed:

select (attribute value(s) of Cy)
from
where A;.A,. ... A, {op} (set value),

where A, As,..., Ap-1 are primitive or set attributes and A, is a set attribute.
‘The comparison operator {op) can be 2 or C. An example of such a query is the

following query Q, based on the schema in Figure 5.1.

Q.: select dname
from Department

where projects.emps.hobbies O {“baseball”, “skiing” }



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 94

Q. retrieves department names such that hobbies of some employees in the depart-

ment’s projects include both “baseball’and “skiing”. This kind of query is T 2 Q

{has-subset).

5.3 Set Access Facilities for Nested Objects

In this section, four set access facilities for nested objects, Tsssr, Irax, Zossrnix, and

Zwix-nix, are introduced.

5.3.1 File Structures of Set Access Facilities

File structures of four set access facilities are described here. Zassr is an extension of
BSSF to facilitate set accesses to nested objects. Znix is based on the nested index
(NIX) [BK89, Ber93], a Bt-tree-like indexing method proposed for nested objects.
Zpsse.mix is a combination of the BSSF method and the NIX method, and Znuxax

uses two NIX files.

An instance of a path P = Cy.A;.4s.+-- A, is expressed in the form



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 95

01.04. ....0p {vy, ve, -+, Un }, Where {v, vz, ..., vn} 15 a set of primitive values
or an OID set. When an instance of P, 0,.0,. -+ .0, {1, v2,..., v, } is given, the

following entries are inserted in each facility.

Twssr: The set signature S created from the set {vy, v, ..., vy, } is paired with O,
the OID of the root object, and the pair (S, Oy) is stored in the BSSF file. If

r instances of the path P are inserted, BSSF will have 2 entries.

Iwix: For each element of the set {vy, vy, ..., v}, the pair (v, Oy) (1 <i<mj)is
created and inserted into the NIX file. Since the format of a leaf-node entry
of NIX is {key value, OID set), if the pair (v;, 01} is inserted into NIX, the

corresponding leaf-node entry becomes (v, {O1,...}).

Ipssevix: The set signature S created from the set {v, va, ..., vy} is paired with
On, the OID of the C, object in the path P, and the pair {5, 0,} is inserted

into the BSSF file. Next, the pair (O, Oy} is inserted into the NIX file.

Twix-nix: For each element of the set {v1, va, ..., v}, the pair {v;, 0,) (1 <7 < m)
is created and inserted into an NIX file. This NIX file is called NIX;. Next,
the pair {O,, Oy) is inserted into another NIX file. This NIX file is called
NIX,.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 96

5.3.2 Query Processing Algorithms

In this subsection, query processing algorithms for the four set access facilities are
described. Except for Zessr, the query algorithms of each set access facility are not
different for Case I and Case II. For Case Ii, it is assumed that two objects do not
share their references. However, the algorithms described here are general and can

cope with the case that two or more objects share their references.

Iessr  Query algorithms for Tessr are slightly different for Case I and Case 1.

For Case I, both T' 2 @ and T' C @ are processed as follows:

1. BSSF is searched based on the query condition and an OID set of C; objects

is obtained. This set is called Sorp.

2. For each object in So, a forward traversel [BK89, Ber93] is performed. Thus

', objects are retrieved.

3. Each C, object is examined as to whether it actually satisfies the query con-

dition. If it satisfies the condition, the corresponding C; object is returned.

For Case I, both T' O @ and T C @ are processed as follows.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 97

1.

I‘NIX

3.

BSSF is searched based on the query condition and an OID set of C) objects

is obtained *. This set is called Soip.

For each object in Som, & forward traversal [BK89, Ber93} is performed. When
the forward traversal from Oy € Somp is performed, reachable ¢, objects are
retrieved. If at least one of the C,, objectssatisfies the query condition (T 20Q,
T C @), O; is included in the final result of this query and returned to the

user.

. For each element in the query set, NIX is searched. Thus Dy OID sets of Cy

objects are obtained, where D, is the cardinality of the query set.

. For T' 2 Q, the intersection of the D, sets is taken. For 7' C @, the union is

taken.
For T' 2 @, Cy objects are retrieved based on the OID set and returned.
For T' C @, the following process is performed.

(a) Forward traversals are performed for the OID set, and the corresponding
C objects are checked as to whether they actually satisfy the query

condition.

'When some objects share their references, a multiset of OIDs are generally obtained. In such
a case, duplicates are immediately eliminated from the multiset,



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 98

(b) The root C) objects of the C, objects which satisfy condition (a) are

returned.

Tossrnax Both T'2 @ and T C € are processed as follows.

1. BSSF is searched based on the query condition and an OID set of C, objects

is obtained 2.

2. Bach C, object in the OID set is retrieved and checked asto whether it actually

satisfies the query condition.

3. For each C, object that satisfies the condition, NIX is searched using its OID

as a key value. As a result, an OID set of 7 objects is obtained.

4. ] objects are retrieved based on the OID set and returned.

INIX-—NIX

1. For each element in the query set, NIX; is searched. Thus D OID sets of C,

objects are obtained.

*Actually, a duplicate elimination is also required for Case II. The reason is as follows. Let us
assume that a C; object Oy references two Cy, objects O, and O and that OIDs O, and O,, are
obtained in step 2. In this case, O; is retrieved two times so that two Oy’s are obtained.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 99

2. For T' D @, the intersection of the Dy sets is taken. For I C @, the union is

taken.

3. Only for T C @, C, objects are retrieved based on the OID set and checked
as to whether they actually satisfy the query condition. Objects that do not

satisfy the condition are removed from the OID set.

4. For each element of the OID set, NIX, is searched. Then an OID set of C;

objects is obtained 3.

5. ' objects are retrieved based on the OID set.

5.3.3 Update Algorithms

Algorithms for inserting a new path instance P = C).A;.A;. - --. 4, have already
been described in Subsection 5.3.1. Ther;efore, only deletion algorithrns are shown
here for the case that a C, object O, is deleted from the database and that backward
references are not supported. Assume that O, is already retrieved into the memory

and the A, value of O, is {v1, v2, ..., Un}.

IBSSF

%In Case II, there may exist duplicates in the set. If duplicates are exist, they are eliminated
here.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 100

1. A query signature is generated from {v1, V2, -. -, Um} and BSSF is searched
based on the set equality condition (T = Q). Namely, the target signatures
which are equal to the query signature are searched. Thus an OID set of

candidate Cy objects is obtained.

2. For each object in the OID set, a forward traversal is performed. As a result,
an OID set of C; objects that actually reference O, are given. This set is

called SOID.

3. For each O, € Sop, the corresponding entry is deleted from the BSSF file *.

Iwax The update algorithms of Znix for Case I and Case 11 are different. The

algorithm for Case I is easier and its cost will be small.

For Case I, the algorithm is as follows:

1. For each element v; (1 < ¢ < m), NIX is searched. Thus m OID sets of C

objects are obtained. Next, the union is taken. This set is called Somp.

2. For each object in Sqip, a forward traversal is performed and checked as to
whether O, is referenced. As a result, an OID set of C; objects which actually

reference O, is obtained. Let this set be S5p.

“When Soip is obtained in step 1, the position of the BSSF entry for each 0, € Soip is
temporarily memorized. Thus, the deletion process in step 3 will become more efficient.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 101

3. For each object Oy € Sgp, the corresponding NIX entry (w;, 0,) is deleted.

In Case 1I, since A,,..., A,_1 may be set attributes, the deletion algorithm
for NIX becomes complicated. A ) object O; may have multiple path instances
to leaf-level objects. Therefore, O; has multiple set values corresponding to the
multiple path instances, and they are not necessarily disjoint. Since NIX does not
have counting information in its entries, we cannot delete {v;, O) from the NIX leaf-
node entry immediately. It might be possible to settle this problem by modifying the
file structure of NIX, but here an algorithm based on the normal NIX file structure

is presented.

1. For each element »; (1 < 4 < m), NIX is searched. Thus m OID sets of ('}

objects are obtained. Next, the union is taken. This set is called Som.

2. For each object in Sgip, a forward traversal is performed and checked as to
whether O, is referenced. In this forward traversal, all reachable C, objects
are retrieved. As a result, an OID set of C; objects which actually reference

O, is obtained. Let this set be S5yp.

3. For each object O; € Shyp, the referenced C, objects are examined. If v;
(1 <4 < m)is not contained in the A, value of any C, objects other than O,,

the NIX entry (v;, O,) is deleted.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 102

Tessrnix and T wmx-nix Algorithms for Tessrovix and ITwixx are straightforward.
For Tessrvix, the entry of the BSSF file that corresponds to O, is deleted and
the entries in the NIX file that reference O, are deleted. Deletions on Twx-nix are

processed in a similar manner.

54 Cost Models

In this section, the cost models for the four set access facilities are developed. The
retrieval costs, storage costs, and update costs of the four set access facilities are
derived for two cases (Case [ and Case II). Only the number of page accesses will be
taken into account as a cost factor. To simplify the estimation, it is assumed that all
target sets have an equal cardinality ;. In the following derivation, symbols used
in Chapter 4 (Table 4.1) are also used. Additional symbols are shown in Table 5.1.
In Chapter 4, the access cost to an object is represented by F, (successful case) and
P, (unsuccessful case). However, they are unified to P, to simplify the derivation.
The V-value is changed from 13,000 to 10,000. To estimate costs, formulas for BSSF

and NIX in Chapter 4 are used.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 103

Table 5.1: Symbols and Their Values

Symbol Definition and Value
PI total number of the path instances
N; number of C; objects
1’4 cardinality of the set domain of the attribute 4, (= 10,000)

FT(z) | forward traversal cost {z is the number of the root objects)

P, number of page accesses to fetch an object (= 1)

5.4.1 Configuration of Nested Objects

First, the configuration of nested objects for Case I (where 4,,...,A,-1 are prim-
itive attributes) is considered. To derive retrieval costs, queries over the path

P=C1.A.Ay. .- A, are considered and an assumption is made:

o The value of 4; (1 <7< n-1)isnot NULL.

Thus, the number of instances of the path P becomes

PI=N, (=No=--=N,). (5.1)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 104

Next, forward traversal cost is considered. If © C) objects are given and forward

traversals are performed to retrieve C, objects, the cost is simply given as

FT(z)=z xn. (5.2)

For Case I is considered, to simplify the derivation and analysis of costs, the

following assumptions are made:

1. Each C; object teferences fani™' Ciyq objects (1 <2< n—1).

2. No two objects share their references.

fanitl is called the fanout from C; to Cis1. For classes C; and C; (¢ < ), the

fanout is defined as

.-t
fan! =[] fang™. (5.3)
k=i

Therefore,
PI = N, fan. (5.4)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 105

5.4.2 Retrieval Costs

Issss  First, the retrieval cost for Case [ is shown:

RC{IBSSF, C} = SCbsf(PI) X Mg+ LCOID{c}(PI) (5.5)

+ FT (A (Ny) + Fdie}( N, — A{c3(N,))). (5.6}

Note that PI, the number of path instances, is used instead of N, because the

BSSF file stores PI entries. But note that Pf = N, holds under the configuration

of Case 1.

Next, the retrieval cost for Case 11 is considered. The main part of the retrieval

cost of Zpssr is given as
SCbsf(PI) % M} + LCQID{c}(PI). (57)

In the retrieval of Tessr, OIDs of C; objects are obtained rather than of C, objects.
The number of OIDs of C; objects after duplicate elimination is estimated by Yao's

formula:

N,
npa (A{c}(Nn) —+ Fd{c}(Nn — A{c}(Nn)), Nn; —n) . (58)
fang

Then, forward traversals are performed for these C; objects. Therefore, the total

retrieval cost is

RC{Isssr, c} = [eq.(5.5)] + PFT(leg.(5.8)], A{c}{fan})), (5.9)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 106

where PFT is the forward traversal cost and given in the Appendix C.3 (Eq. (C.4)}.

Inix The retrieval costs of Zwix depend on the query. The retrieval cost for T 2 Q

is common to Case | and II:

DN,
Vv

RC{Zwx, T D Q) = RCyix (V, , Dq) + P Ay (V). (5.10)

The retrieval costs for T C ) are different. For Case I,

DN, (o)
RC{INIX, TC Q} = RCwx (V, —V—, Dq) + FT (Nn (1 — (V) )) . (5.11)

For Case II, the number of OIDs of C; objects obtained by the retrieval of NIX

npa (Nn (1 — ((%‘)q)) , N, }g—;f) . (5.12)

D,

is given by

Therefore, the retrieval cost is

RC{Zwx, T C Q} = RCnx (V, P—%, Dq)

+ PFT(leq.(5.12)], A{rcq){ fan])). (5.13)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 107

Isssr-nvix The retrieval cost is common to two cases.

RC{IBSSF-NIX, C} = RCBSSF{C}(NH) —+ RCNIX(Nm 1, A{c}(Nn)) ~+ POA{c}(Nn) (5.14)

Inix.nix  The retrieval costs of Zwixnix also depend on the query but are common

to Case I and II:

RC{INIX_NIX, T2 Q} = HRCyix (V, %]-Vi, Dq) + RCNIX(Nn, 1, A{TQQ}(Nn))
+ POA{TQQ}(NTL) (515)
V-5
DN, 4
RC{Tnxnx, T C Q} = RCnx (V’ _%;.V_’ Dq) + PN, (1 _ ((1‘9;) ))
Dy

+ RCOnix (Mg, 1, Airc@}(No ) + P Arc@}(Ny). (5.16)

5.4.3 Storage Costs

Storage costs for the four set access facilities are shown below:

SC{IBSSF} = SCBSSF(PI) (517)

Dth)

SC{Twx) = SChux (v, eV (5.18)

SC{Tessrrax} = SCrssr(NVy,) + SCnrx(N,, 1) (5.19)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 108

DN,
SC{INIX.NIX} = SCNIX (V1 :V )+SCNIX(Nna 1)" (5-20)

54.4 Update Costs

Except for the deletion costs of Zwmx, the update costs are common to Case I and IL.

The costs to insert a path instance P = C1.A;.Ap. - . A, are given by

]C{IBSSF} = I'GBSSF (521)
IC{Tnx} = ICwx (V, %}’Vi, Dt) (5.22)
IC{IBSSF-NiX} = JIChussp + ICnx (N, 1, 1) (5.23)

IC{INIX-NIX} = ICNIX (V, “-l?%/—jvn, Dt) + ICNIX(Nn; 1, 1) (524)

For Zsssr, the cost for deleting an object O, is given in the Appendix D
(Eq. (D.1)).

DC{IBSSF} = SCbsf(PI) X nbs +npa(2, NoidSCOID(PI), SCOID(PI))

+2Pn + 2, (5.25)



CHAPTER 5. SET RETRIEVAL OF NESTED QBJECTS 109
where nbs is the weight of a query signature that satisfies Fdiroy(PI —

Air29)}(PI)) = 1. The second term is the lookup cost of the OID file. The third and

fourth terms represent the forward traversal cost and the rewrite cost, respectively.

The deletion cost for Zux for Case Tis estimated as

DN, (V32)
DC{Isx} = RCnix (V, uiﬁi Dt) +FT -(Nﬂ (1 - (3) )) +2F,D;. (5.26)
Dy

The third term in Eq. (5.25) represents the read and rewrite costs for the NIX

entries.

The deletion cost for Case II is given as

Dl Dt) + [eq.(5.28)] + 2P, D, (1 -

(1!-1)= fanf~1
Di—1
=)

DC{Twx} = RCuix (V,
(5.27)

where Eq. (5.28) is the forward traversal cost and given by

Us”) N,

(see Appendix E). In this case, all referenced C, objects must be traversed. There-

fore the full forward traversal cost FFT (Eq. (C.1) in Appendix C.1) is used.
Vo1 fan}—1 .

(1 - (TD—V%) represents an element of the set attribute value of O, is mnot
Dy

contained in other target sets, namely, the entry corresponding to the element can

be deleted when the condition is satisfied.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 110

For Tessrnix and Zwx.nix, the deletion costs are derived as

DC{IBSSF.NIX} = DCggsp + DCNIX(Nﬁ, I, l) (5.29)

DN,
DC{IND{-NIX} = DCNIX (V, —t—V-, Dt) 4 DCNIX(NM 1, 1). (5.30)

5.5 Cost Analysis for Case 1

First, the parameter settings are described. N;, the number of objects in the class
Ci,issetto Ny = Ny = +-- = N, = 30,000. As the cardinality of target sets D, two
cases )y = 10 and D, = 100 are used, and for the length of the path, three cases
= 2, 3, 4 are compared. For Zessr and Zsssrnix, it is necessary to set the BSSF

parameters. Here the following policy is employed:

1. The storage costs of Tasse and Tnsseamx are at most equal to that of Inx and
Inxmix. This policy restricts the signature size F. When D, = 10, F = 500

(bits) is used, and when Dy = 100, F = 5000 (bits) is used.

2. The parameter m is set to m = 2 based on the analysis for non-nested objects

in Chapter 4.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 111

5.5.1 Retrieval Costs

The representative retrieval costs for T' 2 @ are shown in Figure 5.2 (Dy = 10} and
Figure 5.3 (D, = 100). Two figures have a similar tendency. For Dy = 1, Zossr
is the worst cost. This is because Tnssr requires forward traversals to process the
query. When Dy = 1, actual drops and false drops exist so that the overhead of the
forward traverse cost affects the overall cost. However, if Dy > 2, drops are almost
negligible, so the retrieval costs increase almost linearly. The change of the path
length n does not affect the retrieval costs very well because the numbers of drops

are small except for Dy = 1.

has-subset (has-subset, Dt = 10,n= 3)

Ibssf —— ]
Inix -—+---- ]
Ibssf-nix -a--
Inix-nix e

pages

Figure 5.2: Retrieval Cost (' 2Q, D, =10, n=3)

The representative retrieval costs for T C @ are shown in Figure 5.4 {D, = 10)

and Figure 5.5 (D¢ = 100). Zassr and Tasservix have almost the same costs and so do



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 112

has-subset {has-subset, Dt = 100,n=3)

10060
Ibssf ——
Inix -~+---
Ibssf-nix -2~
1000 : Inix-nix - |

100 S

pages

10 ¥

Figure 5.3: Retrieval Cost (T' D @, D, = 100, n = 3)

Irnix and Twixix. When Dy = 10 and Dy is very small, the retrieval costs of Zessr and
Zrssrnix are larger than that of Zvx and Twixx. But Zesse and Iessenix are generally
better in other cases. Furthermore, the retrieval costs of Zesse and Isssr-mx can be
improved by using the smart retrieval strategy described in Chapter 4. Therefore,
for T'C @, Zussr and Tnssreix are considered to be superior to Zwx and Inxvix. As
it is not shown in Figure 5.4 and Figure 5.5, the cost of Zossr drastically increases
for very large D, values. Therefore, Zessrvix is the most efficient and stable one for

TcaQ.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 113

has-subset (is-subset, Dt = t0, n = 3)
10000 T T T v v T Y T

Ibssf ——

Inix -+

Ibssf-nix -e--
Inix-nix ]

K""‘_—*_*_‘PF#

/r/;r"'*/‘,

;%‘ 1000 I /X/“ 1
=% s f
)./ X
Mm_‘_«

3

100 1 1 L 1

10 20 30 40 SO 60 70 80 90
Dq

Figure 5.4: Retrieval Cost (T2 Q, D, = 10, n = 3)

has-subset {is-subser, Dt = 100, n=3)
100000 ' ! T T T T T T
Ibssf ——
Inix -+
Ibssf-nix o
- —— Inix-nix cowen ]
r’/
& 10000 |
(=9

1000 1 1, i 3 i
100 200 300 400 500 600
Dq

1 1

700 80C 900 1000

Figure 5.5: Retrieval Cost (T" 2 Q, D; = 100, n = 3)



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS

5.5.2 Storage, Insertion, and Deletion Costs

Storage, insertion, and update costs are shown in Table 5.2. When D, = 10, the
storage costs are almost in the same degree. When D; = 100, the storage costs of

Iessr and Znesrwix are half of those of Iwx and Imx-mx.

Table 5.2: Storage, Insertion, and Deletion Costs

SC ic DC

Dy=10 | Dy=100 | D\=10 | D,=100 | D,=10 | D.=100
Trssr 559 | 5059 41 394 121 127
Trerx 620 | 10048 24 242 | 930% | 57560 1
Tossenax | 693 | 5193 44 397 73 426
Trrxonix 763 | 10193 27 245 27 245
f n=23
! n=3

The insertion costs of Zessr and Zessr.nx are twice as much as T and Iwix.xi.
The deletion costs of Zrssr and Zwmx depend on n. Therefore, for Tsssr and T,
representative costs are shown. The deletion cost of Zsssr is very small. On the other

hand, the cost of Zwx is prohibitively larger than those of other access facilities. The

reason 1s that Twmx requires many forward traversals in deletion processing.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 115

5.6 Cost Analysis for Case IT

For Case I, the parameter settings are equal to Case I: N, = 30,000, D, = 10 or
1080, n = 2, 3,4, and for BSSF, F = 500 (D, = 10), F = 5000 (D, = 100), and
m = 2. The only difference is the fanout parameters. The fanout parameters are

set to

fani™' = fan  (1<i<n-1)

The constant fan value is set to 1, 5, or 10.

5.6.1 Retrieval Costs

"The representative retrieval costs for T' D @ are shown in Figure 5.6 (D, = 10) and
Figure 5.7 (D¢ = 100). In this case, forward traversals are only performed by Zsss.
The other three set access facilities do not depend on the fanout parameter fan or
the path length n. The two figures indicate a similar tendency. Except for small
D, values (1 or 2), the retrieval costs are not different and increase monotonically.
For small ), values, Tsssr configurations (especially fan = 10) give the worst costs.
This is because Isssr needs forward traversals to process a query. In particular, when
faenout is large, many C, objects correspond to one C; object so that the forward

traversal cost increases. When D, = 1, there are a considerable number of actual



CHAPTER 5. SET RETRIEVAL QF NESTED OBJECTS 116

drops and false drops. Therefore, the overhead of forward traversal cost determines
the overall cost. However, when D, > 2 or 3, drops are almost negligible, and the

retrieval costs increase linearly. For other n-values, similar results are obtained.

has-subset, DI=10,n =3

1 T
: Ibssi{fan=1) ~o—-
Ibsst(fan=5) -+
| Tbssfifan=10) -~
1000 F\°, Tnix - |

L Ibsni ~+--
t‘\"". Inini -

pages

Figure 5.6: Retrieval Cost (T' 2 Q, D, = 10, n= 3)

The representative retrieval costs for T C Q are shown in F igure 5.8 {D; = 10)
and Figure 5.9 (D; = 100). In this query, Tessr and Twmx need forward traversals.
However, it seems that the retrieval cost of Zsssr does not suffer from the penalty
of forward traversals and its cost is almost the same as that of Tessr.ax. The reason
is that the number of false drops of BSSF is very small for these D, values so that
few forward traversals occur. For this case, the smart retrieval strategy can also be

applied to Zessr and Tsssrnix.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 117

has-subset, Dt = 100, n=3

Ibssf(fan=1} —~—
Ibssf{fan=5) -
0000 1. Ibssf(fan=10) --e--

Inix -
RN Ibsni -+
Inini -

pages

Figure 5.7: Retrieval Cost (' 2 Q, D, = 100, n = 3)

is-subset, Di=10,n=3
100000 i i ; . .
A e ot o - e et S e e |
P b
B
10000 [.-° .
3 P
2 e .
=% e [
. e - - e E
1000 ¢ T Ibssf(fan=1,5,10) ——1
= Inix(fan=1) -
] ix(fan=5) ~&--
R ¢
Ibsni -+
Inini -
100 : . . . , . . : ]
10 206 36 40 50 60 70 % 9 100

Figure 5.8: Retrieval Cost (T C @, D, =10, n = 3)




CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 118

is-subset, Di=100,n =3

100000 -
e nmef = e e -+ e -
"""9""3'"'9"'9"'9"'0'"‘3“"“““?"'9"'9"'9"‘ﬁ'"'ﬂ""?'"@':::R::.:Q.::‘RL;
PR e e M el B e Rl ik b ot bl Sl
10000 ¢
&
g Thssf(fan=1,5,10) ~+—
= Inix(fan=1) -+---
Inix{fan=5) -a--
1000 | Inix{fan=10) -1
Tbsni -+--9
[nini -»---
100 . L . R
100 120 140 160 180 200

Dq

Figure 5.9: Retrieval Cost (T C Q, D, = 100, n = 3)

5.6.2 Storage, Insertion, and Deletion Costs

Storage, insertion, and update costs are shown in Table 5.3. When D¢ = 10, the
storage costs are almost the same. When D, = 100, the storage costs of Zsssr and
Twssr-nix are almost half of those of Znix and Tmixmx. For insertion and deletion
costs, they are not different from those of Case I except for the deletion cost of Zrux.
Remind that the deletion cost formulas of Zwx differs for two cases. The deletion
cost of Twix depends not only on n but fan. Therefore the parameter fan greatly

influences the performance.



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 119

Table 5.3: Storage, Insertion, and Deletion Costs

SC c DC
D.=10 | D;=100 | D;=10 | D;=100| D,=10 | D,=100
Tassr 559 5050 41 394 12 12 1
Trerx 629 | 10044 24 242 93¢ % | 57800 4
21200 § | 33500 8
Trsse-nix 662 5162 44 397 73 426
Trerxnax 732 | 10147 27 245 97 245

Tn:S
Inz?:,fan:l
§n:3,fan:10

5.6.3 Discussion

In this chapter, four set retrieval facilities Tsssr, Znrx, Zasseaarx, and Ineenix for
nested objects are proposed, and their performance is compared. For the analysis,
two configurations of nested objects {Case I and II) are considered. The costs of
each set retrieval facility show similar tendency for two configurations. Therefore,

it would be concluded that the result of the analysis holds for other situations.

For retrieval cost for T' 2 (), the analysis shows that four access facilities have
similar performance except for Dy = 1. When D, = 1, Tasse is the worst and Twix
is the best. However, for the retrieval cost for T C Q, Zsssr and Tessrnx show

relatively stable performance and are better than Zwx and Znexewix for reasonable



CHAPTER 5. SET RETRIEVAL OF NESTED OBJECTS 120

range of D, values. For very large D, values, Tsssrvix is superior to Tasse. ZTnix

suffers performance degradation for T° C @ of Case I as fanout increases.

The storage costs of Tassr and Zessr.mx are equal to or smaller than those of Tnix
and Twxnx. For insertion cost, Tesse and Tessrnix are twice as much larger than
Zwux and Inoenix. For deletion cost, Zwx is extremely high because of many forward

traversals, and Tsssrnix is slightly higher than those of Zessr and Tauxrax.

From the analysis, the following strategy selecting facilities for set retrieval:

1. If only one set retrieval facility is to be selected to support T 2 Q and T C Q
queries, Zessr of Tesse is best suited within the retrieval facilities. Twssr is
smaller than Zsssr-nix in terms of deletion cost, but Zessexix is stable for large

D, values for T' C Q. The selection is depend on the requirements.

2. If only one facility is to be selected énd T 2 g query frequently occurs, Znx-nix
may be better for the set retrieval facility. However, Tax.nix cannot support

T C @ in an efficient manner.

3. If two or more facilities can be used, use Tnx or Trixix as a set retrieval

facility for mainly T' 3 ¢, and use Tssse or Tessrvix as for other queries.



Chapter 6

Discussion and Conclusion

In this dissertation, set-based signature files — indexing methods for set-valued ob-
Jects — are proposed and their performance is examined with detailed cost models

in some different situations.

In Chapter 3, false drop probability formulas estimating the number of false drops
for four queries 7" 2 @ (has-subset), T' C @ (is-subset), 7 M ¢ (has-intersection),

and 7'M Q (is-equal)} are derived.

121



CHAPTER 6. DISCUSSION AND CONCLUSION 122

In Chapter 4, four set retrieval facilities, three of them are set-based signature
files (SSF, BSSF, BSSFcmpr) and the other is the nested index {NIX), are proposed
for set retrieval of non-nested objects. Their retrieval cost for 7 2 Q and T" C @,
storage cost, and update cost are are compared. Based on the analysis, novel query
evaluation strategies to improve the retrieval costs of BSSF and NIX, called smart
object retrieval strategies, are developed, and further the retrieval costs under the
strategies are compared. The result indicates BSSF for small-scale databases and

BSSFempr for medium-scale databases are promising set retrieval facilities.

In Chapter 5, four set retrieval facilities Tasse, T, Tossrnix, and Zwxnix are
proposed combinating some existing index methods and applied to set retrieval of
multilevel nested objects. The target queries for comparing their retrieval costs are
root-level object retrieval with a leaf-level set comparison predicate. As the set
comparison condition, T' 2 @ and T' C () are considered. For each set access facility
and query type, the retrieval algorithm is described in detail. Detailed algorithms
for retrieval, insertion, and deletion are described, and cost formulas are derived.
The analysis showed that Tzssr and Tsssrnix are efficient than Zwix and Twxnmx for

those queries.

Based on the performance analysis in Chapter 4 and Chapter 5, it is concluded
that set-based signature fileis a promising set retrieval facility. But there still remain

many issues. In the following, such issues are discussed.



CHAPTER 6. DISCUSSION AND CONCLUSION 123

Performance Analysis for Other Queries In Chapter 4 and Chapter 5, queries
T2 @ and T C Q are evaluated and analyzed. However, there are other queries
TN @ and T = ¢. For T = @, actual drops and false drops are considered to be
very small and might be negligible. Therefore, the query cost will be small so that
supporting 1" = ¢ query s not so difficult in terms of the performance. On the
other hand, T 1 {} query has many actual drops and false drops. In such a case,
the final retrieval cost of the qualified objects might be very large, and dominate
the retrieval cost. Therefore, there might be no differences between set-signature
file organizations. But, the signature file may be inferior to NIX because of the
existence of false drops. The analysis for these queries is important and is a very
interesting research. As other kinds of queries, query conditions expressed by the
combination of set predicates and logical operator (-, A, and V) also be considered.

Support for these queries should be also important.

Large-scale Databases In Chapter 5, set retrieval facilities are estimated for
small-scale (N = 32,000) and medium—scaie databases { N = 320, 000). For medium-
scale databases, the introduction of compression was effective. However, for large-
scale databases, even compression scheme may be not efficient. Because the nested
" index, the rival of set-based signatures, is rather stable to some large N-value. To
overcome this inferiority, the file structure of set based signature files should be
devised to be suited to large-scale databases. For signature file in text retrieval
area, various organization schemes are proposed [CCOLY1, CZ93, Dep86, GTZ92,
KP93, LL89, LL90a, LF92, Lin93, SDR83, ZRT91, ZCT93). The application of these



CHAPTER 6. DISCUSSION AND CONCLUSION 124

organization schemes to set retrieval can also be considered. In fact, some meth-
ods are proposed by the author [[K94] (based on Hamming Filter) and Watanabe
and Kitagawa [WIK94, WK95] (based on multilevel organization and partitioned

organization).

Smart Retrieval In this study, the smart retrieval strategy that optimize the
total retrieval cost at the sacrifice of many false drop occurrences. To the author’s
knowledge, such a scheme is not described in literature before the autor’s proposal
[[KO093). In other study [PF94], this scheme is also called in partial fetch policy
(usual retrieval is called total fetch policy). The remaining problem of the smart

retrieval strategy is how to decide bit-slice files to be retrieved in a real situation.



Appendix

A. Properties of Two False Drop Probabilities

Al TDOQ

For two false drop probabilities F'd {T2¢3},r1 and Fd {T'CQ}.F1, their properties are ex-

amined here. Fd{r2q),F1 and Fd{rcq},F1 are abbreviated as Fd{roqy and Fd{rce).

For the false drop probability Fdir2q}, the following properties hold:

Property 1 Fdiroqy (Eq. (3.16)) also takes the minimum value when m — Mpt -

125



APPENDIX 126

Since Fd(T2Q} = (F'd{r34))Ps, the partial derivative of Fd{r209) with respect to m

is given as

OFd{Toq) OFd{T2q) _ OFd{T3q}
dom OFdirsqe) Om

= Dy(Fdirsg))P=1.

aFd{Taq}
dm

As 0 < Fd{rag) < 1, FdiT29) corresponds to Fd{Taq) regarding increase and de-

crease, |

When m = m,, the false drop probability Eq. (3.16) is simplified as

1 %:Fl:;?
Fdirogy o~ (5) (A1)

Property 2 Fdir20) (Eq. (3.16)) is higher as D, is larger.

It is needed to show

7 m‘Dq iy mbD
Fdir2Q)p, ~ (1 - e“;‘ji) < Fd{T2Q)p, +1 = (1 e +”) o

- m m{Dy
Since 0 < 1 — e~ % < 1 — ¢~ 25 < land mD, > 1,

" m Dy m{D, mbDyg
0< (1 _ e“g‘) < (1 — e R “}) <1

Therefore, Fd{r2q)p, < Fdir29ip, 1.



APPENDIX 127

Property 3 Fd{r2q} (Eq. (3.16)) is lover as Dy is larger.

Since mD, < m(Dy + 1),

m(Dq+1)

m [ me mD,
Fd{rs9)p, =~ (1 — e‘_FL) > I*“aE{T.‘__Jc;)}Dqul o~ (1 - e"‘F‘L)

|
Property 4 Fdir2q) (Eq. (3.16}) is lower as F is larger.
Since 0 < 1 —6_1;% <1-eF < 1,
mD, Y Mg mD; \ MDq
Fd{roqyp.; ~ (1 - e“m) < Fdirogyp ~ (1 - e_“?"l)
n

A2 TCQ

For the false drop probability Fdrog), the following properties hold. They are

shown by the similar reasoning for 7" 2 §.

Property 5 Fdircq) (Eq. (3.17)) takes the minimum value when m = %’;2. n

Property 6 Fdirce) (Eq. (3.17)) is lower as Dy is larger.



APPENDIX 128

Property 7 Fd{rcqQy (Eq. (8.17)) is higher as Dy is larger. =

Property 8 Fdircoy (Eq. (3.17)) is lower as F is larger. »

B. Derivation of Dgp‘

To derive a rough estimation formula of D;’P*, it is assumed that the number of
actual drops is negligible and Fd{rcqy is very small. In addition to this assumption,

a simplified formula for LCom{c}(N) [IKO93] is used:
LCom{e}(N) = SCoip(N) x min(Fdiex{Nq o (N})) + e} (N), 1), (B.1)

where a{c}( V) represents the expected number of actual drops per page of the OID

file and given by

a@(N) = )

= —-—»———-SCOID(N). (B.2)

Since A{rcQ}(N) = 0 and orc}(N) a0,
LComirco}(N) = SCom (N} x min(Fd{rcqp x Noig, 1)

= SCOID (N)Fd{TgQ]Noid

~ FdircgyN (SCom(N) = [N/Noial).



APPENDIX 129

Therefore, the total retrieval cost is

RCpssp{rc@i(N) = SCur(NYMizcq) + LCom{rce3(N)
+ PATcQN) + P, Fdircoy{ N — Afrcoy(NV)) (Eq. (4.7))

r~ SCrst(N)Mircey + Fd{rceyN + P Fd{rcorN

N
~ [}53] (F — my) + Fdireq)(N + B.N)
= IV%“ Fe"’%D‘l + (1 — e—%Dq)mD‘N(l + Pu)

The partial derivative of this formula with respect to IJ is taken and the Dg-value

that minimizes RC is obtained. The D, -value is the estimated value of Dgl":

f N wD=T
D%~ ——In|l— [ﬁ]F
a m {1+ P,)NmD;
Fo F w0
~ L - B.3
el b ((1+Pn)thPb) ] (B3)

where mD, > 1 and [g—b] a2 % is used.

Next, the minimal value of RCpssp{T<q}{ V) at the point Dy = D is derived.

N _m opt _m nopt m
RCpsspiTCQHN) p —peet) = [ﬁw Fe P 4 (1 — ¢ FP )™ N(1 + P,)
~ [ﬁ]ﬁl_ F ] _EN
= | Pb (1+ P,)mD,Pb mD, Pb

=

Q

- F o L1
(1 + Pu)thPb th )

(B-4)

£y
PY




APPENDIX 130

Therefore, the retrieval cost for D, = Dq"p‘ is approximately proportional to N.

C. Forward Traversal Costs

C.1 Derivation of FFT

Suppose that x C; objects are given. Here, the expected number of page accesses
is derived for forward traversals from the ' objects to the descendant C; objects.

The use of the nested-loop forward traversal method [Ber93| is assumed and the

assumptions made in Section 5.4.

There exist two cases for forward traversals:

1. The traversal cannot be finished until all reachable C, objects are obtained

(full forward traversal).

2. The traversal can be finished at the time a C, object satisfying the condition

is found (partial forward treversal).



APPENDIX 131

The full forward traversal cost FFT is derived as

FFT(z) = Pomi fant. (C.1)
i=1

C.2 Derivation of e(p, q)

Next, let us consider the partial forward traversal cost PFT. As a preparation, first

a formula e(p, ¢}, representing the answer for the following question, is derived:

Suppose that there exist p lottery tickets and ¢ of them are winning
tickets. When we draw these lots until we meet an winning ticket, how

many draws are required?

The probability that we meet an winning ticket at the i-th draw is!

e, gi) = 12 (i=1)
P 0d) = (1-9) x (1-35) %o x (1= ) x b

» |
ke < I (1~ 5%) Q=i<p-q+1)

I

!Note that we will meet an winning ticket at most p — ¢ + I-th draw.



APPENDIX 132

Therefore,

elp, @) = 1><§+2><p(p, g, 2)+3 x plp, q,8)+---

+@p—¢+ 1) xp(p, g, p—g+1)
p—g+1

= %«r Z (2 x o(p, g, 7). (C.2)

.3 Derivation of PFT

Let us consider a partial forward traversal from a C; object O, and assume that O,
has fen? descendant C, objects and y of them satisfy the given query condition. If
we access the fan] C, objects until we first meet one of the y objects, the expected
number of accesses is ¢{ fan?, ¥). In the case, as we are considering a partial forward

traversal, we can finish the traversal immediately.

Next, we derive PFT formulas for two cases of y-values. First, we consider the
case of y > 1. To derive PFT, we must estimate the number of accessed objects for
each class C; (1 € i < n—1). Since e,(y) = e(fan}, y) C, objects are retrieved,
and the fanout from C,_; to C, is fan)_,,

en-1(y) = { cay) ]

fang




APPENDIX 133

Cr-1 objects are accessed. Similarly, the number of accessed C; objecis is

fanit?

ei(y) = Fﬁl(y)‘l (1<i<n-1). (C.3)

Thus, the partial forward cost for a C, object is given as P, 3" | e;(y). Therefore,

PFT, the partial forward cost for z C objects, is ?

PFT(z, y) = Pz Ze,—(y).
i=1

Next, suppose that y < 1. Consider partial forward traversals from z C; objects.
In this case, actually zy C; objects only have descendant C;, objects satisfying the
query condition. Remaining z(1 — y)} C; objects do not have such C, objects. Thus,
in the traversal processing, partial forward traversals with the cost PFT(1, 1) are
performed for the zy C, objects, and for z(I — y) C objects, full forward traversals

are performed.. Therefore, the forward traversal cost is
PFT(z, y) = zyPFT(1, 1} + (1 — y)FFT.
This is equivalent to

PFT(z, y) = PFT(zy, 1) + FFT(z{1 - y)).

2We used the assumption that two objects do not share their references,



APPENDIX 134

In summary,

Poz Y eily) ify > 1
i==1

PFT(z,y) = (C.4)

PFT(zy, 1)+ FFT{x(l —y)) ify < 1.

D. Derivation of DC{Zusr}

In the deletion process of Tsssr, in first, all Cy objects that reference O, are found
(step 1 in Section 3.4). As we assume here that any objects do not share their
references, only one C, object references 0,. However, the resulting OIDs of the

BSSF retrieval are not necessarily one due to the existence of false drops.

In this case, the pattern match condition for BSSF is “find all target signatures
that perfectly match the signature S generated from the 4,-value of 0, but it

is not practical to take complete matches. For example, the following processing

scheme is considered:

1. Retrieve some (not necessarily all) bit-slices corresponding “I"’s in the signa-

tare 5.

2. take the bitwise-AND of such bit-slices.



APPENDIX 135

3. If the number of “1”’s in the resulting bit-slice, namely, the number of drops,

is sufficiently small, then finish the process.

In detail, we assume the following strategy. First, bit-slice files are retrieved and

AND-ed until the following condition is satisfied:
No. of false drops = Fd{r2q)(PI — A{r2Q){PI)} = L

Next, the OlDs are retrieved. Let nbs be the number of bit-slices retrieved in this

scheme. As the number of actual drop is one, the cost to obtain the OID of C,

object using BSSF is approximately
SCbsf(PI) X nbs + npa(Z, NodeCOID(PI), SCOID(PI))

Thus, the forward traversal is performed based on the two C'; objects. The cost for
the forward traversal is about 2P,n pages. Since we expect two pages are required

to read and write a BSSF entry,

DCHTssse} 2 SCher(PI) x nbs + npa(2, NoaSCom(PI), SCom{PI)) +2P.n+ 2.
(D.1)



APPENDIX 136

E. Derivation of DC{Zwu}

To derive the deletion cost of Zmix, let us suppose that the target sets have equal
cardinality Dy and that no two objects do not share their references, and let O, be

the OID of the C, object to be deleted, and let (; be the C; object that has O, as

a descendant °.

In the deletion process of Trux, NIX is first retrieved with D, keys. The cost is

expressed as

DN, Dt)

RCnix (V= T

As the result of the first step, D, NIX entries (vi, {On,...}) (1 < i< D) are
obtained. Next, the union of OID sets in these I, entries are taken. The resulting
set contains OIDs of all Cy objects referencing C, objects that contains at least one

element of the A, value of O, ({vy,...,vp,}) in their A, values. The number of

such C,, objects is given by

VBD‘))
1= A2 ) s (N, = 1)+ 1, (E.1)
( (Dt)

where the second term represents O, itself. Thus, the number of C; objects refer-

3Since no two objects do not share their references, such Cy object is uniquely determined for
a Oy,



APPENDIX 137

encing the C), objects is estimated by Yao’s formula.

npa ([Eq. (E.1)], N, 3%1;) . (E.2)

In the second step, forward traversals are performed. In this case, we must check

all descendants so that full forward traversals are used. The cost is given as
FFET(|Eq. (E.2}]). (E.3)

As the result of the forward traversals, fan? x (|Eq. (E.2)]) C, objects are obtained.
However, in these C, objects, only fan} objects are supposed to bereferenced from

0, . In the deletion process of Zrux, we must check these fanT objects.

We can delete the OID O; from the NIX entry (v; {O1,...,}) when the re-
maining fan} — 1 objects do not contain #; in their 4, values (1 < ¢ < D¢). The

probability that we can delete O, from the entry is

Thus, the number of entries to be deleted is

V1Y foni-l
D, (1 _ (TT)) | (5.4)

4Note that O, is contained in the fanl C, objects.




APPENDIX 138

Therefore, the deletion cost of Inx is

Dl D)+ [Ee. (B3) + 2P(Eq (B4).  (E3)

DC{INIX} = npa (Va v



References

'AB84)

ABS6]

[AFS89]

IBCHS7]

S. Abiteboul and N. Bidoit: “Non First Nermal Form Relations to Repre-
sent Hierarchically Organized Data”, in Proc. ACM SIGACT-SIGMOD
Symp. on Principles of Database Systems, pp. 191-200, Waterloo, On-

tario, Canada, Apr. 1984.

S. Abiteboul and N. Bidoit: “Non First Normal Form Relations: An
Algebra Allowing Data Restructuring”, J. Comput. Syst. Sci., 33:361-

393, 1986.

S. Abiteboul, P. C. Fisher, and H.-J. Schek: Nested Relations and Com-
plex Objects in Databases, Vol. 361 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, June 1989.

P. B. Berra, S. M. Chung, and N. I. Hachem: “Computer Architecture
for a Surrogate File to a Very Large Data/Knowledge Base”, IEEE

Computer, pp. 25-32, Mar. 1987.

139



REFERENCES 140

{Ber90]

[Ber91]

[Ber93]

[Ber94]

[Bid87]

[BK89)

[BM93]

(BRGSS

E. Bertino: “Optimization of Queries using Nested Indices”, in F. Ban-
cilhon, C. Thanos, and D. Tsichritzis eds., Advances in Database Tech-

nology - EDBT °90, Vol. 4186, pp. 44-59, Springer-Verlag, 1990.

E. Bertino: “An Indexing Technique for Object-Oriented Databases”, in

Proc. IEEE Conf. on Data Eng., pp. 160-170, Kobe, Japan, Apr. 1991.

E. Bertino: “A Survey of Indexing Techniques for Object-Oriented
Database Management Systems”, in J. C. Freytag, D. Maier, and
G. Vossen eds., Query Processing for Advanced Database Systems, chap-
ter 13, pp. 383--418, Morgan Kaufmann Publishers, Inc., San -Ma.teo, -
California, 1993.

E. Bertino: “Index Configuration in Object-Oriented Databases”, VLDB

Journal, 3(3):355-399, July 1994.

N. Bidoit: “The Verso Algebra and How to Answer Queries without

Joins”, J. Comput. Syst. Sci., 35(3):321-364, Dec. 1987.

E. Bertino and W. Kim: “Indexing Techniques for Queries on Nested
Objects”, IEEE Trans. on Knowledge and Data Engineering, 1(2):196-

214, June 1989.

E. Bertino and L. Martino: Object-Oriented Database Systems, Addison-

Wesley, 1993.

E. Bertino, F. Rabitti, and S. Gibbs: “Query Processing in a Multimedia
Document System”, ACM Trans. Office Inf. Syst., 6(1):1-41, Jan. 1988.



REFERENCES 14]

[Cat91]

[CBBCY4]

[CCOLY1]

CT84)

[CHTS6)

(CI86]

1CI94]

. G. G. Cattell: Object Data Management - Object-Oriented and Ex-

tended Relational Database Systems, Addison- Wesley, 1991.

S. Choenni, E. Bertino, H. M. Blanken, and T. Chang: “On the Selection
of Optimal Index Configuration in OO Databases”, in Proc. IEEE Conf.
on Data Ing., pp. 526-537, Houston, Texas, Feb. 1994.

J. W. Chang, H. J. Cho, S. H. Oh, and Y. J. Lee: “Hybrid access
method: an extended two-level signature file approach”, in Int'l, Conf,

on Multimedia Information Systems, pp. 51-62, 1991.

S. Christodoulakis and C. Faloutsos: “Design Considerations for a Mes-
sage File Server”, [EEE Trans. Softw. Eng., SE-10(2):201-210, Mar.

1984.

S. Christodoulakis, F. Ho, and M. Theodoridou: “The Multimedia Ob-
Ject Presentation Manager of MINOS: A Symmetric Approach”, in Proc.

ACM SIGMOD Conf., pp. 295-310, Washington, D.C., May 1986.

R. M. Colomb and J. Jayasooriah: “A Clause Indexing System for PRO-
LOG Based on Superimposed Coding”, The Australian Compututer

Journal, 18(1):18-25, Feb. 1986.

C.-C. Chang and J.-H. Jiang: “A Fast Spatial Match Retrieval Using a
Superimposed Coding Technique®, in In#l. Symp. on Advanced Database
Technologies and Their Integration (ADTI'94), pp. 71-78, Nara, Japan,

Oct. 1994,



REFERENCES 142

[CL89]

[CL92]

[Col89]

[Col90]

[CS89]

[CYKL93]

J. W. Chang and Y. J. Lee: “Multikey Access Scheme Based on Term
Discrimination and Signature Clustering”, in Intl. Symp. on Datobase

Systems for Advanced Applications, pp. 211-218, Soul, Korea, Apr. 1989.

J. W. Chang and Y. J. Lee: “Multikey Access Scheme Based on Term
Discrimination and Signature Clustering”, in W. Kim, Y. Kambayashi,
and I. 5. Paik eds., Database Systems for Next-Generation Applications
= Principles and Practice, Vol. 1 of Advanced Database and Development

Series, World Scientific Publishing, Singapore, 1992.

L. 5. Colby: “A Recursive Algebra and Query Optimization for Nested
Relations”, in Proc. ACM SIGMOD Conf., pp. 273-283, Portland, OR,

May-June 1989.

L. S. Colby: “A Recursive Algebra for Nested Relations”, Information

Systems, 15(5):567-582, 1990.

W. W. Chang and H. J. Schek: “A Signature Access Method for the
Starburst Database System”, in Proc. Int'l. Conf. on Very Large Daia

Bases, pp. 145-153, Amsterdam, The Netherlands, Aug. 1989.

J. W. Chang, J. W. Yoo, M. H. Kim, and Y. J. Lee: “A Signature-
based Hybrid Access Scheme for Text Databases”, in Intl. Symp. on
Next Generation Database Systems and Their Applications (NDA 93),

pp. 138-144, Fukuoka, Japan, Sept. 1993.



REFERENCES 143

ICYL9?]

1C293)

[Dad8s)

(Dep8e]

DG8S]

[DGMS89)]

[Dit90)

J. W. Chang, J. S. Yoo, and Y. J. Lee: “Performance Comparison of
Signature-based Multikey Access Methods”, Microprocessing and Mi-

croprogramirung, 35:345-352, 1992,

P. Ciaccia and P. Zezula: “Estimating Accesses in Partitioned Signature
File Organizations”, ACM Trons. Database Syst., 11(2):133-142, Apr.
1993.

P. Dadam: “Advanced Information Management (AIM): Research in
Extended Nested Relations”, JEEE Data Eng., 11(3):4-14, Dec. 1988.

U. Deppisch: “S-tree: A dynamic balanced signature index for office
retrieval”, in Proc. of the 1986 ACM Conf ”Research and Development

in Information Retrieval”, Pisa, Italy, Sept. 1986,

A. Deshpande and D. V. Gucht: “An Implementation for Nested Rela-
tional Databases”, in Proc. Int'l. Conf. on Very Large Data Bases, pp.

76-87, Los Angeles, Aug.-Sept. 1988.

D. H.-C. Du, S. Ghanta, K. J. Maly, and S. M. Sharrock: “An Efficient
File Structure for Document Retrieval in the Automated Office Environ-
ment”, JEEE Trans. on Knowledge and Data Engineering, 1(2):258-273,

June 1989.

K. R. Dittrich: “Object-Oriented Database Systems: The Next Miles of

the Marathon”, Information Systems, 1990.



REFERENCES 144

Dit91]

IDKA*86]

IDL8Y)

[Fal85a

[Fal85b)]

[Fal8s)

[Fal90]

K. R. Dittrich: “Object-Oriented Database Systems: The Notion and
the Issues”, in On Object-Oriented Database Systems, Topics in Infor-

mation Systems, chapter 1, pp. 3-10, Springer-Verlag, 1991,

P. Dadam, K. Kiispert, F, Andersen, H. Blanken, R. Etbe, J. Giienauer,
V. Lum, P. Pistor, and G. Walch: “A DBMS Prototype to Support
Extended NF? Relations: An Integrated View on Flat Tables and Hier-
archies”  in Proc. ACM SIGMOD Conf., pp. 356-367, Washington, DC,
May 1986.

P. Dadam and V. Linnemann: “Advanced Information Management
{AIM}: Advanced databage technology forintegrated applications”, IBM

Syst. J., 28(4):661-681, 1989,

C. Faloutsos: “Access Methods for Text”, ACM Comput. Surv.,

17(1):49-74, Mar. 1985.

C. Faloutsos: “Signature Files: Design and Performance Comparison of
Some Signature Extraction Methods”, in Proc. ACM SIGMOD Conf.,

pp. 63-82, Austin, Texas, May 1985.

C. Faloutsos: “Signature Files: An Integrated Access Method for Text

and Attributes, Suitable for Optical Disk Storage”, BIT, 28:736-754,

1988.

C. Faloutsos: “Signature-Based Text Retrieval Methods: A Survey”,

IEEE Database Engineering, 13(1):25-32, Mar. 1990.



REFERENCES 145

FC84]

FC87)

[FC8S8)

[FSTGS85]

FT83]

(GF88]

GG8S]

C. Faloutsos and S. Christodoulakis: “Signature Files: An Access
Method for Documents and Its Analytical Performance Evaluation”,

ACM Trans. Office Inf. Syst., 2(4):267-288, Oct. 1984.

C. Faloutsos and S. Christodoulakis: “Description and Performance
Analysis of Signature File Methods for Office Filing”, ACM Trans. Office
Inf. Syst., 5{(3):237-257, July 1987.

C. Faloutsos and R. Chan: “Fast Text Access Methods for Optical and
Large Magnetic Disks: Design and Performance Comparison”, in Proc.
Int’l. Conf. on Very Large Data Bases, pp. 280293, Los Angeles, Aug.-

Sept. 1988.

P. C. Fischer, L. V. Saxton, S. J. Thomas, and D. V. Gucht: “Interac-
tions between Dependencies and Nested Relational Structures”, J. Com-

put. Syst. Sci., 31:343-354, 1985.

P. C. Fischer and S. J. Thomas: “Operators for Non-First-Normal-Form
Relations”, in Proc. IEEE COMPSAC, pp. 464-475, Chicaco, IL, 1983.

D. V. Gucht and P. C. Fischer: “Multilevel Nested Relational Structures

»J. Comput. Syst. Sci., 36:77-105, 1988.

M. Gyssens and D. V. Gucht: “The Powerset Algebra as a Result of

Adding Programming Constructs to the Nested Relational Algebra”, In

Proc. ACM SIGMOD Conf., pp. 225-232, Chicago, IL, June 1988.



REFERENCES 146

IGTZ92)

GVTS)

[HHR93]

[HSR91]

[Hug91)

1K94]

K093

J582]

F. Grandi, P. Tiberio, and P. Zezula: “Frame-Sliced Partitioned Paralle]
Signature Files”, in Proc. of 15th ACM SIGIR Conf., pp. 286297,

Copenhagen, Denmark, June 1992.

R. G. Gallager and D. C. V. Voorhis: “Optimal Source Codes for Geo-
metrically Distributed Integer Alphabets”, IEEE Trans. on Information

Theory, pp. 228-230, Mar, 1975.

E. N. Hanson, T. M. Harvey, and M. A. Roth: “Experiences in Database
System Implementation Using a Persistent Programming Language”,

Software - Practice and Ezprerience, 23(12):1361-1377, Dec. 1993.

T. M. Harvey, C. W. Schrepf, and M. A. Roth: “The Design of the
Triton Nested Relational Database System”, ACM SIGMQD Record,

20(3):62-72, Sept. 1991.
J. G. Hughes: Object-Oriented Databases, Prentice-Hall, 1991.

Y. Ishikawa and H. Kitagawa: “Set-valued Object Retrieval based on

Hamming Filter”, in [PSJ 4915]1 Annual Conf., Sept. 1994, 6W-9, {in

Japanese).

Y. Ishikawa, H. Kitagawa, and N. Ohbo: “Evaluation of Signature Files

as Set Access Facilities in OODBs”, in Proc. ACM SIGMOD Conf., pp.

247-256, Washington, D.C., May 1993.

G. Jaeschke and H.-J. Schek: “Remarks on the Algebra of Non First
Normal Form Relations”, in Proc. ACM SIGACT-SIGMOD Symp. on



REFERENCES 147

IKF1093]

[Kho93)
[Kim90a]

[Kim90b)

KK89]

[KKDS0)

KKO91]

Principles of Database Systems, pp. 124~138, Los Angeles, CA, Mar.
1982.

H. Kitagawa, Y. Fukushima, Y. Ishikawa, and N. Ohbo: “Estimation
of False Drops in Set-valued Object Retrieval with Signature Files”, in
D. B. Lomet ed., Proceedings of the Jth International Conference on
Foundaiions of Date Organization and Algorithms, Vol. 730 of Lecture

Notes in Computer Science, pp. 146-163, Springer-Verlag, Oct. 1993,
S. Khoshafian: Object- Oriented Databases, John Wiley & Sons, 1993,
W. Kim: Introduction to Object-Oriented Databases, MIT Press, 1990.

W. Kim: “Object-Oriented Databases: Definition and Research Direc-
tions”, IEEE Trans. on Knowledge and Data Engineering, 2(3):327-341,

Sept. 1990.

H. Kitagawa and T. L. Kunii: The Unnormalized Relational Data Model:
For Office Form Processor Destgn, Computer Science Workbench Series,

Springer-Verlag, Tokyo, Japan, 1989.

W. Kim, K.-C. Kim, and A. Dale: “Indexing Techniques for Object-
Oriented Databases”, in W. Kim and F. H. Lochovsky eds., Object-
Oriented Concepts, Databases, and Applications, chapter 15, pp. 371-

394, ACM Press, New York, 1990.

H. Kitagawa, T. L. Kunii, and N. Ohbo: “Classification of Nested Tables
under Deepely Nested Algebra”, in Proc. 24th Hawaii Inil. Conf. on

System Sciences, pp. 165-173, Hawaii, Jan. 1991.



REFERENCES 148

KL8Y|

[KM94a]

[KM94b]

KP92)

KP93)

[LF92}

{Lin87]

[Lin91]

[Lin93]

W. Kim and F. H. Lochovsky eds.: Object-Oriented Concepts, Databases,

and Applications, Frontier Series, ACM Press, 1989.

A. Kemper and G. Moerkotte: Object-Oriented Database Management —

Applications in Engineering and Computer Science, Prentice-Hall, 1994,

C. Kilger and G. Moerkotte: “Indexing Multiple Sets”, in Proc. Int'l.

Conf. on Very Large Data Bases, Santiago, Chile, Sept. 1994.

Y.-M. Kwon and Y.-J. Park: “A New Indexing Technique for Nested
Queries on Composite Objects”, I[EICE Trans. Inf & Syst., ET75-

D(6):861-872, Nov. 1992.

Y.-M. Kwon and Y.-J. Park: “Generalized Partitioning Scheme of Sig-

nature File for Information Retrieval”, IEICE Trans. Inf. & Syst., E76-

D(2):189-198, Feb. 1993.

7. Lin and C. Faloutsos: “Frame-Sliced Signature Files”, [EEE Trans.

on Knowledge and Data Engineering, 4(3):281-289, June 1992.

V. Linnemann: “Non First Normal Form Relations and Recursive
Queries: An SQL-Based Approach”, in Proc, JEEE Conf. on Data Eng.,

pp. 591-598, Los Angeles, CA, Feb. 1987.

7. Lin: “CAT: An Execution Mode] for Concurrent Full Text Search”, in

Proc. of 15t Intl. Conf. on Parallel and Distributed Information Systerns,

pp. 151-158, Florida, Dec. 1991.

7. Lin: “Concurrent Frame Signature File”, Distributed and Parallel

Databases, 1(3):231-249, July 1993.



REFERENCES 149

LL8Y]

LL90a]

LL9Ob)]

[LL92al

LL92b!

LYC92]

[MA]

D. L. Lee and C.-W. Leng: “Partitioned Signature Files: Design Issues
and Performance Evaluation”, ACM Trans. Office Inf. Syst., 7(2):158-
180, Apr. 1989.

D. L. Lee and C.-W. Leng: “A Partitioned Signature File Structure for
Multiatiribute and Text Retrieval”, in Proc. IEEE Conf. on Data Eng.,
pp. 389-397, Los Angeles, CA, Feb. 1990.

M. Levene and G. Loizou: “The Nested Relation Type Model: An Ap-
plication of Domain Theory to Databases”, The Computer Journdal,

33(1):19-30, 1990.

D. L. Lee and F. H. Lochovsky: “HYTREM ~ A Hybrid Text-Retrieval
Machine for Large Databases”, IEEE Trans. on Computers, 39(1):111-

123, Jan. 1992.

W. Lee and D. L. Lee: “Signature File Methods for Indexing Object-
Oriented Database Systems”, in Intl. Computer Science Conf. (ICSC),

pp. 616-622, Hong Kong, 1992.

S-Y. Lee, M.-C. Yang, and J.-W. Chen: “Signature File as a Spatial
Filter for Iconic Image Database”, Journal of Visual Languages and

Computing, 3:373-397, 1992

E. Murphree and D. Aktug: “Derivation of probability distribution of
the weight of the query signature”, (Preprint. Ist author’s address:

Department of Mathematics and Statistics, Miami University, Oxford,

OH 45056, USA).



REFERENCES 150

[Mak82]

Mak91]

[Mas91]

[MS86]

[Obj]

[ONT]

[02s88]

[PASS]

A. Makinouchi: “A Consideration on Normal Form of Not-Necessarily-
Normalized Relation in the Relational Data Model”, in Proc. 8rd VLDB

Conf., pp. 447-453, 1882.

A. Makinouchi: “Architectures of the Object-Oriented Database Man-
agement Systems”, Journal of IPSJ, 32(5):514-522, May 1991, {in

Japanese).

Y. Masunaga: “Object-Oriented Database System: The Next Genera-

tion Database System”, Journal of IPSJ, 32(5):490-499, May 1991, (in

Japanese).

D Maier and J. Stein: “Indexing in an object-oriented DBMS”, in Proc.
Int. Workhop Object-Oriented Database Syst., pp- 171-182, Asilomar,

CA, sep 1986.

Object Design, Inc., One New England Executive Park, Burlington, MA:

ObjectStore Reference Manual Release 2.0 for UNIX Systems.

ONTOS, Inc., Three Burlingtbn Woods, Burlington, MA: ONT'OS DB

3.0 Reference Manual.
7. M. Ozsoyoglu: “Special Issue on Nested Relations”, [EEE Database
Engineering, 11(3), 1988.

P. Pistor and F. Andersen: “Designing a Generalized NF? Model with
an SQL-Type Language Interface”, in Proc. Int’l. Conf on Very Large

Data Bases, pp. 278-285, Kyoto, Japan, Aug. 1986.



REFERENCES 151

[PBCS0]

PD8Y]

[PF94]

[PSSD87]

[PT85)

[PY94]

(RKS88)

J. L. Pfaltz, W. J. Berman, and E. M. Cagley: “Partial-Match Retrieval
Using Indexed Descriptor Files”, Commun. ACM, 23(9):522-528, Sept.

1980,

P. Pistor and P. Dadam: “The Advanced Information Management Pro-
totype”, in S. Abiteboul, P. C. Fischer, and H.-J. Schek eds., Nested
Relations and Complex Objects, Vol. 416 of Lecture Notes in Computer

Science, pp. 3-26, Springer-Verlag, 1989.

G. Panagopoulos and C. Faloutsos: “Bit-Sliced Signature Files for Very
Large Text Databases on a Parallel Machine Architecture”, in Proc. of

4th Intl. Conf. on EDBT, pp. 378-392, Cambridge, UK, Mar. 1994.

H.-B. Paul, H.-J. Schek, M. H. Scholl, and U. Deppisch: “Architecture
and Implementation of the Darmstadt Database Kernel System”, in

Proc. ACM SIGMOD Conf., pp. 196-207, San Francisce, CA, May 1987.

P. Pistor and R. Traunmiller: “A Data Base Language for Sets, Lists,

and Tables”, Technical Report TR 85.10.004, IBM Heidelberg Research

Center, Oct. 1985.

W.-W. Pan and W.-P. Yang “Indexing Retrievals Based on Signature
Files in QODBs”, Department of Computer and Information Science,

National Chiao-Tung University, Hsinchu, Taiwan, R.0.C., 1994.

M. A. Roth, H. F. Korth, and A. Silberschatz: “Extended Algebra and

Calculus for Nested Relational Databases”, ACM Trans. Database Syst.,

13(4):389-417, Dec. 1988.



REFERENCES 152

RKS89]

IRob79]

RS86]

RS91]

[SAB*89]

[Sai95)

M. A. Roth, H. F. Korth, and A. Silberschatz: “Null Values in Nested

Relational Databases”, Acta Inf., 26:615-642, 1989.

C. S. Roberts: “Partial-Match Retrieval via the Method of Superim-

posed Codes”, Proceedings of the IEEE, 67(12):1624-1642, Dec. 1979.

K. Ramamohanarao and J. A. Shepherd: “A Superimposed Codeword
Indexing Scheme for Very Large Prolog Databases”, in Proc. of the Third

Intl. Conf. on Logic Programming, pp. 569-576, .ondon, 1986.

F. Rabitti and P. Savino: “Image Query Processing Based on Mulii-
level Signatures”, in ACM SIGIR 91, pp. 305-314, Chicago, Illinois,

Oct. 1991.

M. Scholl, S. Abiteboul, F. Bancilhon, N. Bidoit, S. Gamerman,
D. Plateau, P. Richard, and A. Verroust: “VERSO: A Database Ma-
chine Based On Nested Relations”, in S. Abiteboul, P. C. Fischer, and
H.-J. Schek eds., Nested Relations and Complezx Objects in Databases,
Vol. 361 of Lecture Notes in- Computer Science, pp. 27—49, Springer-

Verlag, 1989.

J. Saitoh: “Internal Schema Design of an ASN.1 Database System’,
Master’s thesis, Graduate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST), Nara, Japan, Mar. 1995, (in

Japanese).



REFERENCES 153

[Sch86)]

[SD8s5]

[SDR83]

[SHH*95]

ISK86]

[SM91]

[SPS87]

M. H. Scholl: “Theoretical Foundation of Algebraic Optimization Uti-
lizing Unnormalized Relations”, Technical Report DVSI-1986-T3, Tech-

nische Hochschule Darmstadt, Darmstadt, West Germany, Mar. 1986,

R. Sacks-Davis: “Performance of a Multikey Access Method Based on
Descriptors and Superimposed Coding Techniques”, Inform. Systems,

10(4):391-403, 1985,

R. Sacks-Davis and K. Ramamohanarao: “A Two Level Superimposed
Coding Scheme for Partial Match Retrieval”, Inform. Systems, 8(4}):273-

280, 1983.

J. Saitoh, T. Hara, K. Harumoto, M. Tsukamoto, and S. Nishio: “Design
of the Data Storage for an ASN.1 Database System”, IPSJ Research

Report, 95(12):17-24, Jan. 1995, 95-DBS-101, (in Japanese).

C. Stanfill and B. Kahle: “Parallel Free-Text Search on the Connection

Machine System”, Commun. ACM, 29(12):1229-1239, Dec. 1986,

J. Stein and D. Maier: “Associative Access Support in GemStone”, in
K. R. Dittrich, U. Dayal, and A. P. Buchmann eds., On Object-Oriented
Database Systems, Topics in Information Systems, chapter 20, pp. 323-

339, Springer-Verlag, 1991.

M. H. Scholl, H.-B. Paul, and H.-J. Schek: “Supporting Flat Relations
by a Nested Relational Kernel”, in Proc. Int'l. Conf. on Very Large Data

Bases, pp. 137146, Brighton, England, Aug. 1987.



REFERENCES 454

[SPSW90] H.-J. Schek, H.-B. Paul, M. H. Scholl, and G. Weikum: “The DASDBS

[SS86]

15589]

[Sta90]

[St160]

[Tan91}

[TC83]

[Teu94]

Project: Objectives, Experiences, and Future Prospects”, IFEE Trans.

on Knowledge and Data Engineering, 2(1):25-43, Mar. 1990.

H.-J. Schek and M. H. Scholl: “The Relational Model with Relation-

Valued Attributes”, Inform. Systems, 11(2):137-147, 1986.

H.-J. Schek and M. H. Scholl: “The Two Roles of Nested Relations in
the DASDBS Project”, in S. Abiteboul, P. C. Fischer, and H.-J. Schek
eds., Nested Relations and Complex Objects in Databases, Vol. 361 of

Lecture Notes in Computer Science, Pp- 50-68, Springer- Verlag, 1989.

C. Stanfill: “Information Retrieval Using Parallel Signature Files”, [EEE

Database Engineering, 13(1):34-40, Mar. 1990.

. Stiassny: “Mathematical Analysis of Various Superimposed Coding

Methods”, American Documentation, 13(2):155-169, 1960.

K. Tanaka: “Fundamental Concepts of Object-Oriented Databases”,

Journal of IPSJ, 32(5):500-513, May 1991, (in Japanese).
D. Tsichritzis and 5. Christodoulakis: “Message Files”, ACM Trans.
Office Inf. Syst., 1(1):88-98, Jan. 1983.

J. Teuhola: “An Efficient Relational Im plementation of Recursive Rela-

tionships Using Path Signatures”, in Froc. IEEE Conf. on Data Eng.,

Houston, Texas, Feb. 1994.



REFERENCES 155

[TF86)

[TR92]

[TRN86]

[Uni]

[VERS6]

[WIK94]

[WK5]

[WLO+85)

S. J. Thomas and P. C. Fischer: “Nested Relational Structures”, in
P. C. Kanellakis ed., Advances in Computing Research III, The Theory

of Databases, Vol. 3, pp. 269-307, JAI Press Inc., 1986.

N. Tavakoli and A. Ray: “A New Signature Approach for Retrieval of
Documents from Free-Text Databases”, Information Process & Man-

agement, 28(2):153-163, 1992.

J. A. Thom, K. Ramamohanarao, and L. Naish: “A Superjoin Algorithm
for Deductive Databases”, in Proc. Int’l. Conf. on Very Large Dala

Bases, pp. 189-196, Kyoto, Japan, Aug. 1986.

UniSQL, Inc., 9390 Research II, Suite 200, Austin, Texas: UniSQL/X

User's Manual, release 1.2 edition.

J. VERSO: “VERSO: A Data Base Machine Based on Non INF Rela-

tions”, Technical Report 523, INRIA, Apr. 1986.

N. Watanabe, Y. Ishikawa, and H. Kitagawa: “Evaluation of Two-level
Signature Files as Set-valued Object Retrieval Facilities”, in IPSJ 4%th

Annual Conf., Sept. 1994, 6W-1, (in Japanese).

N. Watanabe and H. Kitagawa: “Evaluation of Partitioned Signature

Files for Set-valued Object Retrieval”, in IPSJ 50th Annual Conf., Mar.

1995, 3F-5, (in Japanese).

H. K. T. Wong, H. Liu, F. Olken, D. Rotem, and L. Wong: “Bit Trans-
posed Files”, in Proc. Int’l. Conf. on Very Large Data Bases, pp. 448-

457, Stockholm, Ang. 1985,



REFERENCES 156

[WW91]

[YaoT77]

K.-F. Wong and M. H. Williams: “A Superimposed codeword Indexing
Scheme for Handling Sets in Prolog Databases”, in Proc. Ini’l. Symp.
on Database Sys. for Advanced Applications, pp. 468-476, Tokyo, Japan,

Apr. 1991.

S. B. Yao: “Approximating Block Accesses in Database Organizations” ,

Commnun. ACM, 20(4):260-261, Apr. 1977.

[YCLK93] J.S. Yoo,J. W. Chang, Y. J. Lee, and M. H. Kim: “Performance Eval-

[YLK94]

[Yos91]

[ZCT93]

[ZM90]

vation of Signature-Based Access Mechanisms for Efficient Information

Retrieval”, IEICE Trans. Inf. & Syst., E76-D(2):179-188, Feb. 1993.

H.-S. Yong, S. Lee, and H.-J. Kim: “Applying Signatures for Forward
Traversal Query Processing in Object-Oriented Databases”, in Tenth
Intl. Conf. on Data Engineering, pp. 518-525, Houston, Texas, Feb.
1994.

M. Yoshikawa: “Query Languages and Query Processing in Object-
Oriented Databases”, Journal of IPSJ, 32(5):523-531, May 1991, (in

Japanese).

P. Zezula, P. Ciaccia, and P. Tiberio: “Hamming Filter: A Dynamic
Signature File Organization for Parallel Stores”, in Proc. Int’l Conf. on

Very Large Data Bases, pp. 314-327, Dublin, Ireland, Aug. 1993.

S. B. Zdonik and D. Maier eds.: Headings in Object—Orz'eﬁted Database

Systems, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.



REFERENCES 157

[ZRT91]  P. Zezula, F. Rabitti, and P. Tiberio: “Dynamic Partitioning of Signa-
ture Files”, ACM Trans. Inf. Syst., 3(4):336-369, Oct. 1991.



L




